Computed Tomography-Based Radiomic Nomogram to Predict Occult Pleural Metastasis in Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CT Image Acquisition
2.3. PM Status Determination
2.4. Data Collection and Analysis
2.5. Nomogram Construction and Validation
2.6. Statistical Analyses
3. Results
3.1. Clinical Characteristics
3.2. Radiomic Signature Discovery
3.3. Development and Validation of Nomogram
3.4. Clinical Usage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Rami-Porta, R.; Bolejack, B.; Crowley, J.; Ball, D.; Kim, J.; Lyons, G.; Rice, T.; Suzuki, K.; Thomas, C.F.; Travis, W.D.; et al. The IASLC Lung Cancer Staging Project: Proposals for the Revisions of the T Descriptors in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2015, 10, 990–1003. [Google Scholar] [CrossRef]
- Yun, J.K.; Kim, M.A.; Choi, C.M.; Choi, S.H.; Kim, Y.-H.; Kim, D.K.; Park, S.-I.; Kim, H.R. Surgical Outcomes after Pulmonary Resection for Non-Small Cell Lung Cancer with Localized Pleural Seeding First Detected during Surgery. Thorac. Cardiovasc. Surg. 2018, 66, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.J.; She, Y.L.; Dai, C.Y.; Jiang, G.-N.; Fei, K.; Chen, C. Primary tumour resection showed survival benefits for non-small-cell lung cancers with unexpected malignant pleural dissemination. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, S.; Huang, M.; Ma, Y.; Yang, Y. Management of occult malignant pleural disease firstly detected at thoracotomy for non-small cell lung cancer patients. J. Thorac. Dis. 2017, 9, 3851–3858. [Google Scholar] [CrossRef]
- Mordant, P.; Arame, A.; Foucault, C.; Dujon, A.; Barthes, F.L.P.; Riquet, M. Surgery for metastatic pleural extension of non-small-cell lung cancer. Eur. J. Cardio-Thorac. Surg. 2011, 40, 1444–1449. [Google Scholar] [CrossRef]
- Kumar, A.; Xu, B.; Srinivasan, D.; Potter, A.L.; Raman, V.; Lanuti, M.; Yang, C.-F.J.; Auchincloss, H.G. Long-Term Survival of American Joint Committee on Cancer 8th Edition Staging Descriptors for Clinical M1a Non-Small Cell Lung Cancer. Chest 2024, 165, 725–737. [Google Scholar] [CrossRef]
- Choi, W.; Oh, J.H.; Riyahi, S.; Liu, C.; Jiang, F.; Chen, W.; White, C.; Rimner, A.; Mechalakos, J.G.; Deasy, J.O.; et al. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med. Phys. 2018, 45, 1537–1549. [Google Scholar] [CrossRef]
- Trebeschi, S.; Drago, S.G.; Birkbak, N.J.; Kurilova, I.; Cǎlin, A.; Pizzi, A.D.; Lalezari, F.; Lambregts, D.; Rohaan, M.; Parmar, C.; et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann. Oncol. 2019, 30, 998–1004. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; He, L.; Chen, X.; Pan, D.; Ma, Z.; Liang, C.; Tian, J.; Liang, C. Radiomics Signature: A potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology 2016, 281, 947–957. [Google Scholar]
