CAR-T Cell Therapy for Acute Myeloid Leukemia: Where Do We Stand Now?
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Synthesis
2.4. Variables Selected and Outcome Measurement
3. Results
3.1. Targets and Constructs Under Development
3.2. Clinical-Phase CAR-T Constructs
3.2.1. Patients and Disease Characteristics
3.2.2. Bridging Therapy and Lymphodepletion
3.2.3. Toxicity Profile
3.2.4. Efficacy Results
4. Discussion
4.1. Challenges Related to CAR-T Cell Construct Design and Application in AML
4.2. Manufacturing Failures and Delays
4.3. Bridging Therapy
4.4. Lymphodepletion
4.5. CAR-T-Related Toxicity
4.6. Limited Efficacy Results and Role of Allo-HSCT
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
R/R/AML | Relapsed/refractory acute myeloid leukemia |
HSCT | Hematopoietic stem cell transplantation |
CAR-T | Chimeric antigen receptor T cell |
ALL | Acute lymphoblastic leukemia |
EHA | European Hematology Association Congress |
ASH | American Society of Hematology Congress |
EBMT | European Society for Blood and Marrow Transplantation Congress |
ASTCT | American Society for Transplantation and Cellular Therapy |
ASCO | American Society of Clinical Oncology Congress |
ORR | Overall response rate |
CR | Complete remission |
CRi | Complete remission with incomplete hematologic recovery |
MLFS | Morphologic leukemia-free state |
CRS | Cytokine release syndrome |
ICANS | Immune effector cell-associated neurotoxicity syndrome |
GvHD | Graft-versus-host disease |
HSC | Hematopoietic stem cells |
LSC | Leukemic stem cells |
IL-3 | Interleukin 3 |
SIGLEC | Sialic acid binding immunoglobulin-like lectin |
TNF | Tumor necrosis factor |
SLAM | Signaling lymphocytic activation molecule |
FRβ | Folate receptor β |
FLT3 | FMS-like tyrosine kinase 3 |
NKG2D | Natural killer group 2 D |
WT1 | Wilms tumor 1 |
GPCR | G protein-coupled receptor |
IL1RAP | Interleukin-1 receptor accessory protein |
CoStim | Co-stimulator domain |
PI3K | Phosphoinositide 3-kinase |
KO | Knockout |
NKG2D-L | Natural killer cell group 2D ligand |
CLL1 | C-type lectin-like molecule-1 |
LeY Ag | Lewis Y antigen |
MHC | Major histocompatibility complex |
MICA/MICB | MHC class I chain-related protein A/B |
scFv | Single-chain variable fragment |
NKi | Natural killer cell inhibitory receptor |
γc | Common cytokine receptor γ chain |
TCR | T-cell receptor |
Allo | Allogeneic |
Auto | Autologous |
EM | Extramedullary disease |
LD | Lymphodepletion |
Cy | Cyclophosphamide |
Flu | Fludarabine |
CLAG | Cladribine, cytarabine, G-CSF |
ATRA | All-trans retinoic acid |
HMA | Hypomethylating agents |
MDS | Myelodysplastic syndrome |
OS | Overall survival |
IFN-γ | Interferon gamma |
HLA | Human leukocyte antigen |
PD-1 | Programmed cell death protein 1 |
Tregs | Regulatory T lymphocytes |
References
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Surveillance, Epidemiology, and End Results (SEER) Program. Cancer Stat Facts: Acute Myeloid Leukemia (AML). National Cancer Institute. Available online: https://seer.cancer.gov/statfacts/html/amyl.html (accessed on 3 February 2025).
- Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Sanz, M.Á.; Montesinos, P. Salvage Regimens Using Conventional Chemotherapy Agents for Relapsed/Refractory Adult AML Patients: A Systematic Literature Review. Ann. Hematol. 2018, 97, 1115–1153. [Google Scholar] [CrossRef] [PubMed]
- Röllig, C.; Bornhäuser, M.; Thiede, C.; Taube, F.; Kramer, M.; Mohr, B.; Aulitzky, W.; Bodenstein, H.; Tischler, H.-J.; Stuhlmann, R.; et al. Long-Term Prognosis of Acute Myeloid Leukemia According to the New Genetic Risk Classification of the European LeukemiaNet Recommendations: Evaluation of the Proposed Reporting System. J. Clin. Oncol. 2011, 29, 2758–2765. [Google Scholar] [CrossRef] [PubMed]
- Thol, F.; Ganser, A. Treatment of Relapsed Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2020, 21, 66. [Google Scholar] [CrossRef]
- Bose, P.; Vachhani, P.; Cortes, J.E. Treatment of Relapsed/Refractory Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2017, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Kreidieh, F.; Abou Dalle, I.; Moukalled, N.; El-Cheikh, J.; Brissot, E.; Mohty, M.; Bazarbachi, A. Relapse after Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia: An Overview of Prevention and Treatment. Int. J. Hematol. 2022, 116, 330–340. [Google Scholar] [CrossRef]
- Schmid, C.; De Wreede, L.C.; Van Biezen, A.; Finke, J.; Ehninger, G.; Ganser, A.; Volin, L.; Niederwieser, D.; Beelen, D.; Alessandrino, P.; et al. Outcome after Relapse of Myelodysplastic Syndrome and Secondary Acute Myeloid Leukemia Following Allogeneic Stem Cell Transplantation: A Retrospective Registry Analysis on 698 Patients by the Chronic Malignancies Working Party of the European Society of Blood and Marrow Transplantation. Haematologica 2018, 103, 237–245. [Google Scholar] [CrossRef]
- Takami, A. Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Int. J. Hematol. 2018, 107, 513–518. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Roex, G.; Feys, T.; Beguin, Y.; Kerre, T.; Poiré, X.; Lewalle, P.; Vandenberghe, P.; Bron, D.; Anguille, S. Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies: An Update of the Pivotal Clinical Trial Data. Pharmaceutics 2020, 12, 194. [Google Scholar] [CrossRef]
