Unveiling the Synergistic Potential: Bispecific Antibodies in Conjunction with Chemotherapy for Advanced Non-Small-Cell Lung Cancer Treatment
Abstract
:1. Introduction
2. Bispecific Antibodies and the Science Behind Their Construction
2.1. Fc-Free Bispecific Antibody Composition
2.1.1. The Bispecific Tandem Single-Chain Variable Fragments
2.1.2. Single-Domain Bispecific Antibodies
2.1.3. Tandem Diabodies and Derivatives
2.1.4. Fab Fusion Proteins
2.1.5. Other Miniantibodies
2.2. Fc-Bearing Bispecific Antibody Composition
2.2.1. Asymmetric Fc-Bearing Bispecific Antibodies
2.2.2. Symmetric Fc-Bearing Bispecific Antibodies
3. Mechanism of Action of Bispecific Antibodies
3.1. Redirecting Immune Cells to Tumor Cells
3.2. Dual Inhibition of Downstream or Underlying Signaling Pathways
3.3. Cross-Linking of the Receptors
3.4. Targeting Multiple Immunomodulatory Receptors
4. Bispecific Antibodies Approved by the FDA in Oncology
5. The Evolution of Bispecific Antibodies in NSCLC Treatment
6. Potential Synergism of Bispecific Antibodies and Chemotherapy in NSCLC
7. Precision Targeting with Bispecific Antibodies in NSCLC
7.1. EGFR-Targeted Bispecific Antibodies in NSCLC
7.1.1. EGFR/cMET
7.1.2. EGFRxCD28
7.1.3. EGFRx41BB
7.1.4. EGFR/HER3
7.1.5. EGFRxCD3
7.2. PD-1 or PD-L1-Targeted Bispecific Antibodies in NSCLC
7.2.1. PD-1/CTLA4 or PD-L1/CTLA4
7.2.2. PD-1/VEGF or PD-L1/VEGF
7.3. HER2-Targeted Bispecific Antibodies in NSCLC
7.3.1. HER2/HER3
7.3.2. Dual-Domain HER2
7.4. OTHERS
7.4.1. ROR1/CD3
7.4.2. B7H3/CD28
7.4.3. B7H4/CD3
7.4.4. EpCAM/CD3
7.4.5. DLL4/VEGF
7.4.6. MET/MET
8. Perspectives and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NSCLC | non-small-cell lung cancer |
TME | tumor microenvironment |
BsAbs | bispecific antibodies |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar]
- Estimated Number of New Cases and Deaths from 2022 to 2045, Mortality, Both Sexes. 2024. Available online: https://gco.iarc.who.int/tomorrow/en/dataviz/tables?cancers=15&populations=900&types=1&years=2045 (accessed on 30 September 2024).
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar]
- Gou, L.-Y.; Wu, Y.-L. Prevalence of driver mutations in non-small-cell lung cancers in the People’s Republic of China. Lung Cancer Targets Ther. 2014, 5, 1–9. [Google Scholar]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab plus pemetrexed and platinum in nonsquamous non–small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 study. J. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar]
- Novello, S.; Kowalski, D.M.; Luft, A.; Gümüş, M.; Vicente, D.; Mazières, J.; Rodríguez-Cid, J.; Tafreshi, A.; Cheng, Y.; Lee, K.H.; et al. Pembrolizumab plus chemotherapy in squamous non–small-cell lung cancer: 5-year update of the phase III KEYNOTE-407 study. J. Clin. Oncol. 2023, 41, 1999–2006. [Google Scholar] [CrossRef]
- Reck, M.; Ciuleanu, T.-E.; Schenker, M.; Bordenave, S.; Cobo, M.; Juan-Vidal, O.; Reinmuth, N.; Richardet, E.; Felip, E.; Menezes, J. Five-Year Outcomes with First-Line (1L) Nivolumab+ Ipilimumab+ Chemotherapy (N+ I+ C) vs. C in Patients (pts) with Metastatic NSCLC (mNSCLC) in CheckMate 9LA; American Society of Clinical Oncology: Alexandria, VA, USA, 2024. [Google Scholar]
- Belaroussi, Y.; Bouteiller, F.; Bellera, C.; Pasquier, D.; Perol, M.; Debieuvre, D.; Filleron, T.; Girard, N.; Schott, R.; Mathoulin-Pélissier, S.; et al. Survival outcomes of patients with metastatic non-small cell lung cancer receiving chemotherapy or immunotherapy as first-line in a real-life setting. Sci. Rep. 2023, 13, 9584. [Google Scholar]
- Simeone, J.C.; Nordstrom, B.L.; Patel, K.; Klein, A.B. Treatment patterns and overall survival in metastatic non-small-cell lung cancer in a real-world, US setting. Future Oncol. 2019, 15, 3491–3502. [Google Scholar] [PubMed]
- Arasanz, H.; Chocarro, L.; Fernández-Rubio, L.; Blanco, E.; Bocanegra, A.; Echaide, M.; Labiano, I.; Huerta, A.E.; Alsina, M.; Vera, R.; et al. Current Indications and Future Landscape of Bispecific Antibodies for the Treatment of Lung Cancer. Int. J. Mol. Sci. 2023, 24, 9855. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, S.H.; Kim, T.-J.; Kim, H.K.; Moon, M.H.; Beck, K.S.; Suh, Y.-G.; Song, C.; Ahn, J.S.; Lee, J.E.; et al. Five-year overall survival and prognostic factors in patients with lung cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2022, 55, 103–111. [Google Scholar]
- Riely, G.J.; Wood, D.E.; Ettinger, D.S.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R. Non–Small Cell Lung Cancer, Version 4.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 249–274. [Google Scholar]
- Mosele, M.; Westphalen, C.; Stenzinger, A.; Barlesi, F.; Bayle, A.; Bièche, I.; Bonastre, J.; Castro, E.; Dienstmann, R.; Krämer, A.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2024, 35, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [PubMed]
- Park, K.; Haura, E.B.; Leighl, N.B.; Mitchell, P.; Shu, C.A.; Girard, N.; Viteri, S.; Han, J.-Y.; Kim, S.-W.; Lee, C.K.; et al. Amivantamab in EGFR exon 20 insertion–mutated non–small-cell lung cancer progressing on platinum chemotherapy: Initial results from the CHRYSALIS phase I study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, K.-J.; Cho, B.C.; Liu, B.; Paz-Ares, L.; Cheng, S.; Kitazono, S.; Thiagarajan, M.; Goldman, J.W.; Sabari, J.K.; et al. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N. Engl. J. Med. 2023, 389, 2039–2051. [Google Scholar]