- Yang, X.; Pan, X.; Liu, H.; Gao, D.; He, J.; Liang, W.; Guan, Y. A new approach to predict lymph node metastasis in solid lung adenocarcinoma: A radiomics nomogram. J. Thorac. Dis. 2018, 10 (Suppl. S7), S807–S819. [Google Scholar]
- Dong, D.; Tang, L.; Li, Z.Y.; Fang, M.J.; Gao, J.B.; Shan, X.H.; Ying, X.J.; Sun, Y.S.; Fu, J.; Wang, X.X.; et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann. Oncol. 2019, 30, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, L.; Cai, X.; Li, M.; Sun, D.; Wang, P. Tumour-pleura relationship on CT is a risk factor for occult lymph node metastasis in peripheral clinical stage IA solid adenocarcinoma. Eur. Radiol. 2023, 33, 3083–3091. [Google Scholar] [CrossRef]
- Chen, X.; Feng, B.; Chen, Y.; Liu, K.; Li, K.; Duan, X.; Hao, Y.; Cui, E.; Liu, Z.; Zhang, C.; et al. A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules. Cancer Imaging 2020, 20, 45. [Google Scholar] [PubMed]
- Brun, C.; Gay, P.; Cottier, M.; Karpathiou, G.; Patoir, A.; Tiffet, O.; Barral, F.-G.; Vergnon, J.-M.; Froudarakis, M.E. Comparison of cytology, chest computed and positron emission tomography findings in malignant pleural effusion from lung cancer. J. Thorac. Dis. 2018, 10, 6903–6911. [Google Scholar] [PubMed]
- Lim, J.H.; Ryu, J.S. Current perspective on the diagnosis of malignant pleural effusion. J. Thorac. Dis. 2019, 11 (Suppl. S9), S1234–S1236. [Google Scholar]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Yang, C.; Yang, Y.; Huang, X.; Li, H.; Cheng, H.; Tong, S.; Zheng, Y. A Nomogram Based on Clinicopathologic Features and Preoperative Hematology Parameters to Predict Occult Peritoneal Metastasis of Gastric Cancer: A Single-Center Retrospective Study. Dis. Markers 2020, 9, 1418978. [Google Scholar]
- Chow, S.; Shao, J.; Wang, H. Sample Size Calculations in Clinical Research, 2nd ed.; Biostatistics Series; Chapman &Hall//CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wu, Y.; Jiang, M.; Qin, Y.; Lin, F.; Lai, M. Single and combined use of neutrophil-lymphocyte ratio, platelet-lymphocyte ratio and carcinoembryonic antigen in diagnosing gastric cancer. Clin. Chim. Acta 2018, 481, 20–24. [Google Scholar]
- Nakamura, N.; Kinami, S.; Fujii, Y.; Miura, S.; Fujita, J.; Kaida, D.; Tomita, Y.; Miyata, T.; Fujita, H.; Ueda, N.; et al. The neutrophil/lymphocyte ratio as a predictor of peritoneal metastasis during staging laparoscopy for advanced gastric cancer: A retrospective cohort analysis. World J. Surg. Oncol. 2019, 17, 108. [Google Scholar]