- Boardman, A.P.; Salles, G. CAR T-Cell Therapy in Large B Cell Lymphoma. Hematol. Oncol. 2023, 41, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Damiani, D.; Tiribelli, M. CAR-T Cells in Acute Myeloid Leukemia: Where Do We Stand? Biomedicines 2024, 12, 1194. [Google Scholar] [CrossRef] [PubMed]
- Vanhooren, J.; Dobbelaere, R.; Derpoorter, C.; Deneweth, L.; Van Camp, L.; Uyttebroeck, A.; De Moerloose, B.; Lammens, T. CAR-T in the Treatment of Acute Myeloid Leukemia: Barriers and How to Overcome Them. HemaSphere 2023, 7, e937. [Google Scholar] [CrossRef]
- Canichella, M.; Molica, M.; Mazzone, C.; de Fabritiis, P. Chimeric Antigen Receptor T-Cell Therapy in Acute Myeloid Leukemia: State of the Art and Recent Advances. Cancers 2024, 16, 42. [Google Scholar] [CrossRef]
- Fiorenza, S.; Turtle, C.J. CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021, 35, 281–302. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health Research. PROSPERO: International Prospective Register of Systematic Reviews. University of York. Available online: https://www.Crd.York.Ac.Uk/Prospero/ (accessed on 3 April 2025).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- El Achi, H.; Dupont, E.; Paul, S.; Khoury, J.D. CD123 as a Biomarker in Hematolymphoid Malignancies: Principles of Detection and Targeted Therapies. Cancers 2020, 12, 3087. [Google Scholar] [CrossRef]
- Bras, A.E.; De Haas, V.; Van Stigt, A.; Jongen-Lavrencic, M.; Beverloo, H.B.; Te Marvelde, J.G.; Zwaan, C.M.; Van Dongen, J.J.M.; Leusen, J.H.W.; Van Der Velden, V.H.J. CD123 Expression Levels in 846 Acute Leukemia Patients Based on Standardized Immunophenotyping. Cytom. Part B Clin. 2019, 96, 134–142. [Google Scholar] [CrossRef]
- Ehninger, A.; Kramer, M.; Röllig, C.; Thiede, C.; Bornhäuser, M.; Von Bonin, M.; Wermke, M.; Feldmann, A.; Bachmann, M.; Ehninger, G.; et al. Distribution and Levels of Cell Surface Expression of CD33 and CD123 in Acute Myeloid Leukemia. Blood Cancer J. 2014, 4, e218. [Google Scholar] [CrossRef] [PubMed]
- Haubner, S.; Perna, F.; Köhnke, T.; Schmidt, C.; Berman, S.; Augsberger, C.; Schnorfeil, F.M.; Krupka, C.; Lichtenegger, F.S.; Liu, X.; et al. Coexpression Profile of Leukemic Stem Cell Markers for Combinatorial Targeted Therapy in AML. Leukemia 2019, 33, 64–74. [Google Scholar] [CrossRef]
- Pérez-Amill, L.; Armand-Ugon, M.; Peña, S.; Val Casals, M.; Santos, C.; Frigola, G.; Minguela, A.; Bataller Torralba, À.; Casanovas, B.; Álamo, J.; et al. CD84: A Novel Target for CAR T-Cell Therapy for Acute Myeloid Leukemia. Blood 2022, 140, 7379–7381. [Google Scholar] [CrossRef]
- Campana, D.; Coustan-Smith, E. Minimal Residual Disease Studies by Flow Cytometry in Acute Leukemia. Acta Haematol. 2004, 112, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, Y.; Wen, S.; Kuang, N.; Zhang, X.; Li, J.; Wang, F. Naturally Selected CD7 CAR-T Therapy without Genetic Editing Demonstrates Significant Antitumour Efficacy against Relapsed and Refractory Acute Myeloid Leukaemia (R/R-AML). J. Transl. Med. 2022, 20, 600. [Google Scholar] [CrossRef]
- Cao, X.; Dai, H.; Cui, Q.; Li, Z.; Shen, W.; Pan, J.; Shen, H.; Ma, Q.; Li, M.; Chen, S.; et al. CD7-Directed CAR T-Cell Therapy: A Potential Immunotherapy Strategy for Relapsed/Refractory Acute Myeloid Leukemia. Exp. Hematol. Oncol. 2022, 11, 67. [Google Scholar] [CrossRef]
- Riether, C.; Schürch, C.M.; Bührer, E.D.; Hinterbrandner, M.; Huguenin, A.-L.; Hoepner, S.; Zlobec, I.; Pabst, T.; Radpour, R.; Ochsenbein, A.F. CD70/CD27 Signaling Promotes Blast Stemness and Is a Viable Therapeutic Target in Acute Myeloid Leukemia. J. Exp. Med. 2017, 214, 359–380. [Google Scholar] [CrossRef]
- Perna, F.; Berman, S.H.; Soni, R.K.; Mansilla-Soto, J.; Eyquem, J.; Hamieh, M.; Hendrickson, R.C.; Brennan, C.W.; Sadelain, M. Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell 2017, 32, 506–519.e5. [Google Scholar] [CrossRef]
- Konopleva, M.; Rissling, I.; Andreeff, M. CD38 in Hematopoietic Malignancies. In Human CD38 and Related Molecules; Malavasi, F., Mehta, K., Eds.; S. Karger AG: Basel, Switzerland, 2000; Volume 75, ISBN 978-3-8055-6923-1. [Google Scholar]
- Zhong, X.; Ma, H. Targeting CD38 for Acute Leukemia. Front. Oncol. 2022, 12, 1007783. [Google Scholar] [CrossRef]
- Lynn, R.C.; Poussin, M.; Kalota, A.; Feng, Y.; Low, P.S.; Dimitrov, D.S.; Powell, D.J. Targeting of Folate Receptor β on Acute Myeloid Leukemia Blasts with Chimeric Antigen Receptor–Expressing T Cells. Blood 2015, 125, 3466–3476. [Google Scholar] [CrossRef]
- Coustan-Smith, E.; Song, G.; Shurtleff, S.; Yeoh, A.E.-J.; Chng, W.J.; Chen, S.P.; Rubnitz, J.E.; Pui, C.-H.; Downing, J.R.; Campana, D. Universal Monitoring of Minimal Residual Disease in Acute Myeloid Leukemia. JCI Insight 2018, 3, e98561. [Google Scholar] [CrossRef] [PubMed]
- Barreyro, L.; Will, B.; Bartholdy, B.; Zhou, L.; Todorova, T.I.; Stanley, R.F.; Ben-Neriah, S.; Montagna, C.; Parekh, S.; Pellagatti, A.; et al. Overexpression of IL-1 Receptor Accessory Protein in Stem and Progenitor Cells and Outcome Correlation in AML and MDS. Blood 2012, 120, 1290–1298. [Google Scholar] [CrossRef]
- Askmyr, M.; Ågerstam, H.; Hansen, N.; Gordon, S.; Arvanitakis, A.; Rissler, M.; Juliusson, G.; Richter, J.; Järås, M.; Fioretos, T. Selective Killing of Candidate AML Stem Cells by Antibody Targeting of IL1RAP. Blood 2013, 121, 3709–3713. [Google Scholar] [CrossRef]