- Passaro, A.; Wang, J.; Wang, Y.; Lee, S.-H.; Melosky, B.; Shih, J.-Y.; Azuma, K.; Juan-Vidal, O.; Cobo, M.; Felip, E.; et al. Amivantamab plus chemotherapy with and without lazertinib in EGFR-mutant advanced NSCLC after disease progression on osimertinib: Primary results from the phase III MARIPOSA-2 study. Ann. Oncol. 2024, 35, 77–90. [Google Scholar] [CrossRef]
- Cho, B.C.; Lu, S.; Felip, E.; Spira, A.I.; Girard, N.; Lee, J.S.; Lee, S.H.; Ostapenko, Y.; Danchaivijitr, P.; Liu, B.; et al. Amivantamab plus lazertinib in previously untreated EGFR-mutated advanced NSCLC. N. Engl. J. Med. 2024, 391, 1486–1498. [Google Scholar] [PubMed]
- Ahmad, Z.A.; Yeap, S.K.; Ali, A.M.; Ho, W.Y.; Alitheen, N.B.M.; Hamid, M. scFv antibody: Principles and clinical application. J. Immunol. Res. 2012, 2012, 980250. [Google Scholar]
- Brandão, J.G.; Scheper, R.J.; Lougheed, S.M.; Curiel, D.T.; Tillman, B.W.; Gerritsen, W.R.; Van Den Eertwegh, A.J.; Pinedo, H.M.; Haisma, H.J.; De Gruijl, T.D. CD40-targeted adenoviral gene transfer to dendritic cells through the use of a novel bispecific single-chain Fv antibody enhances cytotoxic T cell activation. Vaccine 2003, 21, 2268–2272. [Google Scholar]
- Fang, M.; Zhao, R.; Yang, Z.; Zhang, Z.; Li, H.; Zhang, X.-T.; Lin, Q.; Huang, H.-L. Characterization of an anti-human ovarian carcinoma× anti-human CD3 bispecific single-chain antibody with an albumin-original interlinker. Gynecol. Oncol. 2004, 92, 135–146. [Google Scholar] [CrossRef]
- Wolf, E.; Hofmeister, R.; Kufer, P.; Schlereth, B.; Baeuerle, P.A. BiTEs: Bispecific antibody constructs with unique anti-tumor activity. Drug Discov. Today 2005, 10, 1237–1244. [Google Scholar]
- Huehls, A.M.; Coupet, T.A.; Sentman, C.L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 2015, 93, 290–296. [Google Scholar] [PubMed]
- Klinger, M.; Benjamin, J.; Kischel, R.; Stienen, S.; Zugmaier, G. Harnessing T cells to fight cancer with BiTE® antibody constructs–past developments and future directions. Immunol. Rev. 2016, 270, 193–208. [Google Scholar] [PubMed]
- Einsele, H.; Borghaei, H.; Orlowski, R.Z.; Subklewe, M.; Roboz, G.J.; Zugmaier, G.; Kufer, P.; Iskander, K.; Kantarjian, H.M. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020, 126, 3192–3201. [Google Scholar]
- Schmohl, J.; Gleason, M.; Dougherty, P.; Miller, J.S.; Vallera, D.A. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. Target. Oncol. 2016, 11, 353–361. [Google Scholar]
- Weidle, U.H.; Auer, J.; Brinkmann, U.; Georges, G.; Tiefenthaler, G. The emerging role of new protein scaffold-based agents for treatment of cancer. Cancer Genom. Proteom. 2013, 10, 155–168. [Google Scholar]
- Conrath, K.E.; Lauwereys, M.; Wyns, L.; Muyldermans, S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J. Biol. Chem. 2001, 276, 7346–7350. [Google Scholar]
- Simmons, D.P.; Abregu, F.A.; Krishnan, U.V.; Proll, D.F.; Streltsov, V.A.; Doughty, L.; Hattarki, M.K.; Nuttall, S.D. Dimerisation strategies for shark IgNAR single domain antibody fragments. J. Immunol. Methods 2006, 315, 171–184. [Google Scholar]
- Hao, S.; Xu, S.; Li, L.; Li, Y.; Zhao, M.; Chen, J.; Zhu, S.; Xie, Y.; Jiang, H.; Zhu, J.; et al. Tumour inhibitory activity on pancreatic cancer by bispecific nanobody targeting PD-L1 and CXCR4. BMC Cancer 2022, 22, 1092. [Google Scholar]
- Holliger, P.; Brissinck, J.; Williams, R.L.; Thielemans, K.; Winter, G. Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng. Des. Sel. 1996, 9, 299–305. [Google Scholar]
- Atwell, J.L.; Pearce, L.A.; Lah, M.; Gruen, L.C.; Kortt, A.A.; Hudson, P.J. Design and expression of a stable bispecific scFv dimer with affinity for both glycophorin and N9 neuraminidase. Mol. Immunol. 1996, 33, 1301–1312. [Google Scholar]
- Kontermann, R.E.; Martineau, P.; Cummings, C.E.; Karpas, A.; Allen, D.; Derbyshire, E.; Winter, G. Enzyme immunoassays using bispecific diabodies. Immunotechnology 1997, 3, 137–144. [Google Scholar]
- DeNardo, D.G.; Xiong, C.-Y.; Shi, X.-B.; DeNardo, G.L.; DeNardo, S.J. Anti-HLA-DR/anti-DOTA diabody construction in a modular gene design platform: Bispecific antibodies for pretargeted radioimmunotherapy. Cancer Biother. Radiopharm. 2001, 16, 525–535. [Google Scholar] [PubMed]
- Holliger, P.; Prospero, T.; Winter, G. “Diabodies”: Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 1993, 90, 6444–6448. [Google Scholar] [PubMed]
- Wu, C. Diabodies: Molecular engineering and therapeutic applications. Drug News Perspect. 2009, 22, 453–458. [Google Scholar] [PubMed]
- Nieto, Y.; Banerjee, P.; Kaur, I.; Bassett, R.; Kerbauy, L.; Basar, R.; Kaplan, M.; Griffin, L.; Esqueda, D.; Ganesh, C.; et al. Abstract CT003: Innate cell engager (ICE®) AFM13 combined with preactivated and expanded cord blood (CB)-derived NK cells for patients with refractory/relapsed CD30+ lymphoma. Cancer Res. 2022, 82 (Suppl. S12), CT003. [Google Scholar]
- Schoonjans, R.; Willems, A.; Schoonooghe, S.; Fiers, W.; Grooten, J.; Mertens, N. Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. J. Immunol. 2000, 165, 7050–7057. [Google Scholar]
- Schoonjans, R.; Willems, A.; Schoonooghe, S.; Leœn, J.; Grooten, J.; Mertens, N. A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain. Biomol. Eng. 2001, 17, 193–202. [Google Scholar]