- Kim, E.Y.; Lee, J.W.; Yoo, H.M.; Park, C.H.; Song, K.Y. The Platelet-to-Lymphocyte Ratio Versus Neutrophil-to-Lymphocyte Ratio: Which is Better as a Prognostic Factor in Gastric Cancer? Ann. Surg. Oncol. 2015, 22, 4363–4370. [Google Scholar] [CrossRef] [PubMed]
- Queen, M.M.; Ryan, R.E.; Holzer, R.G.; Keller-Peck, C.R.; Jorcyk, C.L. Breast cancer cells stimulate neutrophils to produce oncostatin M: Potential implications for tumor progression. Cancer Res. 2005, 65, 8896–8904. [Google Scholar] [PubMed]
- Liu, X.; Wang, L.; Yin, X. The diagnostic value of serum CEA, NSE and MMP-9 for on-small cell lung cancer. Open Med. 2016, 11, 59–62. [Google Scholar]
Characteristic | Training Cohort (n = 100) | Validation Cohort (n = 545) | Statistic | p |
---|---|---|---|---|
Age (years) | 59.15 ± 9.72 | 60.38 ± 7.79 | t = −1.199 | 0.233 |
Sex | χ2 = 0.589 | 0.443 | ||
Male | 45 (45.0) | 268 (49.2) | ||
Female | 55 (55.0) | 277 (50.8) | ||
BMI, kg/m2 | 24.53 ± 3.35 | 24.31 ± 3.16 | t = 0.646 | 0.519 |
Somke | χ2 = 0.686 | 0.408 | ||
Negative | 69 (69.0) | 398 (73.0) | ||
Positive | 31 (31.0) | 147 (27.0) | ||
NLR | χ2 = 1.761 | 0.185 | ||
<2 | 46 (46.0) | 290 (53.2) | ||
≥2 | 54 (54.0) | 255 (46.8) | ||
LMR | χ2 = 3.169 | 0.075 | ||
<5 | 86 (86.0) | 426 (78.2) | ||
≥5 | 14 (49.0) | 119 (21.8) | ||
PLR | χ2 = 0.469 | 0.493 | ||
<165 | 80 (80.0) | 419 (76.9) | ||
≥165 | 20 (20.0) | 126 (23.1) | ||
PT | χ2 = 0.039 | 0.843 | ||
<12 s | 81 (81.0) | 446 (81.8) | ||
≥12 s | 19 (19.0) | 99 (18.2) | ||
APTT | χ2 = 2.857 | 0.091 | ||
<28 s | 75 (75.0) | 448 (82.2) | ||
≥28 s | 25 (25.0) | 97 (17.8) | ||
FIB | χ2 = 2.757 | 0.097 | ||
<3 g/L | 56 (56.0) | 256 (47.0) | ||
≥3 g/L | 44 (44.0) | 289 (53.0) | ||
D-dimer | χ2 = 0.928 | 0.335 | ||
<0.5 mg/L | 89 (89.0) | 501 (91.9) | ||
≥0.5 mg/L | 11 (11.0) | 44 (8.1) | ||
CEA | χ2 = 26.702 | <0.001 * | ||
Normal | 61 (61.0) | 455 (83.5) | ||
Elevated | 39 (39.0) | 90 (16.5) | ||
CA199 | χ2 = 1.065 | 0.302 | ||
Normal | 89 (89.0) | 502 (92.1) | ||
Elevated | 11 (11.0) | 43 (7.9) | ||
CA125 | χ2 = 0.460 | 0.498 | ||
Normal | 96 (96.0) | 530 (97.3) | ||
Elevated | 4 (4.0) | 15 (2.7) | ||
NSE | χ2 = 3.272 | 0.070 | ||
Normal | 96 (96.0) | 493 (90.5) | ||
Elevated | 4 (4.0) | 52 (9.5) | ||
CYFRA21-1 | χ2 = 2.035 | 0.154 | ||
Normal | 96 (96.0) | 501 (91.9) | ||
Elevated | 4 (4.0) | 44 (8.1) | ||
Pathology | χ2 = 0.892 | 0.827 | ||
Adenocarcinoma | 93 (93.0) | 505 (92.7) | ||
SCC | 5 (5.0) | 28 (5.1) | ||
Other NSCLC | 2 (2.0) | 8 (1.5) | ||
SCLC | 0 (0.0) | 4 (0.7) | ||
cT stage | χ2 = 5.098 | 0.165 | ||
T1 | 63 (63.0) | 390 (71.6) | ||
T2 | 27 (27.0) | 128 (23.5) | ||