- Mitchell, K.; Barreyro, L.; Todorova, T.I.; Taylor, S.J.; Antony-Debré, I.; Narayanagari, S.-R.; Carvajal, L.A.; Leite, J.; Piperdi, Z.; Pendurti, G.; et al. IL1RAP Potentiates Multiple Oncogenic Signaling Pathways in AML. J. Exp. Med. 2018, 215, 1709–1727. [Google Scholar] [CrossRef]
- Richards, R.M.; Zhao, F.; Freitas, K.A.; Parker, K.R.; Xu, P.; Fan, A.; Sotillo, E.; Daugaard, M.; Oo, H.Z.; Liu, J.; et al. NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discov. 2021, 2, 648–665. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Qian, C.; Xu, N.; Kang, L.; Dai, H.; Cui, W.; Song, B.; Yin, J.; Li, Z.; Zhu, X.; et al. CD38-Directed CAR-T Cell Therapy: A Novel Immunotherapy Strategy for Relapsed Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation. J. Hematol. Oncol. 2021, 14, 82. [Google Scholar] [CrossRef]
- Pigazzi, M.; Marini, O.; Porcù, E.; Faggin, G.; Varotto, E.; Rizzardi, P.; Buldini, B.; Locatelli, F.; Biffi, A. Preclinical Development of a CAR-T Cell Approach Targeting the CD84 Antigen Associated to Pediatric Acute Myeloid Leukemia. Blood 2022, 140, 10247–10248. [Google Scholar] [CrossRef]
- Subklewe, M.; Boissel, N.; Mielke, S.; Barba, P.; Sala, E.; Deconinck, E.; Fiere, O.; Jaeger, J.; Vasseghi, C.; Deschamps, M.; et al. Resolve AML 001: An Adaptive Open-Label Multicentre Phase 1/2 Trial, to Determine the Recommended Phase 2 Dose of Cctx-001, and to Assess Safety, Tolerability, and Clinical Activity in Patients with r/r AML. Blood 2024, 144, 2883.2. [Google Scholar] [CrossRef]
- Liu, S.; Yin, Z.; Yu, X.; Zhao, Y.; Pan, J.; Song, Y. CD19-Specific CAR-T Cell Therapy for Relapsed/Refractory Non-B-Cell Acute Leukaemia with CD19 Antigen Expression. Eur. J. Cancer 2021, 153, 1–4. [Google Scholar] [CrossRef]
- Ma, G.; Wang, Y.; Ahmed, T.; Zaslav, A.-L.; Hogan, L.; Avila, C.; Wada, M.; Salman, H. Anti-CD19 Chimeric Antigen Receptor Targeting of CD19 + Acute Myeloid Leukemia. Leuk. Res. Rep. 2018, 9, 42–44. [Google Scholar] [CrossRef]
- Bendall, L.; Bradstock, K.; Gottlieb, D. Expression of CD44 Variant Exons in Acute Myeloid Leukemia Is More Common and More Complex than That Observed in Normal Blood, Bone Marrow or CD34+ Cells. Leukemia 2000, 14, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Legras, S.; Jasmin, C.; Smadja-Joffe, F. A Strong Expression of CD44-6v Correlates With Shorter Survival of Patients With Acute Myeloid Leukemia. Blood J. Am. Soc. Hematol. 1998, 91, 3401–3413. [Google Scholar]
- Shahswar, R.; Kloos, A.; Gabdoulline, R.; Mohanty, S.; Koenecke, C.; Wichmann, M.; Neziri, B.; Klement, P.; Schiller, J.; Klesse, S.; et al. Frequency and Clinical Characteristics Associated with Putative CAR Targets ADGRE2, CCR1, CD70, and LILRB2 in Acute Myeloid Leukemia. Blood 2018, 132, 5259. [Google Scholar] [CrossRef]
- Zhao, X.; Singh, S.; Pardoux, C.; Zhao, J.; Hsi, E.D.; Abo, A.; Korver, W. Targeting C-Type Lectin-like Molecule-1 for Antibody-Mediated Immunotherapy in Acute Myeloid Leukemia. Haematologica 2010, 95, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Kiyoi, H.; Nakano, Y.; Suzuki, R.; Kodera, Y.; Miyawaki, S.; Asou, N.; Kuriyama, K.; Yagasaki, F.; Shimazaki, C.; et al. Activating Mutation of D835 within the Activation Loop of FLT3 in Human Hematologic Malignancies. Blood 2001, 97, 2434–2439. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, D.G.; Griffin, J.D. The Roles of FLT3 in Hematopoiesis and Leukemia. Blood 2002, 100, 1532–1542. [Google Scholar] [CrossRef]
- Roy, A.G.; Robinson, J.M.; Sharma, P.; Rodriguez-Garcia, A.; Poussin, M.A.; Nickerson-Nutter, C.; Powell, D.J. Folate Receptor Beta as a Direct and Indirect Target for Antibody-Based Cancer Immunotherapy. Int. J. Mol. Sci. 2021, 22, 5572. [Google Scholar] [CrossRef]
- John, S.; Chen, H.; Deng, M.; Gui, X.; Wu, G.; Chen, W.; Li, Z.; Zhang, N.; An, Z.; Zhang, C.C. A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML. Mol. Ther. 2018, 26, 2487–2495. [Google Scholar] [CrossRef]
- Peinert, S.; Prince, H.M.; Guru, P.M.; Kershaw, M.H.; Smyth, M.J.; Trapani, J.A.; Gambell, P.; Harrison, S.; Scott, A.M.; Smyth, F.E.; et al. Gene-Modified T Cells as Immunotherapy for Multiple Myeloma and Acute Myeloid Leukemia Expressing the Lewis Y Antigen. Gene Ther. 2010, 17, 678–686. [Google Scholar] [CrossRef]
- Hilpert, J.; Grosse-Hovest, L.; Grünebach, F.; Buechele, C.; Nuebling, T.; Raum, T.; Steinle, A.; Salih, H.R. Comprehensive Analysis of NKG2D Ligand Expression and Release in Leukemia: Implications for NKG2D-Mediated NK Cell Responses. J. Immunol. 2012, 189, 1360–1371. [Google Scholar] [CrossRef]
- Nowbakht, P.; Ionescu, M.-C.S.; Rohner, A.; Kalberer, C.P.; Rossy, E.; Mori, L.; Cosman, D.; De Libero, G.; Wodnar-Filipowicz, A. Ligands for Natural Killer Cell–Activating Receptors Are Expressed upon the Maturation of Normal Myelomonocytic Cells but at Low Levels in Acute Myeloid Leukemias. Blood 2005, 105, 3615–3622. [Google Scholar] [CrossRef] [PubMed]
- Ghorashian, S.; Pule, M. Siglec-6 CAR T: Magic Bullet for a Moving Target. Blood 2021, 138, 1786–1787. [Google Scholar] [CrossRef] [PubMed]
- Jetani, H.; Navarro-Bailón, A.; Maucher, M.; Frenz, S.; Verbruggen, C.; Yeguas, A.; Vidriales, M.B.; González, M.; Rial Saborido, J.; Kraus, S.; et al. Siglec-6 Is a Novel Target for CAR T-Cell Therapy in Acute Myeloid Leukemia. Blood 2021, 138, 1830–1842. [Google Scholar] [CrossRef]