- Lu, D.; Jimenez, X.; Zhang, H.; Bohlen, P.; Witte, L.; Zhu, Z. Fab-scFv fusion protein: An efficient approach to production of bispecific antibody fragments. J. Immunol. Methods 2002, 267, 213–226. [Google Scholar]
- Wu, X.; Sereno, A.J.; Huang, F.; Lewis, S.M.; Lieu, R.L.; Weldon, C.; Torres, C.; Fine, C.; Batt, M.A.; Fitchett, J.R.; et al. Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs 2015, 7, 470–482. [Google Scholar]
- Kellner, C.; Bruenke, J.; Horner, H.; Schubert, J.; Schwenkert, M.; Mentz, K.; Barbin, K.; Stein, C.; Peipp, M.; Stockmeyer, B.; et al. Heterodimeric bispecific antibody-derivatives against CD19 and CD16 induce effective antibody-dependent cellular cytotoxicity against B-lymphoid tumor cells. Cancer Lett. 2011, 303, 128–139. [Google Scholar]
- Li, A.; Xing, J.; Li, L.; Zhou, C.; Dong, B.; He, P.; Li, Q.; Wang, Z. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells. AMB Express 2016, 6, 32. [Google Scholar] [PubMed]
- Bossi, G.; Buisson, S.; Oates, J.; Jakobsen, B.K.; Hassan, N.J. ImmTAC-redirected tumour cell killing induces and potentiates antigen cross-presentation by dendritic cells. Cancer Immunol. Immunother. 2014, 63, 437–448. [Google Scholar] [PubMed]
- Kostelny, S.A.; Cole, M.; Tso, J.Y. Formation of a bispecific antibody by the use of leucine zippers. J. Immunol. 1992, 148, 1547–1553. [Google Scholar]
- Brinkmann, U.; Kontermann, R.E. The making of bispecific antibodies. MAbs 2017, 9, 182–212. [Google Scholar] [PubMed]
- Rozan, C.; Cornillon, A.; Petiard, C.; Chartier, M.; Behar, G.; Boix, C.; Kerfelec, B.; Robert, B.; Pèlegrin, A.; Chames, P.; et al. Single-domain antibody–based and linker-free bispecific antibodies targeting FcγRIII induce potent antitumor activity without recruiting regulatory T cells. Mol. Cancer Ther. 2013, 12, 1481–1491. [Google Scholar]
- Rossi, E.A.; Goldenberg, D.M.; Chang, C.-H. Complex and defined biostructures with the dock-and-lock method. Trends Pharmacol. Sci. 2012, 33, 474–481. [Google Scholar] [PubMed]
- Muller, D.; Karle, A.; Meissburger, B.; Hofig, I.; Stork, R.; Kontermann, R.E. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J. Biol. Chem. 2007, 282, 12650–12660. [Google Scholar]
- Suresh, M.; Cuello, A.; Milstein, C. [17] Bispecific monoclonal antibodies from hybrid hybridomas. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1986; Volume 121, pp. 210–228. [Google Scholar]
- Chelius, D.; Ruf, P.; Gruber, P.; Plöscher, M.; Liedtke, R.; Gansberger, E.; Hess, J.; Wasiliu, M.; Lindhofer, H. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2010, 2, 309–319. [Google Scholar]
- Atwell, S.; Ridgway, J.B.; Wells, J.A.; Carter, P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol. 1997, 270, 26–35. [Google Scholar]
- Junttila, T.T.; Li, J.; Johnston, J.; Hristopoulos, M.; Clark, R.; Ellerman, D.; Wang, B.-E.; Li, Y.; Mathieu, M.; Li, G.; et al. Antitumor efficacy of a bispecific antibody that targets HER2 and activates T cells. Cancer Res. 2014, 74, 5561–5571. [Google Scholar]
- Gunasekaran, K.; Pentony, M.; Shen, M.; Garrett, L.; Forte, C.; Woodward, A.; Ng, S.B.; Born, T.; Retter, M.; Manchulenko, K.; et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: Applications to bispecific molecules and monovalent IgG. J. Biol. Chem. 2010, 285, 19637–19646. [Google Scholar] [PubMed]
- Liu, Z.; Leng, E.C.; Gunasekaran, K.; Pentony, M.; Shen, M.; Howard, M.; Stoops, J.; Manchulenko, K.; Razinkov, V.; Liu, H.; et al. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J. Biol. Chem. 2015, 290, 7535–7562. [Google Scholar]
- Klein, C.; Sustmann, C.; Thomas, M.; Stubenrauch, K.; Croasdale, R.; Schanzer, J.; Brinkmann, U.; Kettenberger, H.; Regula, J.T.; Schaefer, W. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs 2012, 4, 653–663. [Google Scholar] [PubMed]
- Kuglstatter, A.; Stihle, M.; Neumann, C.A.; Müller, C.; Schaefer, W.; Klein, C.; Benz, J.; Research, R.P.; Development, E. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob–Knob and Hole–Hole side products. Protein Eng. Des. Sel. 2017, 30, 649–656. [Google Scholar]
- Schaefer, G.; Haber, L.; Crocker, L.M.; Shia, S.; Shao, L.; Dowbenko, D.; Totpal, K.; Wong, A.; Lee, C.V.; Stawicki, S.; et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 2011, 20, 472–486. [Google Scholar]
- Jackman, J.; Chen, Y.; Huang, A.; Moffat, B.; Scheer, J.M.; Leong, S.R.; Lee, W.P.; Zhang, J.; Sharma, N.; Lu, Y.; et al. Development of a two-part strategy to identify a therapeutic human bispecific antibody that inhibits IgE receptor signaling. J. Biol. Chem. 2010, 285, 20850–20859. [Google Scholar] [PubMed]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell–engaging antibody, in relapsed or refractory large B-cell lymphoma: Dose expansion in a phase I/II trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar]
- Dimasi, N.; Gao, C.; Fleming, R.; Woods, R.M.; Yao, X.-T.; Shirinian, L.; Kiener, P.A.; Wu, H. The design and characterization of oligospecific antibodies for simultaneous targeting of multiple disease mediators. J. Mol. Biol. 2009, 393, 672–692. [Google Scholar]
- Croasdale, R.; Wartha, K.; Schanzer, J.M.; Kuenkele, K.-P.; Ries, C.; Mayer, K.; Gassner, C.; Wagner, M.; Dimoudis, N.; Herter, S.; et al. Development of tetravalent IgG1 dual targeting IGF-1R–EGFR antibodies with potent tumor inhibition. Arch. Biochem. Biophys. 2012, 526, 206–218. [Google Scholar]