T3 | 8 (8.0) | 21 (3.9) | ||
T4 | 2 (2.0) | 6 (1.1) | ||
Location | χ2 = 29.077 | <0.001 * | ||
Type 1 | 8 (8.0) | 125 (22.9) | ||
Type 2 | 19 (19.0) | 69 (12.7) | ||
Type 3 | 21 (21.0) | 174 (31.9) | ||
Type 4 | 25 (25.0) | 59 (10.8) | ||
Type 5 | 27 (27.0) | 118 (21.7) |
Characteristic | OPM− (n = 50) | OPM+ (n = 50) | Statistic | p |
---|---|---|---|---|
Age (years) | 58.58 ± 8.31 | 59.72 ± 11.00 | t = −0.585 | 0.560 |
Sex | χ2 = 1.010 | 0.315 | ||
Male | 25 (50.0) | 20 (40.0) | ||
Female | 25 (50.0) | 30 (60.0) | ||
BMI, kg/m2 | 24.77 ± 3.69 | 24.30 ± 3.00 | t = 0.689 | 0.493 |
Somke | χ2 = 2.291 | 0.130 | ||
Negative | 31 (62.0) | 38 (76.0) | ||
Positive | 19 (31.0) | 12 (24.0) | ||
NLR | χ2 = 5.797 | 0.016 * | ||
<2 | 29 (58.0) | 17 (34.0) | ||
≥2 | 21 (42.0) | 33 (66.0) | ||
LMR | χ2 = 332 | 0.564 | ||
<5 | 42 (84.0) | 44 (88.0) | ||
≥5 | 8 (16.0) | 6 (12.0) | ||
PLR | χ2 = 2.250 | 0.134 | ||
<165 | 43 (86.0) | 37 (74.0) | ||
≥165 | 7 (14.0) | 13 (26.0) | ||
PT | χ2 = 0.065 | 0.799 | ||
<12 s | 40 (80.0) | 41 (82.0) | ||
≥12 s | 10 (20.0) | 9 (18.0) | ||
APTT | χ2 = 1.333 | 0.248 | ||
<28 s | 40 (80.0) | 35 (70.0) | ||
≥28 s | 10 (20.0) | 15 (30.) | ||
FIB | χ2 = 0.649 | 0.420 | ||
<3 g/L | 30 (60.0) | 26 (52.0) | ||
≥3 g/L | 20 (40.0) | 24 (48.0) | ||
D-dimer | χ2 = 0.919 | 0.338 | ||
<0.5 mg/L | 46 (92.0) | 43 (86.0) | ||
≥0.5 mg/L | 4 (8.0) | 7 (14.0) | ||
CEA | χ2 = 9.458 | 0.002 * | ||
Normal | 38 (76.0) | 23 (46.0) | ||
Elevated | 12 (24.0) | 27 (54.0) | ||
CA199 | χ2 = 2.554 | 0.110 | ||
Normal | 47 (94.0) | 42 (84.0) | ||
Elevated | 3 (6.0) | 8 (16.0) | ||
CA125 | χ2 = 1.042 | 0.307 | ||
Normal | 47 (94.0) | 49 (98.0) | ||
Elevated | 3 (6.0) | 1 (2.0) | ||
NSE | χ2 = 0.000 | 1.000 | ||
Normal | 48 (96.0) | 48 (96.0) | ||
Elevated | 2 (4.0) | 2 (4.0) | ||
CYFRA21-1 | χ2 = 1.042 | 0.307 | ||
Normal | 49 (98.0) | 47 (94.0) | ||
Elevated | 1 (2.0) | 3 (6.0) | ||
Pathology | χ2 = 0.211 | 0.900 | ||
Adenocarcinoma | 46 (92.0) | 47 (94.0) | ||
SCC | 3 (6.0) | 2 (4.0) | ||
Other NSCLC | 1 (2.0) | 1 (2.0) | ||
SCLC | 0 (0.0) | 0 (0.0) | ||
cT stage | χ2 = 13.069 | 0.004 * | ||
1 | 40 (63.0) | 23 (46.0) | ||
2 | 8 (16.0) | 18 (38.0) | ||
3 | 2 (4.0) | 6 (12.0) | ||
4 | 0 (0.0) | 2 (4.0) | ||
Location | χ2 = 14.782 | 0.005 * | ||
Type 1 | 5 (10.0) | 3 (6.0) | ||
Type 2 | 14 (28.0) | 5 (10.0) | ||
Type 3 | 14 (28.0) | 7 (14.0) | ||
Type 4 | 6 (12.0) | 19 (38.0) | ||
Type 5 | 11 (22.0) | 16 (32.0) |
Feature | β | Std. Error | Z Value | Wald χ2 | Pr (|Z|) | OR | 95%CI |
---|---|---|---|---|---|---|---|
NLR | 0.904 | 0.446 | 2.027 | 4.107 | 0.043 | 2.470 | 1.030–5.921 |