- Lee, W.-H.S.; Ye, Z.; Cheung, A.M.S.; Goh, Y.P.S.; Oh, H.L.J.; Rajarethinam, R.; Yeo, S.P.; Soh, M.K.; Chan, E.H.L.; Tan, L.K.; et al. Effective Killing of Acute Myeloid Leukemia by TIM-3 Targeted Chimeric Antigen Receptor T Cells. Mol. Cancer Ther. 2021, 20, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Ujj, Z.; Buglyó, G.; Udvardy, M.; Beyer, D.; Vargha, G.; Biró, S.; Rejtő, L. WT1 Expression in Adult Acute Myeloid Leukemia: Assessing Its Presence, Magnitude and Temporal Changes as Prognostic Factors. Pathol. Oncol. Res. 2016, 22, 217–221. [Google Scholar] [CrossRef]
- Donia, H.M.; Elsweify, N.M.; Farahat, N.M.; Nadwan, E.A. Wilms Tumor 1 Gene Expression in Acute Myeloid Leukemia: Prognostic Significance and Usefulness in Minimal Residual Disease Monitoring—A Case–Control Study. Egypt. J. Med. Hum. Genet. 2022, 23, 109. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, Y.; Zhang, M.; Zhao, H.; Wei, G.; Ge, W.; Cui, Q.; Mu, Q.; Chen, G.; Han, L.; et al. Genetically Modified CD7-Targeting Allogeneic CAR-T Cell Therapy with Enhanced Efficacy for Relapsed/Refractory CD7-Positive Hematological Malignancies: A Phase I Clinical Study. Cell Res. 2022, 32, 995–1007. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Zhao, H.; Wei, G.; Chang, A.H.; Huang, H. High Safety and Efficacy of Anti-CD7 CAR-T Cells in Treating Relapsed or Refractory CD7+ Acute Myeloid Leukemia: First-in-Human Phase I Study. In Proceedings of the 49th EBMT Annual Meeting, Paris, France, 23–26 April 2023. [Google Scholar]
- Danylesko, I.; Shem-Tov, N.; Yerushalmi, R.; Jacoby, E.; Toren, A.; Shouval, R.; Itzhaki, O.; Avigdor, A.; Shimoni, A.; Nagler, A. Point of Care CD19 Chimeric Antigen Receptor (CAR) T-Cells for Relapsed/Refractory Acute Myeloid Leukemia (AML) with Aberrant CD19 Antigen Expression. Curr. Res. Transl. Med. 2024, 72, 103471. [Google Scholar] [CrossRef]
- Tambaro, F.P.; Singh, H.; Jones, E.; Rytting, M.; Mahadeo, K.M.; Thompson, P.; Daver, N.; DiNardo, C.; Kadia, T.; Garcia-Manero, G.; et al. Autologous CD33-CAR-T Cells for Treatment of Relapsed/Refractory Acute Myelogenous Leukemia. Leukemia 2021, 35, 3282–3286. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Lv, H.; Han, Q.; Fan, H.; Guo, B.; Wang, L.; Han, W. Treatment of CD33-Directed Chimeric Antigen Receptor-Modified T Cells in One Patient With Relapsed and Refractory Acute Myeloid Leukemia. Mol. Ther. 2015, 23, 184–191. [Google Scholar] [CrossRef]
- Sallman, D.A.; Elmariah, H.; Sweet, K.; Mishra, A.; Cox, C.A.; Chakaith, M.; Semnani, R.; Shehzad, S.; Anderson, A.; Sabzevari, H.; et al. Phase 1/1b Safety Study of Prgn-3006 Ultracar-T in Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia and Higher Risk Myelodysplastic Syndromes. Blood 2022, 140, 10313–10315. [Google Scholar] [CrossRef]
- Shah, N.N.; Tasian, S.K.; Kohler, M.E.; Hsieh, E.M.; Baumeister, S.H.C.; Summers, C.; Shalabi, H.; Pollard, J.A.; Yates, B.; Brazauskas, R.; et al. CD33 CAR T-Cells (CD33CART) for Children and Young Adults with Relapsed/Refractory AML: Dose-Escalation Results from a Phase I/II Multicenter Trial. Blood 2023, 142, 771. [Google Scholar] [CrossRef]
- Zuo, S.; Li, C.; Sun, X.; Deng, B.; Zhang, Y.; Han, Y.; Ling, Z.; Xu, J.; Duan, J.; Wang, Z.; et al. C-JUN Overexpressing CAR-T Cells in Acute Myeloid Leukemia: Preclinical Characterization and Phase I Trial. Nat. Commun. 2024, 15, 6155. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, D.; Deng, B.; Liu, D.; Yan, H.; Li, B.; Xia, Y.; Zheng, R.; Wu, T.; Tong, C. The Safety and Efficacy of CD33 CAR-T Therapy for RR AML after HSCT. Blood 2024, 144, 3467. [Google Scholar] [CrossRef]
- Wermke, M.; Metzelder, S.; Kraus, S.; Sala, E.; Vucinic, V.; Fiedler, W.; Wetzko, K.; Schäfer, J.; Goebeler, M.-E.; Koedam, J.; et al. Updated Results from a Phase I Dose Escalation Study of the Rapidly-Switchable Universal CAR-T Therapy UniCAR-T-CD123 in Relapsed/Refractory AML. Blood 2023, 142, 3465. [Google Scholar] [CrossRef]
- Sallman, D.A.; DeAngelo, D.J.; Pemmaraju, N.; Dinner, S.; Gill, S.; Olin, R.L.; Wang, E.S.; Konopleva, M.; Stark, E.; Korngold, A.; et al. Ameli-01: A Phase I Trial of UCART123v1.2, an Anti-CD123 Allogeneic CAR-T Cell Product, in Adult Patients with Relapsed or Refractory (R/R) CD123+ Acute Myeloid Leukemia (AML). Blood 2022, 140, 2371–2373. [Google Scholar] [CrossRef]
- Budde, L.; Song, J.Y.; Kim, Y.; Blanchard, S.; Wagner, J.; Stein, A.S.; Weng, L.; Del Real, M.; Hernandez, R.; Marcucci, E.; et al. Remissions of Acute Myeloid Leukemia and Blastic Plasmacytoid Dendritic Cell Neoplasm Following Treatment with CD123-Specific CAR T Cells: A First-in-Human Clinical Trial. Blood 2017, 130, 811. [Google Scholar] [CrossRef]
- Naik, S.; Madden, R.M.; Lipsitt, A.; Lockey, T.; Bran, J.; Rubnitz, J.E.; Klco, J.; Shulkin, B.; Patil, S.L.; Schell, S.; et al. Safety and Anti-Leukemic Activity of CD123-CAR T Cells in Pediatric Patients with AML: Preliminary Results from a Phase 1 Trial. Blood 2022, 140, 4584–4585. [Google Scholar] [CrossRef]
- Yao, S.; Jianlin, C.; Yarong, L.; Botao, L.; Qinghan, W.; Hongliang, F.; Lu, Z.; Hongmei, N.; Pin, W.; Hu, C.; et al. Donor-Derived CD123-Targeted CAR T Cell Serves as a RIC Regimen for Haploidentical Transplantation in a Patient With FUS-ERG+ AML. Front. Oncol. 2019, 9, 1358. [Google Scholar] [CrossRef]