- Shen, J.; Vil, M.D.; Jimenez, X.; Iacolina, M.; Zhang, H.; Zhu, Z. Single variable domain-IgG fusion: A novel recombinant approach to Fc domain-containing bispecific antibodies. J. Biol. Chem. 2006, 281, 10706–10714. [Google Scholar]
- Gu, J.; Yang, J.; Chang, Q.; Liu, Z.; Ghayur, T.; Gu, J. Identification of anti-EGFR and anti-ErbB3 dual variable domains immunoglobulin (DVD-Ig) proteins with unique activities. PLoS ONE 2015, 10, e0124135. [Google Scholar] [CrossRef]
- Yazaki, P.J.; Lee, B.; Channappa, D.; Cheung, C.-W.; Crow, D.; Chea, J.; Poku, E.; Li, L.; Andersen, J.T.; Sandlie, I.; et al. A series of anti-CEA/anti-DOTA bispecific antibody formats evaluated for pre-targeting: Comparison of tumor uptake and blood clearance. Protein Eng. Des. Sel. 2013, 26, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Piccione, E.C.; Juarez, S.; Liu, J.; Tseng, S.; Ryan, C.E.; Narayanan, C.; Wang, L.; Weiskopf, K.; Majeti, R. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs 2015, 7, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, R.; Wang, J.; Fang, Y. A bispecific antibody directly induces lymphoma cell death by simultaneously targeting CD20 and HLA-DR. J. Cancer Res. Clin. Oncol. 2015, 141, 1899–1907. [Google Scholar] [CrossRef]
- Johnson, S.; Burke, S.; Huang, L.; Gorlatov, S.; Li, H.; Wang, W.; Zhang, W.; Tuaillon, N.; Rainey, J.; Barat, B.; et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J. Mol. Biol. 2010, 399, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Schram, A.M.; Odintsov, I.; Espinosa-Cotton, M.; Khodos, I.; Sisso, W.J.; Mattar, M.S.; Lui, A.J.; Vojnic, M.; Shameem, S.H.; Chauhan, T.; et al. Zenocutuzumab, a HER2xHER3 bispecific antibody, is effective therapy for tumors driven by NRG1 gene rearrangements. Cancer Discov. 2022, 12, 1233–1247. [Google Scholar] [CrossRef]
- Yap, T.A.; LoRusso, P.M.; Wong, D.J.; Hu-Lieskovan, S.; Papadopoulos, K.P.; Holz, J.-B.; Grabowska, U.; Gradinaru, C.; Leung, K.-M.; Marshall, S.; et al. A phase 1 first-in-human study of FS118, a tetravalent bispecific antibody targeting LAG-3 and PD-L1 in patients with advanced cancer and PD-L1 resistance. Clin. Cancer Res. 2023, 29, 888–898. [Google Scholar] [CrossRef]
- Pang, X.; Huang, Z.; Zhong, T.; Zhang, P.; Wang, Z.; Xia, M.; Li, B. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity. MAbs 2023, 15, 2180794. [Google Scholar] [CrossRef]
- Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; et al. Phase II trial of the anti-CD19 bispecific T cell–engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol. 2014, 32, 4134–4140. [Google Scholar] [CrossRef]
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.-F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef]
- Kang, C. Teclistamab: First approval. Drugs 2022, 82, 1613–1619. [Google Scholar] [PubMed]
- Budde, L.E.; Sehn, L.H.; Matasar, M.; Schuster, S.J.; Assouline, S.; Giri, P.; Kuruvilla, J.; Canales, M.; Dietrich, S.; Fay, K.; et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: A single-arm, multicentre, phase 2 study. Lancet Oncol. 2022, 23, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [PubMed]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-cell–redirecting GPRC5D bispecific antibody for multiple myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar]
- FDA Grants Accelerated Approval to Talquetamab-Tgvs for Relapsed or Refractory Multiple Myeloma. 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-talquetamab-tgvs-relapsed-or-refractory-multiple-myeloma (accessed on 31 October 2024).
- FDA Grants Accelerated Approval to Elranatamab-Bcmm for Multiple Myeloma. 2023. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-elranatamab-bcmm-multiple-myeloma (accessed on 31 October 2024).
- FDA Grants Accelerated Approval to Tarlatamab-Dlle for Extensive Stage Small Cell Lung Cancer. 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-tarlatamab-dlle-extensive-stage-small-cell-lung-cancer (accessed on 31 October 2024).
- A Study of Lazertinib as Monotherapy or in Combination with Amivantamab in Participants with Advanced Non-Small Cell Lung Cancer (Chrysalis-2). 2019. Available online: https://clinicaltrials.gov/study/NCT04077463?cond=NCT04077463&rank=1 (accessed on 31 October 2024).
- Shu, C.A.; Goto, K.; Ohe, Y.; Besse, B.; Lee, S.-H.; Wang, Y.; Griesinger, F.; Yang, J.C.-H.; Felip, E.; Sanborn, R.E. Amivantamab and Lazertinib in Patients with EGFR-Mutant Non–Small Cell Lung (NSCLC) After Progression on Osimertinib and Platinum-Based Chemotherapy: Updated Results from CHRYSALIS-2; American Society of Clinical Oncology: Alexandria, VA, USA, 2022. [Google Scholar]
- Cho, B.C.; Wang, Y.; Felip, E.; Cui, J.; Spira, A.I.; Neal, J.W.; Baik, C.; Marmarelis, M.E.; Ichihara, E.; Lee, J.-S. Amivantamab Plus Lazertinib in Atypical EGFR-Mutated Advanced Non-Small Cell Lung Cancer (NSCLC): Results from CHRYSALIS-2; American Society of Clinical Oncology: Alexandria, VA, USA, 2024. [Google Scholar]
- FDA Approves Lazertinib with Amivantamab-Vmjw for Non-Small Lung Cancer. 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lazertinib-amivantamab-vmjw-non-small-lung-cancer (accessed on 31 October 2024).
- Amivantamab Combo Shows Improved OS Trend vs. Osimertinib in EGFR+ NSCLC. 2024. Available online: https://www.cancernetwork.com/view/amivantamab-combo-shows-improved-os-trend-vs-osimertinib-in-egfr-nsclc (accessed on 31 October 2024).