CEA | 1.297 | 0.501 | 2.589 | 6.705 | 0.010 | 3.657 | 1.371–9.760 |
cT stage | 0.973 | 0.379 | 2.567 | 6.590 | 0.010 | 2.645 | 1.259–5.557 |
Location | 0.386 | 0.185 | 2.085 | 4.348 | 0.037 | 1.471 | 1.023–2.113 |
Variable of VOI | Coef |
---|---|
(Intercept) | −16.93664 |
shape_Maximum2DDiameterSlice | 0.000979729 |
firstorder_Skewness | −0.2107765 |
glcm_Idn | 16.18972 |
glcm_InverseVariance | 2.98917 |
glrlm_HighGrayLevelRunEmphasis | 0.000280008 |
Variable of ROI | Coef |
(Intercept) | −23.359305349 |
shape_SurfaceArea | 0.001080420 |
firstorder_Kurtosis | 1.197099060 |
firstorder_Maximum | 0.003960438 |
glcm_Correlation | 10.638743549 |
glszm_GrayLevelNonUniformityNormalized | −1.595754622 |
glszm_GrayLevelVariance | 0.049673685 |
glszm_ZoneEntropy | 0.480000350 |
ngtdm_Strength | 0.782355538 |
Models | Training Cohort | Validation Cohort | ||||||
---|---|---|---|---|---|---|---|---|
AUC (95%Cl) | ACC | SPE | SEN | AUC (95%Cl) | ACC | SPE | SEN | |
RN(VOI + ROI) | 0.996(0.989–1) | 0.988 | 0.998 | 0.978 | 0.471(0.365–0.577) | 0.490 | 0.483 | 0.640 |
CRS1(CEA + NLR + VOI) | 0.890(0.828–0.953) | 0.850 | 0.780 | 0.920 | 0.855(0.801–0.909) | 0.770 | 0.767 | 0.840 |
CRS2(CEA + NLR + ROI) | 0.998(0.995–1) | 0.980 | 0.980 | 0.980 | 0.465(0.353–0.576) | 0.460 | 0.452 | 0.640 |
TBM(VOI) | 0.873(0.802–0.944) | 0.830 | 0.900 | 0.760 | 0.829(0.764–0.894) | 0.691 | 0.679 | 0.960 |
PBM(ROI) | 0.994(0.984–1) | 0.980 | 0.980 | 0.980 | 0.518(0.406–0.629) | 0.521 | 0.517 | 0.600 |
CM(CEA + NLR + cTstage + T–P relationship) | 0.761(0.644–0.858) | 0.770 | 0.760 | 0.780 | 0.732(0.640–0.825) | 0.793 | 0.806 | 0.520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhao, H.; Dai, K.; Zeng, X.; Li, Y.; Yang, F.; Jiang, G. Computed Tomography-Based Radiomic Nomogram to Predict Occult Pleural Metastasis in Lung Cancer. Curr. Oncol. 2025, 32, 223. https://doi.org/10.3390/curroncol32040223
Zhao X, Zhao H, Dai K, Zeng X, Li Y, Yang F, Jiang G. Computed Tomography-Based Radiomic Nomogram to Predict Occult Pleural Metastasis in Lung Cancer. Current Oncology. 2025; 32(4):223. https://doi.org/10.3390/curroncol32040223
Chicago/Turabian StyleZhao, Xiaoyi, Heng Zhao, Kongxu Dai, Xiangyu Zeng, Yun Li, Feng Yang, and Guanchao Jiang. 2025. "Computed Tomography-Based Radiomic Nomogram to Predict Occult Pleural Metastasis in Lung Cancer" Current Oncology 32, no. 4: 223. https://doi.org/10.3390/curroncol32040223
APA StyleZhao, X., Zhao, H., Dai, K., Zeng, X., Li, Y., Yang, F., & Jiang, G. (2025). Computed Tomography-Based Radiomic Nomogram to Predict Occult Pleural Metastasis in Lung Cancer. Current Oncology, 32(4), 223. https://doi.org/10.3390/curroncol32040223