- Zhang, H.; Bu, C.; Peng, Z.; Li, G.; Zhou, Z.; Ding, W.; Zheng, Y.; He, Y.; Hu, Z.; Pei, K.; et al. Characteristics of Anti-CLL1 Based CAR-T Therapy for Children with Relapsed or Refractory Acute Myeloid Leukemia: The Multi-Center Efficacy and Safety Interim Analysis. Leukemia 2022, 36, 2596–2604. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, X.; Guo, S.; Zhang, X.; Liu, J.; Zhao, M.; Xie, T.; Meng, H.; Zhang, Y.; He, X.; et al. Efficacy and Safety of CAR-T Therapy Targeting CLL1 in Patients with Extramedullary Diseases of Acute Myeloid Leukemia. J. Transl. Med. 2024, 22, 888. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-J.; Dai, H.-P.; Cui, Q.-Y.; Cui, W.; Zhu, W.-J.; Qu, C.-J.; Kang, L.-Q.; Zhu, M.-Q.; Zhu, X.-M.; Liu, D.-D.; et al. Successful Application of PD-1 Knockdown CLL-1 CAR-T Therapy in Two AML Patients with Post-Transplant Relapse and Failure of Anti-CD38 CAR-T Cell Treatment. Am. J. Cancer Res. 2022, 12, 615. [Google Scholar]
- Miao, X.; Shuai, Y.; Han, Y.; Zhang, N.; Liu, Y.; Yao, H.; Wang, X.; He, G.; Chen, D.; Fan, F.; et al. Case Report: Donor-Derived CLL-1 Chimeric Antigen Receptor T-Cell Therapy for Relapsed/Refractory Acute Myeloid Leukemia Bridging to Allogeneic Hematopoietic Stem Cell Transplantation after Remission. Front. Immunol. 2024, 15, 1389227. [Google Scholar] [CrossRef]
- Liu, F.; Cao, Y.; Pinz, K.; Ma, Y.; Wada, M.; Chen, K.; Ma, G.; Shen, J.; Tse, C.O.; Su, Y.; et al. First-In-Human Cll1-Cd33 Compound Car (Ccar) T Cell Therapy in Relapsed and Refractory Acute Myeloid Leukemia. In Proceedings of the 25th EHA Annual Congress, Frankfurt, Germany, 11–14 June 2020. [Google Scholar]
- Sallman, D.A.; Kerre, T.; Havelange, V.; Poiré, X.; Lewalle, P.; Wang, E.S.; Brayer, J.B.; Davila, M.L.; Moors, I.; Machiels, J.-P.; et al. CYAD-01, an Autologous NKG2D-Based CAR T-Cell Therapy, in Relapsed or Refractory Acute Myeloid Leukaemia and Myelodysplastic Syndromes or Multiple Myeloma (THINK): Haematological Cohorts of the Dose Escalation Segment of a Phase 1 Trial. Lancet Haematol. 2023, 10, e191–e202. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, S.H.; Murad, J.; Werner, L.; Daley, H.; Trebeden-Negre, H.; Gicobi, J.K.; Schmucker, A.; Reder, J.; Sentman, C.L.; Gilham, D.E.; et al. Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunol. Res. 2019, 7, 100–112. [Google Scholar] [CrossRef]
- Deeren, D.; Maertens, J.A.; Lin, T.; Beguin, Y.; Demoulin, B.; Fontaine, M.; Sotiropoulou, P.A.; Alcantar-Orozco, E.; Breman, E.; Dheur, M.-S.; et al. First Results from the Dose Escalation Segment of the Phase I Clinical Study Evaluating Cyad-02, an Optimized Non Gene-Edited Engineered NKG2D CAR T-Cell Product, in Relapsed or Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients. Blood 2020, 136, 36. [Google Scholar] [CrossRef]
- Valbuena, J.R.; Medeiros, L.J.; Rassidakis, G.Z.; Hao, S.; Wu, C.D.; Chen, L.; Lin, P. Expression of B Cell-Specific Activator Protein/PAX5 in Acute Myeloid Leukemia with t(8;21)(Q22;Q22). Am. J. Clin. Pathol. 2006, 126, 235–240. [Google Scholar] [CrossRef]
- Gomes-Silva, D.; Atilla, E.; Atilla, P.A.; Mo, F.; Tashiro, H.; Srinivasan, M.; Lulla, P.; Rouce, R.H.; Cabral, J.M.S.; Ramos, C.A.; et al. CD7 CAR T Cells for the Therapy of Acute Myeloid Leukemia. Mol. Ther. 2019, 27, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Orlando, E.J.; Han, X.; Tribouley, C.; Wood, P.A.; Leary, R.J.; Riester, M.; Levine, J.E.; Qayed, M.; Grupp, S.A.; Boyer, M.; et al. Genetic Mechanisms of Target Antigen Loss in CAR19 Therapy of Acute Lymphoblastic Leukemia. Nat. Med. 2018, 24, 1504–1506. [Google Scholar] [CrossRef]
- Perica, K.; Nataraj, S.; Sjojstrand, M.L.; Nagel, K.; Pavkovic, E.; Payson, E.; Cuenca, A.; Patel, A.; Chung, D.; Mailankody, S.; et al. Low Target Antigen Expression Mediates Resistance to BCMA CAR T Cell Therapy. Blood 2023, 142, 2124. [Google Scholar] [CrossRef]
- Bartoszewska, E.; Tota, M.; Kisielewska, M.; Skowron, I.; Sebastianka, K.; Stefaniak, O.; Molik, K.; Rubin, J.; Kraska, K.; Choromańska, A. Overcoming Antigen Escape and T-Cell Exhaustion in CAR-T Therapy for Leukemia. Cells 2024, 13, 1596. [Google Scholar] [CrossRef] [PubMed]
- Atar, D.; Ruoff, L.; Mast, A.-S.; Krost, S.; Moustafa-Oglou, M.; Scheuermann, S.; Kristmann, B.; Feige, M.; Canak, A.; Wolsing, K.; et al. Rational Combinatorial Targeting by Adapter CAR-T-Cells (AdCAR-T) Prevents Antigen Escape in Acute Myeloid Leukemia. Leukemia 2024, 38, 2183–2195. [Google Scholar] [CrossRef]
- Atilla, E.; Benabdellah, K. The Black Hole: CAR T Cell Therapy in AML. Cancers 2023, 15, 2713. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.; Xu, Y.; Zhang, T.; Zhu, H.; Yao, D. Recent Advances in CAR-T Cell Therapy for Acute Myeloid Leukaemia. J. Cell. Mol. Med. 2024, 28, e18369. [Google Scholar] [CrossRef]
- Yoshida, T.; Mihara, K.; Takei, Y.; Yanagihara, K.; Kubo, T.; Bhattacharyya, J.; Imai, C.; Mino, T.; Takihara, Y.; Ichinohe, T. All-Trans Retinoic Acid Enhances Cytotoxic Effect of T Cells with an Anti-CD38 Chimeric Antigen Receptor in Acute Myeloid Leukemia. Clin. Transl. Immunol. 2016, 5, e116. [Google Scholar] [CrossRef] [PubMed]
- El Khawanky, N.; Hughes, A.; Yu, W.; Myburgh, R.; Matschulla, T.; Taromi, S.; Aumann, K.; Clarson, J.; Vinnakota, J.M.; Shoumariyeh, K.; et al. Demethylating Therapy Increases Anti-CD123 CAR T Cell Cytotoxicity against Acute Myeloid Leukemia. Nat. Commun. 2021, 12, 6436. [Google Scholar] [CrossRef] [PubMed]
- Zarychta, J.; Kowalczyk, A.; Krawczyk, M.; Lejman, M.; Zawitkowska, J. CAR-T Cells Immunotherapies for the Treatment of Acute Myeloid Leukemia-Recent Advances. Cancers 2023, 15, 2944. [Google Scholar] [CrossRef]