- Leighl, N.B.; Akamatsu, H.; Lim, S.M.; Cheng, Y.; Minchom, A.R.; Marmarelis, M.E.; Sanborn, R.E.; Yang, J.C.-H.; Liu, B.; John, T.; et al. Subcutaneous Versus Intravenous Amivantamab, Both in Combination with Lazertinib, in Refractory Epidermal Growth Factor Receptor–Mutated Non–Small Cell Lung Cancer: Primary Results from the Phase III PALOMA-3 Study. J. Clin. Oncol. 2024, 42, 3593–3605. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022, 12, 2115–2132. [Google Scholar]
- Lim, P.T.; Goh, B.H.; Lee, W.-L. Taxol: Mechanisms of action against cancer, an update with current research. In Paclitaxel; Elsevier: Amsterdam, The Netherlands, 2022; pp. 47–71. [Google Scholar]
- Tomasini, P.; Barlesi, F.; Mascaux, C.; Greillier, L. Pemetrexed for advanced stage nonsquamous non-small cell lung cancer: Latest evidence about its extended use and outcomes. Ther. Adv. Med. Oncol. 2016, 8, 198–208. [Google Scholar] [CrossRef]
- Merlano, M.C.; Denaro, N.; Galizia, D.; Ruatta, F.; Occelli, M.; Minei, S.; Abbona, A.; Paccagnella, M.; Ghidini, M.; Garrone, O. How chemotherapy affects the tumor immune microenvironment: A narrative review. Biomedicines 2022, 10, 1822. [Google Scholar] [CrossRef]
- Yun, J.; Lee, S.H.; Kim, S.Y.; Jeong, S.Y.; Kim, J.H.; Pyo, K.H.; Park, C.W.; Heo, S.G.; Yun, M.R.; Lim, S.; et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-MET Bispecific Antibody, in Diverse Models of EGFR Exon 20 Insertion-Driven NSCLC. Cancer Discov. 2020, 10, 1194–1209. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Veillon, R.; Majem, M.; Zhou, C.; Tang, K.-J.; Kim, S.-W.; Richardson, G.; Girard, N.; Sanborn, R.E.; Mansfield, A.S.; et al. 7P Patient-relevant endpoints from PAPILLON: Amivantamab plus chemotherapy vs. chemotherapy as first-line treatment of EGFR exon 20 insertion-mutated (Ex20ins) advanced NSCLC. ESMO Open 2024, 9, 102586. [Google Scholar]
- Popat, S.; Reckamp, K.; Califano, R.; Lee, S.; Melosky, B.; Wang, J.; Wang, Y.; Campelo, M.G.; Felip, E.; Girard, N.; et al. LBA54 Amivantamab plus chemotherapy vs. chemotherapy in EGFR-mutated, advanced non-small cell lung cancer after disease progression on osimertinib: Second interim overall survival from MARIPOSA-2. Ann. Oncol. 2024, 35, S1244–S1245. [Google Scholar]
- Zhao, Y.; Chen, G.; Chen, J.; Zhuang, L.; Du, Y.; Yu, Q.; Zhuang, W.; Zhao, Y.; Zhou, M.; Zhang, W.; et al. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): An open-label, multicenter, phase II trial. EClinicalMedicine 2023, 62, 102106. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, W.; Zhao, Y.; Luo, Y.; Yang, R.; Huang, Y.; He, Z.; Zhao, H.; Li, M.; Li, K.; et al. Ivonescimab combined with chemotherapy in patients with EGFR-mutant non-squamous non-small cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor treatment (HARMONi-A): A randomized, double-blind, multi-center, phase 3 trial. J. Clin. Oncol. 2024, 42, 8508. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, G.; Li, X.; Wu, J.; Chang, B.; Hu, S.; Yang, S.; Xu, T.; Liu, Y.; Wang, N.; et al. KN046, a bispecific antibody against PD-L1 and CTLA-4, plus chemotherapy as first-line treatment for metastatic NSCLC: A multicenter phase 2 trial. Cell Rep. Med. 2024, 5, 101470. [Google Scholar] [PubMed]
- Salvaris, R.; Ong, J.; Gregory, G.P. Bispecific antibodies: A review of development, clinical efficacy and toxicity in B-cell lymphomas. J. Pers. Med. 2021, 11, 355. [Google Scholar] [CrossRef]
- Chennapragada, S.S.; Ramadas, P. Bispecific antibody toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Shigematsu, H.; Lin, L.; Takahashi, T.; Nomura, M.; Suzuki, M.; Wistuba, I.I.; Fong, K.M.; Lee, H.; Toyooka, S.; Shimizu, N.; et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst. 2005, 97, 339–346. [Google Scholar] [PubMed]
- Drilon, A.; Cappuzzo, F.; Ou, S.-H.I.; Camidge, D.R. Targeting MET in lung cancer: Will expectations finally be MET? J. Thorac. Oncol. 2017, 12, 15–26. [Google Scholar]
- A Phase I Clinical Study of HS-20117 in Participants with Advanced Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT05940116?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=1&rank=9 (accessed on 31 October 2024).
- Study of MCLA-129 Combined with Befotertinib in the Treatment of Advanced Non-Small Cell Lung Cancer with EGFR Sensitive Mutation. 2024. Available online: https://clinicaltrials.gov/study/NCT06015568?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=4&rank=31 (accessed on 31 October 2024).
- Phase 1/2 Study Evaluating MCLA-129, a Human Anti-EGFR, Anti-c-MET Bispecific Antibody, in Advanced NSCLC and Other Solid Tumors, Alone and in Combination. 2024. Available online: https://clinicaltrials.gov/study/NCT04868877?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=4&rank=34 (accessed on 31 October 2024).
- A Dose Escalation with Expansion Study of EMB-01 in Participants with Advanced/Metastatic Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT03797391?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=4&rank=38 (accessed on 31 October 2024).
- A Trial to Find Out How Safe REGN7075 Is and How Well It Works in Combination with Cemiplimab for Adult Participants with Advanced Cancers (COMBINE-EGFR-1). 2024. Available online: https://clinicaltrials.gov/study/NCT04626635?cond=REGN7075&term=bispecific%20antibody&rank=1 (accessed on 31 October 2024).
- HLX35(EGFR×4-1BB Bispecific) in Patients with Advanced or Metastatic Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT05360381?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=2&rank=19 (accessed on 31 October 2024).
- A Study of SI-B001, an EGFR/HER3 Bispecific Antibody, in Locally Advanced or Metastatic Epithelial Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT04603287?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=5&rank=48 (accessed on 31 October 2024).
- A Study of TAK-186 (Also Known as MVC-101) in Adults with Advanced or Metastatic Cancer. 2024. Available online: https://clinicaltrials.gov/study/NCT04844073?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=7&rank=64 (accessed on 31 October 2024).