- Shi, Y.; Hao, D.; Qian, H.; Tao, Z. Natural Killer Cell-Based Cancer Immunotherapy: From Basics to Clinical Trials. Exp. Hematol. Oncol. 2024, 13, 101. [Google Scholar] [CrossRef]
- Bald, T.; Krummel, M.F.; Smyth, M.J.; Barry, K.C. The NK Cell-Cancer Cycle: Advances and New Challenges in NK Cell-Based Immunotherapies. Nat. Immunol. 2020, 21, 835–847. [Google Scholar] [CrossRef]
- Guijarro-Albaladejo, B.; Marrero-Cepeda, C.; Rodríguez-Arbolí, E.; Sierro-Martínez, B.; Pérez-Simón, J.A.; García-Guerrero, E. Chimeric Antigen Receptor (CAR) Modified T Cells in Acute Myeloid Leukemia: Limitations and Expectations. Front. Cell Dev. Biol. 2024, 12, 1376554. [Google Scholar] [CrossRef]
- Huang, R.; Wang, X.; Yan, H.; Tan, X.; Ma, Y.; Wang, M.; Han, X.; Liu, J.; Gao, L.; Gao, L.; et al. Safety and Efficacy of CD33-Targeted CAR-NK Cell Therapy for Relapsed/Refractory AML: Preclinical Evaluation and Phase I Trial. Exp. Hematol. Oncol. 2025, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, L.; Li, Z.; Nalin, A.P.; Dai, H.; Xu, T.; Yin, J.; You, F.; Zhu, M.; Shen, W.; et al. First-in-Man Clinical Trial of CAR NK-92 Cells: Safety Test of CD33-CAR NK-92 Cells in Patients with Relapsed and Refractory Acute Myeloid Leukemia. Am. J. Cancer Res. 2018, 8, 1083–1089. [Google Scholar] [PubMed]
- Mardiana, S.; Gill, S. CAR T Cells for Acute Myeloid Leukemia: State of the Art and Future Directions. Front. Oncol. 2020, 10, 697. [Google Scholar] [CrossRef]
- Jin, X.; Xie, D.; Sun, R.; Lu, W.; Xiao, X.; Yu, Y.; Meng, J.; Zhao, M. CAR-T Cells Dual-Target CD123 and NKG2DLs to Eradicate AML Cells and Selectively Target Immunosuppressive Cells. Oncoimmunology 2023, 12, 2248826. [Google Scholar] [CrossRef]
- Gandhi, M.; Sharma, B.; Nair, S.; Vaidya, A.D.B. Current Insights into CAR T-Cell-Based Therapies for Myelodysplastic Syndrome. Pharm. Res. 2024, 41, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Epperly, R.; Gottschalk, S.; Velasquez, M.P. A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Front. Oncol. 2020, 10, 262. [Google Scholar] [CrossRef]
- Das, R.K.; O’Connor, R.S.; Grupp, S.A.; Barrett, D.M. Lingering Effects of Chemotherapy on Mature T Cells Impair Proliferation. Blood Adv. 2020, 4, 4653–4664. [Google Scholar] [CrossRef]
- Shahid, S.; Ramaswamy, K.; Flynn, J.; Mauguen, A.; Perica, K.; Park, J.H.; Forlenza, C.J.; Shukla, N.N.; Steinherz, P.G.; Margossian, S.P.; et al. Impact of Bridging Chemotherapy on Clinical Outcomes of CD19-Specific CAR T Cell Therapy in Children/Young Adults with Relapsed/Refractory B Cell Acute Lymphoblastic Leukemia. Transpl. Cell Ther. 2022, 28, 72.e1–72.e8. [Google Scholar] [CrossRef]
- Chua, C.C.; Cheok, K.P.L. Taking a Step Forward in CAR T-Cell Therapy for Acute Myeloid Leukaemia and Myelodysplastic Syndrome. Lancet Haematol. 2023, 10, e161–e162. [Google Scholar] [CrossRef]
- Lickefett, B.; Chu, L.; Ortiz-Maldonado, V.; Warmuth, L.; Barba, P.; Doglio, M.; Henderson, D.; Hudecek, M.; Kremer, A.; Markman, J.; et al. Lymphodepletion-an Essential but Undervalued Part of the Chimeric Antigen Receptor T-Cell Therapy Cycle. Front. Immunol. 2023, 14, 1303935. [Google Scholar] [CrossRef]
- Borot, F.; Wang, H.; Ma, Y.; Jafarov, T.; Raza, A.; Ali, A.M.; Mukherjee, S. Gene-Edited Stem Cells Enable CD33-Directed Immune Therapy for Myeloid Malignancies. Proc. Natl. Acad. Sci. USA 2019, 116, 11978–11987. [Google Scholar] [CrossRef] [PubMed]
- Wellhausen, N.; O’Connell, R.P.; Lesch, S.; Engel, N.W.; Rennels, A.K.; Gonzales, D.; Herbst, F.; Young, R.M.; Garcia, K.C.; Weiner, D.; et al. Epitope Base Editing CD45 in Hematopoietic Cells Enables Universal Blood Cancer Immune Therapy. Sci. Transl. Med. 2023, 15, eadi1145. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.; Liao, A.; Khan, N.; Freeman, S.D.; Whittaker, T.E.; Thrasher, A.J.; Pule, M.; Chester, K.; Yeung, J.; Amrolia, P. Potent and Effective Targeting of AML with ‘Off-the-Shelf’ Engineered CD45-Targeting CAR T-Cells. Blood 2024, 144, 2024. [Google Scholar] [CrossRef]
- Amatya, C.; Pegues, M.A.; Lam, N.; Vanasse, D.; Geldres, C.; Choi, S.; Hewitt, S.M.; Feldman, S.A.; Kochenderfer, J.N. Development of CAR T Cells Expressing a Suicide Gene Plus a Chimeric Antigen Receptor Targeting Signaling Lymphocytic-Activation Molecule F7. Mol. Ther. 2021, 29, 702–717. [Google Scholar] [CrossRef]
- Loff, S.; Dietrich, J.; Meyer, J.-E.; Riewaldt, J.; Spehr, J.; von Bonin, M.; Gründer, C.; Swayampakula, M.; Franke, K.; Feldmann, A.; et al. Rapidly Switchable Universal CAR-T Cells for Treatment of CD123-Positive Leukemia. Mol. Ther. Oncolytics 2020, 17, 408–420. [Google Scholar] [CrossRef]
- Wermke, M.; Kraus, S.; Ehninger, A.; Bargou, R.C.; Goebeler, M.-E.; Middeke, J.M.; Kreissig, C.; Von Bonin, M.; Koedam, J.; Pehl, M.; et al. Proof of Concept for a Rapidly Switchable Universal CAR-T Platform with UniCAR-T-CD123 in Relapsed/Refractory AML. Blood 2021, 137, 3145–3148. [Google Scholar] [CrossRef]
- Caldwell, K.J.; Gottschalk, S.; Talleur, A.C. Allogeneic CAR Cell Therapy-More Than a Pipe Dream. Front. Immunol. 2020, 11, 618427. [Google Scholar] [CrossRef]
- Aparicio, C.; Acebal, C.; González-Vallinas, M. Current Approaches to Develop “off-the-Shelf” Chimeric Antigen Receptor (CAR)-T Cells for Cancer Treatment: A Systematic Review. Exp. Hematol. Oncol. 2023, 12, 73. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, J.; Zhao, Y.; Xiong, M.; Zhou, J.; Lu, Y.; Sun, R.; Wei, Z.; Liu, D.; Zhang, X.; et al. Analysis Benefits of a Second Allo-HSCT after CAR-T Cell Therapy in Patients with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia Who Relapsed after Transplant. Front. Immunol. 2023, 14, 1191382. [Google Scholar] [CrossRef]
Target Antigen | Type of Molecule | Role | On HSC | On LSC | On AML Blasts | References | Clinical Trials ID |
---|---|---|---|---|---|---|---|
CD7 | Glycoprotein | B and T-cell lymphoid interaction and development | No | Yes | 20–35% | [24,27,28] | NCT05907603, NCT04033302, NCT04762485, NCT05995028, NCT04938115, NCT05513612, NCT04538599, NCT04599556 |
CD19 | Glycoprotein | B-cell differentiation | No | No | 8% a | [42,43] | NCT04257175, NCT03896854, NCT05513612, NCT02772198 |
CD33 | Glycoprotein (Siglec family) | Immune response, transmembrane receptor | Yes | Yes | 90% | [23,24] | NCT06420063, NCT03222674, NCT05473221, NCT05467254, NCT05943314, NCT06326021, NCT05672147, NCT05016063, NCT01864902, NCT05945849, NCT03126864, NCT05248685, NCT04835519, NCT02799680, NCT05445765, NCT03971799, NCT05942599, NCT03291444, NCT03927261, NCT03795779 |
CD38 | Glycoprotein | Cell adhesion, migration and signal transduction | No | Yes | 58–91% | [32,39] | NCT03222674, NCT06110208, NCT03291444, NCT04351022 |
CD44v6 | Variant 6 of the hyaluronic acid receptor CD44, glycoprotein | Leukocyte activation and malignant transformation | No | Yes | 60–70% | [44,45] | NCT04097301 |
CD70 | Member of TNF receptor superfamily | Immune response, transmembrane protein | No | Yes | 90% | [29,30] | NCT04662294 |
CD84 | Member of the SLAM family (SLAMF5) | Transmembrane Receptor | No | Yes | 99% | [25,40] | NCT06786299 |
CD93 | Glycoprotein | Immunological clearance of apoptotic cells, cell adhesion | No | Yes | 55% | [34] | Preclinical studies |
CD123 | Type I IL-3 receptor alpha chain | Proliferation and survival of AML blasts | Yes | Yes | 97% | [21,22,23] | NCT05995041, NCT03556982, NCT03796390, NCT03631576, NCT06420063, NCT04265963, NCT03222674, NCT06125652, NCT04318678, NCT04599543, NCT04106076, NCT02623582, NCT04272125, NCT04014881, NCT03672851, NCT04230265, NCT03190278, NCT02159495, NCT03291444, NCT05457010, NCT05513612 |
ADGRE2 | Adhesion GPCR family | Cell adhesion | No | Yes | 90–100% | [30,46] | NCT05463640 |
CLL-1 | Glycoprotein | Inhibitory receptor, transmembrane receptor | No | Yes | 80–90% | [24,47] | NCT03631576, NCT03222674, NCT05467254, NCT05943314, NCT05016063, NCT05248685, NCT06110208, NCT05467202, NCT04219163, NCT04884984, NCT04923919, NCT04789408, NCT06118788, NCT06017258, NCT03795779, ChiCTR2000041054 |
FLT3 | Receptor tyrosine kinase III | Stem cell proliferation and differentiation | Yes | Yes | 70–100% | [48,49] | NCT05023707, NCT03904069, NCT05266950, NCT05445011, NCT05432401, NCT05445011 |
FRβ | Folate-binding protein receptor | Folate delivery | No | Yes | 70% | [33,50] | Preclinical studies, xenograft studies |
IL1RAP | Glycoprotein | IL-1 signaling regulation | No | Yes | 79% | [35,36,37,41] | NCT06281847, NCT04169022 |
ILT3 (LILRB4) | Leukocyte Ig-like Receptor-B Family | Inhibition of MHC class I immune activation | No | Yes | >90% b | [51] | NCT04803929 |
Lewis Y | Glycoprotein | Embryogenesis, differentiation, tumor metastasis | No | Yes | 50% | [52] | NCT01716364 |
NKG2D | C-type lectin-like receptor protein | Activating receptor of T and NK cells | No | Yes | 75–80% | [53,54] | NCT04658004, NCT04167696, NCT03018405, NCT02203825 |
Siglec-6 | SIGLEC Family (type I transmembrane glycoprotein) | Immune cell regulation and recognition | No | Yes | 60% | [55,56] | NCT05488132 |
TIM-3 | T-cell immunoglobulin mucin-3 | Immune response | No | Yes | 87% | [24,57] | NCT06125652 |
WT1 | Zinc-finger transcription factor | Cell differentiation, proliferation and apoptosis | No | Yes | 70–90% | [58,59] | NCT01640301 |
Target | Source | Country | Phase (ID) | Costim | Modification | Source | Transduction | Manufacturing | Ref. |
---|---|---|---|---|---|---|---|---|---|
CD7 | Publication | China | I/II (NCT04762485) | – | – | Auto | – | – | [28] |
Publication | China | I (NCT04538599) | 4-1BB | TCR, MHC, and CD7 KO +NKi + γc | Allo | Retroviral | – | [60] | |
Abstract (EBMT 2023) | China | I (NCT04599556) | – | – | Auto | – | – | [61] | |
CD19 | Publication | Israel | II (NCT02772198) | CD28 | – | Auto | Retroviral | 10 days | [62] |
Publication | China | – | 4-1BB | – | Auto | Lentiviral | – | [42] | |
CD33 | Publication | United States | I (NCT03126864) | 4-1BB | – | Auto | Lentiviral | – | [63] |
Publication | China | I (NCT01864902) | 4-1BB | – | Auto | Lentiviral | 13 days | [64] | |
Abstract (ASH 2022) | United States | I/Ib (NCT03927261) | – | Membrane-bound IL-15 + suicide switch | Auto | – | – | [65] | |
Abstract (ASH 2023) | United States | I/II (NCT03971799) | – | – | Auto | – | – | [66] | |
Publication | China | I/II (NCT04835519) | CD28 | Potentiating molecule linked | Auto/Allo | Lentiviral | – | [67] | |
Abstract (ASH 2024) | China | – | – | – | Auto/Allo | – | – | [68] | |
CD38 | Publication | China | I/II (NCT04351022) | 4-1BB | – | Auto/Allo | – | – | [39] |
CD123 | Abstract (ASH 2023) | Germany | I (NCT04230265) | CD28 | Switchable uniCAR-T (TM123) | Auto | – | – | [69] |
Abstract (ASH 2022) | United States | I (NCT03190278) | – | TCR KO to reduce GvHD | Allo | Lentiviral | – | [70] | |