- Efficacy of Cadonilimab in Non-Squamous Non-Small Cell Lung Cancer Patients Resistant to EGFR-TKI. 2024. Available online: https://clinicaltrials.gov/study/NCT06277674?cond=NCT06277674&rank=1 (accessed on 31 October 2024).
- Study of Cadonilimab Combined with Bevacizumab and Chemotherapy for Advanced Nonsquamous Non-Small Cell Lung Cancer Patients with Untreated Brain Metastases (CBC). 2024. Available online: https://clinicaltrials.gov/study/NCT05812534?cond=NCT05812534&rank=1 (accessed on 31 October 2024).
- Study of KN046 in Subjects with Advanced Non-Small Cell Lung Cancer. 2024. Available online: https://clinicaltrials.gov/study/NCT05420220?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=3&rank=25 (accessed on 31 October 2024).
- A Global Study of Volrustomig (MEDI5752) Plus Chemotherapy Versus Pembrolizumab Plus Chemotherapy for Participants with Metastatic Non-Small Cell Lung Cancer. (eVOLVE-Lung02). 2024. Available online: https://clinicaltrials.gov/study/NCT05984277?cond=volrustomig&rank=5 (accessed on 31 October 2024).
- Scherpereel, A.; Fennell, D.; Fujimoto, N.; Marmarelis, M.; Tsao, A.; Aerts, J.; Li, X.; Dalvi, T.; Jiang, H.; Krug, L. P2. 14B. 05 eVOLVE-Meso: A Global Phase 3 Study of First-Line Volrustomig Plus Chemotherapy in Unresectable Pleural Mesothelioma. J. Thorac. Oncol. 2024, 19, S281. [Google Scholar]
- A Study of SI-B001+SI-B003± Chemotherapy in the Treatment of Locally Advanced or Metastatic Non-Small Cell Lung Cancer. 2024. Available online: https://clinicaltrials.gov/study/NCT05949606?cond=SIB003&rank=7 (accessed on 31 October 2024).
- MGD019 DART® Protein in Unresectable/Metastatic Cancer. 2024. Available online: https://clinicaltrials.gov/study/NCT03761017?cond=MGD019&rank=1 (accessed on 31 October 2024).
- Study of Vudalimab or Pembrolizumab in Combination with Chemotherapy as First-Line Treatment in Patients with Advanced NSCLC. 2024. Available online: https://clinicaltrials.gov/study/NCT06173505?cond=XmAb20717&rank=7 (accessed on 31 October 2024).
- A Study of PM8002 (Anti-PD-L1/VEGF) in Combination with Chemotherapy in Patients with NSCLC. 2024. Available online: https://clinicaltrials.gov/study/NCT05756972?cond=PM8002&page=2&rank=11 (accessed on 31 October 2024).
- A Trial of AK112 (PD1/VEGF Bispecific) in Combination with Chemotherapy in Patients with NSCLC. 2024. Available online: https://clinicaltrials.gov/study/NCT04736823?cond=NSCLC&intr=AK112&page=1&rank=1 (accessed on 31 October 2024).
- AK112 Plus Platinum-Based Chemotherapy for EGFR/ALK/ROS1 Positve NSCLC (Apple). 2024. Available online: https://clinicaltrials.gov/study/NCT06196814?cond=NSCLC&intr=AK112&page=1&rank=7 (accessed on 31 October 2024).
- A Phase II Study of SSGJ-707 Combination Therapy in Advanced NSCLC Patients. 2024. Available online: https://clinicaltrials.gov/study/NCT06412471?cond=SSGJ-707&intr=NSCLC&rank=1 (accessed on 31 October 2024).
- A Study of Zenocutuzumab (MCLA-128) in Patients with Solid Tumors Harboring an NRG1 Fusion (eNRGy). 2024. Available online: https://clinicaltrials.gov/study/NCT02912949?cond=MCLA128&intr=NSCLC&rank=1 (accessed on 31 October 2024).
- Trial of ZW25 (Zanidatamab) in Patients with Advanced HER2-Expressing Cancers. 2024. Available online: https://clinicaltrials.gov/study/NCT02892123?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=8&rank=72 (accessed on 31 October 2024).
- First in Human Study of NVG-111 in Relapsed/Refractory ROR1+ Malignancies. 2024. Available online: https://clinicaltrials.gov/study/NCT04763083?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=5&rank=49 (accessed on 31 October 2024).
- Phase 1, First-in-Human, Dose-Finding and Expansion Study to Evaluate XmAb®808 in Combination with Pembrolizumab in Advanced Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT05585034?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=6&rank=60 (accessed on 31 October 2024).
- GEN1047 for Solid Tumors-First in Human (FIH) Trial. 2024. Available online: https://clinicaltrials.gov/study/NCT05180474?cond=Non-small%20Cell%20Lung%20Cancer&term=Bispecific%20Antibody&page=7&rank=65 (accessed on 31 October 2024).
- Went, P.; Vasei, M.; Bubendorf, L.; Terracciano, L.; Tornillo, L.; Riede, U.; Kononen, J.; Simon, R.; Sauter, G.; Baeuerle, P. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br. J. Cancer 2006, 94, 128–135. [Google Scholar]
- Kebenko, M.; Goebeler, M.-E.; Wolf, M.; Hasenburg, A.; Seggewiss-Bernhardt, R.; Ritter, B.; Rautenberg, B.; Atanackovic, D.; Kratzer, A.; Rottman, J.B. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology 2018, 7, e1450710. [Google Scholar]
- Gordon, M.S.; Nemunaitis, J.; Barve, M.; Wainberg, Z.A.; Hamilton, E.P.; Ramanathan, R.K.; Sledge, G.W., Jr.; Yue, H.; Morgan-Lappe, S.E.; Blaney, M. Phase I open-label study evaluating the safety, pharmacokinetics, and preliminary efficacy of dilpacimab in patients with advanced solid tumors. Mol. Cancer Ther. 2021, 20, 1988–1995. [Google Scholar] [CrossRef] [PubMed]
- A Study of ABT-165 in Subjects with Solid Tumors. Available online: https://clinicaltrials.gov/study/NCT01946074?cond=ABT-165&rank=1 (accessed on 31 October 2024).
- Cho, B.; Ahn, M.; Kim, T.; Kim, S.; Han, J.; Kim, C.; Shim, B.; Ricordel, C.; Drilon, A.; Pujol, J. 1302P MET × MET bispecific antibody davutamig (REGN5093) for MET-altered advanced non-small cell lung cancer (aNSCLC): Update from a first-in-human (FIH) study. Ann. Oncol. 2024, 35, S828–S829. [Google Scholar] [CrossRef]
N | Study Phase | Trade Name | Active Ingredient | Target | Year of Approval | Description | Ref. |
---|---|---|---|---|---|---|---|
36 | II | Blincyto | Blinatumomab | CD19 and CD3 | 2014 | R/R B-cell ALL, 69% had CR, and 88% achieved MRD. Median OS = 9.8 months (95% CI, 8.5–14.9). | [72] |
362 | I | Rybrevant | Amivantamab | EGFR and MET | 2021 | EGFR20 insertion NSCLC, ORR = 40%, mDOR = 11 mo., mPFS = 8.3 mo., TrDR = 13%, treatment discontinuation = 4%. | [15] |
378 | III | Kimmtrak | Tebentafusp | gp100 and CD3 | 2022 | Metastatic uveal melanoma, 1 year OS = 73% (HR 0.51). | [73] |
165 | I/II | Tecvayli | Teclistamab | BCMA and CD3 | 2022 | R/R multiple myeloma, ORR = 61.8%, DOR at 9 mo. = 66.5% (95% CI, 38.8%, 83.9%). | [74] |
90 | 1/II | Lunsumio | Mosunetuzumab-axgb | BCMA and CD3 | 2022 | R/R follicular lymphoma, ORR = 80% (95% CI, 70, 88), with 60% achieving CR. | [75] |
157 | I/II | Epkinly | Epcoritamab-bysp | CD20 and CD3 | 2023 | R/R large B-cell lymphoma, ORR = 63.1%, CR = 38.9% (95% CI, 31.2 to 46.9) | [60] |
155 | I/II | Columvi | Glofitamab-gxbm | CD20 and CD3 | 2023 | R/R DLBCL, CR = 39% (95% CI, 32 to 48). | [76] |
187 | I/II | Talvey | Talquetamab-tgvs | GPRC5D and CD3 | 2023 | R/R multiple myeloma, ORR = 73% (95% CI, 63%, 81%). | [77,78] |
97 | II | Elrexfio | Elranatamab-bcmm | BCMA and CD3 | 2023 | R/R multiple myeloma, ORR = 57.7% (95% CI, 47.3%, 67.7%), DOR at 9 months = 82.3% (95% CI, 67.1%, 90.9%). | [79] |
99 | II | Imdelltra | Tarlatamab | DLL3 and CD3 | 2024 | Platinum refractory ES-SCLC, ORR = 40% (95% CI, 31, 51), mDOR = 9.7 mo. (range 2.7, 20.7+). | [80] |
NCT | No. | Bispecific Antibody | Target | Chemotherapy Used in Combination | Brief Description/Other Agents Used in Study | Study Start Date | Expected Completion Date |
---|---|---|---|---|---|---|---|
NCT06277674 | 20 | Cadonilimab (AK104) | PD-1/CTLA4 | Pemetrexed | Phase II study; NSCLC patients with T790m-negative after TKI resistance; combination of cadonilimab + pemetrexed + anlotinib in subsequent-line setting; outcomes: ORR and PFS. | 2 November 2023– | June 2025 |
NCT05299125 | 49 | Amivantamab | EGFR/MET | Pemetrexed | Phase II; NSCLC with EGFR 19 del and L858R m; combination treatment with amivantamab, lazertinib, and pemetrexed in 1 L setting; outcomes: PFS, ORR, OS, AE, PRO, and compliance. | 24 May 2023 | April 2028 |
NCT05215067 | 40 | Cadonilimab (AK104) | PD-1/CTLA4 | Docetaxel | Phase II; NSCLC without EGFR- and ALK m; combination treatment with AK104 and docetaxel in 2 L setting; outcomes: ORR, AE, PFS, OS, TTR, DCR, and DOR. | 9 March 2022 | March 2024 |
NCT06467500 | 48 | Cadonilimab (AK104) | PD-1/CTLA4 | Monotherapy (gemcitabine, pemetrexed, docetaxel, albumin-bound paclitaxel, or vinorelbine) | Phase II; NSCLC patients with driver mutation-negative; 2 L post-ICI failure; outcomes: ORR, DCR, DOR, PFS, OS, and AE. | 1 March 2024 | 30 December 2026 |
NCT04868877 | 576 | MCLA-129 | EGFR/MET | SOC chemotherapy (as per local guidelines) | Phase I/II; NSCLC or other solid tumors; 1 L or refractory; outcomes: MTD, ORR, DOR, DCR, PFS, and AE. | 28 April 2021 | March 2027 |
NCT05816499 | 50 | Cadonilimab (AK104) | PD-1/CTLA4 | Docetaxel | Phase I/II; ICI and platinum-refractory, driver mutation-ve, and NSCLC; combination treatment with cadonilimab, anlotinib, and docetaxel; outcomes: PFS, ORR, OS, and AE. | 16 February 2023 | December 2025 |
NCT04686305 | 244 | Rilvegostomig, Volrustomig | PD-1/TIGIT PD-1/CTLA4 | Carboplatin | Phase I; refractory NSCLC, Her2 overexpression +ve, and kinase alteration-ve; multiple arms; combination treatment with T-DXd, volrustomig, and carboplatin (Arm3B), and T-DXd and rilvegostomig with carboplatin (Arm4B); outcomes: AE, DOR, DCR, PFS, and OS. | 9 March 2021 | December 2025 |
NCT05812534 | 36 | Cadonilimab (AK104) | PD-1/CTLA4 | Carboplatin | Phase II; EGFR- and ALK-ve NSCLC patients with untreated brain metastases; combination treatment with cadonilimab + bevacizumab + carboplatin + pemetrexed; outcomes: ORR, intracranial PFS, PFS, and OS. | December 2023 | June 2025 |
NCT06424821 | 54 | Cadonilimab (AK104) | PD-1/CTLA4 | Carboplatin + Paclitaxel (for squamous), Carboplatin + Pemetrexed (for nonsquamous) | Phase II; wild-type EGFR/ALK and PD-L1-ve advanced NSCLC; combination treatment with cadonilimab + platinum-based chemotherapy; outcomes: PFS, OS, ORR, and DOR. | 4 July 2023 | September 2025 |
NCT05756972 | 374 | PM8002 | PD-L1/VEGF | Carboplatin + Pemetrexed | Phase II/III; EGFR +ve NSCLC, resistant to 1 L TKI; randomized to PM8002 + chemotherapy vs. placebo + chemotherapy; outcomes: ORR, PFS, OS, DCR, DOR, TTR, and AE. | 26 June 2023 | December 2025 |