Abstract (ASH 2017) | United States | I (NCT02159495) | CD28 | – | Auto/Allo | Lentiviral | – | [71] | |
Abstract (ASH 2022) | United States | I (NCT04318678) | CD28 | – | Auto | Lentiviral | – | [72] | |
Publication | China | – | 4-1BB | – | Allo | Retroviral | 8–12 days | [73] | |
CLL-1 | Publication | China | I/II (NCT03222674) | 4-1BB | – | Auto | Lentiviral | – | [74] |
Publication | China | I (ChiCTR2000041054) | 4-1BB | – | Auto | Lentiviral | – | [75] | |
Publication | China | I/II (NCT04884984) | CD28 | PD-1 silenced | Allo | – | 14 days | [76] | |
Publication | China | – | CD28 | – | Allo | Lentiviral | – | [77] | |
CLL-1-CD33 | Abstract (EHA 2020) | China | I (NCT03795779) | – | Dual target | Auto/Allo | – | – | [78] |
NKG2D-L | Publication | United States | I (NCT03018405) | DAP10 | PI3K inhibition to prevent fratricide | Auto | – | – | [79] |
Publication | United States | I (NCT02203825) | DAP10 | – | Auto | Retroviral | 9 days | [80] | |
Abstract (ASH 2020) | Belgium | I (NCT04167696) | DAP10 | MICA and MICB KO to prevent fratricide | – | – | – | [81] |
Disease and Patient Characteristics | Conditioning and Dose | Safety Results | Efficacy Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Target | N | Median Age (Range) | EM (%) | Prior Lines (Range) | Prior HSCT (%) | LD | Dose (cells/kg) | CRS (%) [≥G3 (%)] | ICANS (%) [≥G3 (%)] | ORR (%) a | Post-CART HSCT | Ref. |
CD7 | 1 | 17 | – | 2 | No | Cy + Flu + DEC | 5 × 106 | Grade 3 | 0 | MLFS | Yes | [28] |
12 b | 34 (8–66) | 3/12 (25) | 4 (2–7) | 3/12 (25) | Cy + Flu + Eto | (1–3) × 107 | 10/12 (83) [0] | 0 | 1/1 (100) | 4 pts | [60] | |
9 | – | – | – | – | Cy + Flu/Eto | (2–4) × 106 | 9/9 (100) [0] | 1/9 (11) [0] | 6/9 (66.7) | 3 pts | [61] | |
CD19 | 6 c | – | 1/6 (17) | 4 (3–8) | 4/6 (66) | Cy + Flu | 1 × 106 | 6/6 (100) [1(16.6)] | 2/6 (33) [0] | 4/6 (66.7) | 2 pts | [62] |
8 d | 28 (5–40) | – | – | 4/8 (50) | Cy + Flu | Median 1.5 × 105 | 7/8 (87) [1 (12.5)] | 0 | 5/8 (62.5) | 4 pts | [42] | |
CD33 | 10 | 30 (18–73) | – | 5 (3–8) | 3/10 (30) | None | 0.3 × 106 | 2/3 (66.7) [1 (33.3)] | 1/3 (33) [0] | 0 | No | [63] |
1 | 41 | – | – | No | None | 1.12 × 109 | Grade 4 | 0 | 0 | No | [64] | |
24 | 60 (33–77) | – | 3 (1–9) | 15/24 (50) | None/Cy + Flu | 3 × 104–106 | 17/20 (85) [1 (5)] | – | 2/20 (10) | 1 pt | [65] | |
24 | 16 (1–34) | – | 4 (2–6) | 3/4 (75) | Cy + Flu | 3 × 105–1 × 107 | 13/19 (68) [4 (21)] | 1/19 (5.3) [1 (5.3)] | 2/19 (11) | 1 pt on day 100 | [66] | |
4 | 9.5 (3–12) | No | – | 3/4 (75) | Cy + Flu | 5×105 (±20%) | 4/4 (100) [1 (25)] | 2/4 (50) [0] | 3/4 (75) e | 3 pts on day 29–38 | [67] | |
12 | 36 (14–51) | 4/12 (33) | – | 12/12 (100) | Flu regimen | 6.2×104–6.15 × 10⁵ | 10/12 (83) [0] | 0 | 5/12 (41.7) | 5 pts | [68] | |
CD38 | 6 | 34.5 (7–52) | – | – | 6/6 (100) | Cy + Flu | (6.1–10) × 106 | 4/6 (66.7) [1 (16.6)] | 0 | 4/6 (66.7) | No | [39] |
CD123 | 19 | – | – | 4 (2–7) | 12/19 (63) | Cy + Flu | <20 × 107 | 12/19 (63) [3 (15.7)] | 1/19 (5) [0] | 8/15 (53) | No | [69] |
16 | 57 (18–65) | – | 4 (3–9) | 9/16 (56) | Cy + Flu ± Alem | (0.25–3.03) × 106 | 15/16 (95) [3 (18.7)] | 1/16 (6.25) [1 (6.25)] | 2/16 (12.5) | – | [70] | |
14 | – | 1/7 (14) | 4 (4–7) | 6/7 (86) | Cy + Flu | DL1:5 × 107; DL2: 2 × 108 | 5/7 (71.4) [0] | 0 | 3/6 (50) | 2 pts | [71] | |
12 | 17 (12–21) | 1/12 (8) | – | 11/12 (92) | Cy + Flu | (3–100) × 105 | – [0] | – [0] | 2/5 (40) | – | [72] | |
1 | 25 | – | 9 | Yes | RIC regimen of TVFB | 1.1 × 108 | Grade 3 | – | CRi | Yes, at day 6 | [73] | |
CLL-1 | 8 | 12 (8–16) | – | 3 (1–6) | 2/8 (25) | Cy + Flu | (0.35–1) × 106 | 8/8 (100) [0] | 0 | 6/8 (75) | 6 pts | [74] |
47 | 35 (17–73) | 20/47 (43) | 4 (2–13) | 14/47 (30) | Cy + Flu | (0.5–3) × 106 | 45/47 (96) [25 (53)] | 10/47 (21.3) [3 (6.4)] | 35/47 (74.5) | 30 pts | [75] | |
2 | 28 (both) | – | Pt 1: 2; Pt 2: 4 f | 2/2 (100) | Cy regimen | Pt 1: 1 × 107; Pt 2: 5 × 106 | Pt 1: G1, Pt 2: G2 | 0 | 2/2 (100) | 1 pt | [76] | |
1 | 18 | No | 3 | Yes | Cy + Flu | 0.5 × 106. | Grade 1 | 0 | CR | Yes | [77] | |
CLL-1-CD33 | 9 | 32 (6–48) | – | – | – | Cy + Flu | (1–3) × 106 | 8/9 (88.8) [2 (22.2)] | 4/9 (44) [3 (33.3)] | 7/9 (78) | 6 pts | [78] |
NKG2D | 25 | 67 (57–76) | – | 1 (1–2) | – | None | (3–30) × 108 | 15/16 (94) [5 (31.2)] | 0 | 3/12 (25) | 2 pts | [79] |
14 | 70 (44–79) | – | 1 (0–4) | No | None | 1 × 106–3 × 107 | None | 0 | 0 | 1 pt | [80] | |
11 | – | – | – | – | Cy + Flu | (1–10) × 109 | – [5 (55.5)] | – | 0 | – | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lloret-Madrid, P.; Chorão, P.; Guerreiro, M.; Montesinos, P. CAR-T Cell Therapy for Acute Myeloid Leukemia: Where Do We Stand Now? Curr. Oncol. 2025, 32, 322. https://doi.org/10.3390/curroncol32060322
Lloret-Madrid P, Chorão P, Guerreiro M, Montesinos P. CAR-T Cell Therapy for Acute Myeloid Leukemia: Where Do We Stand Now? Current Oncology. 2025; 32(6):322. https://doi.org/10.3390/curroncol32060322
Chicago/Turabian StyleLloret-Madrid, Pilar, Pedro Chorão, Manuel Guerreiro, and Pau Montesinos. 2025. "CAR-T Cell Therapy for Acute Myeloid Leukemia: Where Do We Stand Now?" Current Oncology 32, no. 6: 322. https://doi.org/10.3390/curroncol32060322
APA StyleLloret-Madrid, P., Chorão, P., Guerreiro, M., & Montesinos, P. (2025). CAR-T Cell Therapy for Acute Myeloid Leukemia: Where Do We Stand Now? Current Oncology, 32(6), 322. https://doi.org/10.3390/curroncol32060322