NCT06412471 | 235 | SSGJ-707 | PD-1/VEGF | Carboplatin + Paclitaxel (for squamous), Carboplatin + Pemetrexed (for nonsquamous) | Phase II; 1 L NSCLC patients; combination treatment with SSGJ-707 + platinum-based chemotherapy; multiple cohorts; outcomes: ORR, safety and tolerability, and PFS. | 26 July 2024 | August 2025 |
NCT05984277 | 900 | Volrustomig (MEDI5752) | PD-1/CTLA4 | Carboplatin + Paclitaxel (for squamous), Carboplatin + Pemetrexed (for nonsquamous) | Phase III; EGFR/ALK/ROS1-ve and PD-L1 +ve treatment-naive advanced NSCLC patients; randomized to volrustomig + chemotherapy vs. pembrolizumab + chemotherapy; outcomes: PFS, OS, ORR, and DOR. | 24 October 2023 | 16 May 2029 |
NCT06173505 | 168 | vudalimab (XmAb20717) | PD-1/CTLA4 | Carboplatin + Pemetrexed | Phase I/II; advanced 1 L nonsquamous NSCLC; combination treatment of vudalimab + chemotherapy to evaluate safety in part 1, followed by comparative efficacy with combination of ICI + chemotherapy in part 2; outcomes: phase II dose, PFS, OS, and AE. | 27 December 2023 | October 2027 |
NCT04736823 | 296 | Ivonescimab (AK112) | PD-1/VEGF | Carboplatin, Paclitaxel, and Pemetrexed (nonsquamous); Docetaxel | Phase II; advanced NSCLC patients; combination treatment of AK112 with chemotherapy in different cohorts; outcomes: ORR, PFS, and OS. | 1 February 2023 | March 2025 |
NCT06196814 | 150 | Ivonescimab (AK112) | PD-1/VEGF | Platinum-based chemotherapy | Phase I/II; EGFR/ROS/ALK +ve NSCLC patients who failed 1 L; combination treatment with AK112 + chemotherapy; outcomes: phase 2 dose, ORR, and PFS. | 1 October 2024 | 1 February 2027 |
NCT05184712 | 322 | Ivonescimab (AK112 OR SMT112) | PD-1/VEGF | Carboplatin + Pemetrexed | Phase III; multicenter, EGFR +ve, TKI-refractory, nonsquamous, NSCLC patients; randomized to either AK112 + chemotherapy vs. placebo + chemotherapy; outcomes: PFS, OS, ORR, DCR, DOR, TTR, and AE. | 25 January 2022 | 2 November 2025 |
NCT05904379 | 233 | Ivonescimab (AK112) + Cadonilimab (AK104) | PD-1/VEGF & PD-1/CTLA4 | Carboplatin, Paclitaxel, and Pemetrexed (nonsquamous); Docetaxel | Phase I/II; EGFR/ALK-ve, advanced NSCLC; combination treatment with either AK112 + AK104 or AK112 + AK104 + chemotherapy in different cohorts; outcomes: AE, ORR, OS, DOR, DCR, and PFS. | 13 July 2023 | January 2027 |
NCT05840016 | 396 | Ivonescimab (AK112) | PD-1/VEGF | Carboplatin + Paclitaxel | Phase III; advanced squamous NSCLC, driver mutation-ve; evaluating the efficacy and safety of AK112 + chemotherapy vs. tislelizumab + chemotherapy; outcomes: PFS, OS, ORR, DOR, DCR, DCR, TTR, and AE. | 17 Aug 2023 | Decemeber 2025 |
NCT06357533 | 675 | Rilvegostomig | PD-1/TIGIT | Cytotoxic payload (deruxtecan) of Datopotamab Deruxtecan | Phase III; advanced nonsquamous NSCLC, driver mutation-ve, PDL1 > 50%; evaluating rilvegostomig monotherapy or the combination of datopotamab deruxtecan versus pembrolizumab; outcomes: PFS, OS, and ORR. | 11 April 2024 | 24 May 2030 |
PD-1- or PD-L1-Targeted Bispecific Antibodies | Target Identified | NCT |
---|---|---|
Rilvegostomig (AZD2936) | PD-1/TIGIT | NCT06357533, NCT06627647, NCT06564844, NCT04995523, NCT04612751 |
HLX301 | PD-L1/TIGIT | NCT05102214 |
Acasunlima (GEN1046) | PD-L1/4-1BB | NCT06635824, NCT05117242 |
IBI318 | PD-1/PD-L1 | NCT04777084 |
PF-07257876 | PD-L1/CD47 | NCT04881045 |
IMM2520 | PD-L1/CD47 | NCT05780307 |
Lomvastomig | PD-1/TIM-3 | NCT03708328 |
AZD7789 | PD-1/TIM-3 | NCT04931654 |
IBI363 | PD-L1/IL-2α | NCT06468098, NCT06081907 |
RO7247669 | PD-1/LAG-3 | NCT04140500 |
MGD013 | PD-1/LAG-3 | NCT03219268 |
CDX-585 | PD-L1/ILT4 | NCT05788484 |
XmAb23104 (XmAb 104) | PD-1/CD278 | NCT03752398 |
SHR-1701 | PD-L1/TGF-βRII | NCT05177497, NCT04937972 |
HB0025 | PD-L1/VEGF | NCT04678908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.R.; Breadner, D. Unveiling the Synergistic Potential: Bispecific Antibodies in Conjunction with Chemotherapy for Advanced Non-Small-Cell Lung Cancer Treatment. Curr. Oncol. 2025, 32, 206. https://doi.org/10.3390/curroncol32040206
Khan SR, Breadner D. Unveiling the Synergistic Potential: Bispecific Antibodies in Conjunction with Chemotherapy for Advanced Non-Small-Cell Lung Cancer Treatment. Current Oncology. 2025; 32(4):206. https://doi.org/10.3390/curroncol32040206
Chicago/Turabian StyleKhan, Saqib Raza, and Daniel Breadner. 2025. "Unveiling the Synergistic Potential: Bispecific Antibodies in Conjunction with Chemotherapy for Advanced Non-Small-Cell Lung Cancer Treatment" Current Oncology 32, no. 4: 206. https://doi.org/10.3390/curroncol32040206
APA StyleKhan, S. R., & Breadner, D. (2025). Unveiling the Synergistic Potential: Bispecific Antibodies in Conjunction with Chemotherapy for Advanced Non-Small-Cell Lung Cancer Treatment. Current Oncology, 32(4), 206. https://doi.org/10.3390/curroncol32040206