Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies
Abstract
:1. Introduction
2. Molecular Mechanisms of Hepatoblastoma (HB)
2.1. Genetic Alterations
2.1.1. Genetic Syndromes and Risk Factors for Hepatoblastoma (HB)
2.1.2. Other Genetic Mutations in Hepatoblastoma (HB)
2.2. Epigenetic Alterations
2.2.1. DNA Methylation
2.2.2. Histone Modifications
2.2.3. Non-Coding RNAs (ncRNAs)
2.2.4. Single-Cell Sequencing and Epigenetics
2.3. Signaling Pathways
2.3.1. Wnt/β-Catenin Pathway
2.3.2. Hippo Pathway
2.3.3. Notch Pathway
2.3.4. TGF-β Pathway
2.3.5. IGF Pathway
2.3.6. PI3K/AKT/mTOR Pathway
2.3.7. MAPK/ERK Pathway
2.3.8. HGF/c-Met Pathway
2.4. Alterations in Metabolism Pathways
2.5. The Tumor Microenvironment
3. Diagnostic Approaches for Hepatoblastoma (HB)
3.1. Serum Markers
3.2. Immunohistochemical Markers
3.3. Imaging Techniques
3.4. Diagnostic Path
4. Treatment of Hepatoblastoma (HB)
4.1. Chemotherapy
4.2. Surgical Treatment
4.3. Immunotherapy
4.4. Targeted Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Z.; Xia, F.; Wang, W.; Zhang, K.; Fan, M.; Lin, R. Worldwide burden of liver cancer across childhood and adolescence, 2000–2021: A systematic analysis of the Global Burden of Disease Study 2021. EClinicalMedicine 2024, 75, 102765. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.R.; Zheng, W.; Gao, Q.; Chen, T.; Pan, Z.B.; Cui, W.; Cai, M.; Fang, H. Epigenetics and genetics of hepatoblastoma: Linkage and treatment. Front. Genet. 2022, 13, 1070971. [Google Scholar] [CrossRef]
- Chiu, S.N.; Ni, Y.H.; Lu, M.Y.; Lin, D.T.; Lin, K.H.; Lai, H.S.; Chang, M.H. A trend of improved survival of childhood hepatoblastoma treated with cisplatin and doxorubicin in Taiwanese children. Pediatr. Surg. Int. 2003, 19, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Comert, S.; Vitrinel, A.; Akin, Y.; Mutlu, G.Y.; Tokuc, G.; Bakir, B. Abdominal mass in a neonate: Hepatoblastoma. Indian J. Pediatr. 2007, 74, 956–958. [Google Scholar] [CrossRef] [PubMed]
- Perugorria, M.J.; Olaizola, P.; Labiano, I.; Esparza-Baquer, A.; Marzioni, M.; Marin, J.J.G.; Bujanda, L.; Banales, J.M. Wnt-β-catenin signalling in liver development, health and disease. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 121–136. [Google Scholar] [CrossRef]
- Ferraro, S.; Panzeri, A.; Braga, F.; Panteghini, M. Serum α-fetoprotein in pediatric oncology: Not a children’s tale. Clin. Chem. Lab. Med. 2019, 57, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Rojas, Y.; Guillerman, R.P.; Zhang, W.; Vasudevan, S.A.; Nuchtern, J.G.; Thompson, P.A. Relapse surveillance in AFP-positive hepatoblastoma: Re-evaluating the role of imaging. Pediatr. Radiol. 2014, 44, 1275–1280. [Google Scholar] [CrossRef]
- Czauderna, P.; Otte, J.B.; Aronson, D.C.; Gauthier, F.; Mackinlay, G.; Roebuck, D.; Plaschkes, J.; Perilongo, G. Guidelines for surgical treatment of hepatoblastoma in the modern era—Recommendations from the Childhood Liver Tumour Strategy Group of the International Society of Paediatric Oncology (SIOPEL). Eur. J. Cancer 2005, 41, 1031–1036. [Google Scholar] [CrossRef]
- Xing, H.; Yang, C.; Tan, B.; Zhang, M. Competitive risk analysis of the therapeutic value of liver transplantation for liver cancer in children: A population-based study. Front. Surg. 2022, 9, 938254. [Google Scholar] [CrossRef]
- Wu, P.V.; Rangaswami, A. Current Approaches in Hepatoblastoma-New Biological Insights to Inform Therapy. Curr. Oncol. Rep. 2022, 24, 1209–1218. [Google Scholar] [CrossRef]
- Luk, H.M. Clinical and molecular characterization of Beckwith-Wiedemann syndrome in a Chinese population. J. Pediatr. Endocrinol. Metab. 2017, 30, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Pilet, J.; Hirsch, T.Z.; Gupta, B.; Roehrig, A.; Morcrette, G.; Pire, A.; Letouzé, E.; Fresneau, B.; Taque, S.; Brugières, L.; et al. Preneoplastic liver colonization by 11p15.5 altered mosaic cells in young children with hepatoblastoma. Nat. Commun. 2023, 14, 7122. [Google Scholar] [CrossRef]
- Klein, S.D.; DeMarchis, M.; Linn, R.L.; MacFarland, S.P.; Kalish, J.M. Occurrence of Hepatoblastomas in Patients with Beckwith-Wiedemann Spectrum (BWSp). Cancers 2023, 15, 2548. [Google Scholar] [CrossRef] [PubMed]
- Dubbink, H.J.; Hollink, I.; Avenca Valente, C.; Wang, W.; Liu, P.; Doukas, M.; van Noesel, M.M.; Dinjens, W.N.M.; Wagner, A.; Smits, R. A novel tissue-based ß-catenin gene and immunohistochemical analysis to exclude familial adenomatous polyposis among children with hepatoblastoma tumors. Pediatr. Blood Cancer 2018, 65, e26991. [Google Scholar] [CrossRef] [PubMed]
- Trobaugh-Lotrario, A.D.; López-Terrada, D.; Li, P.; Feusner, J.H. Hepatoblastoma in patients with molecularly proven familial adenomatous polyposis: Clinical characteristics and rationale for surveillance screening. Pediatr. Blood Cancer 2018, 65, e27103. [Google Scholar] [CrossRef]
- Ortiz, M.V.; Roberts, S.S.; Glade Bender, J.; Shukla, N.; Wexler, L.H. Immunotherapeutic Targeting of GPC3 in Pediatric Solid Embryonal Tumors. Front. Oncol. 2019, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Kosaki, R.; Takenouchi, T.; Takeda, N.; Kagami, M.; Nakabayashi, K.; Hata, K.; Kosaki, K. Somatic CTNNB1 mutation in hepatoblastoma from a patient with Simpson-Golabi-Behmel syndrome and germline GPC3 mutation. Am. J. Med. Genet. A 2014, 164A, 993–997. [Google Scholar] [CrossRef]
- Shirane, K.; Yoshimi, A.; Masuko, T.; Kajikawa, D.; Toma, M.; Idesawa, H.; Tsukada, Y.; Yano, Y.; Kato, K.; Motoyama, K.; et al. Successful Treatment for Hepatoblastoma in Trisomy 18: A Case Report. J. Pediatr. Hematol. Oncol. 2024, 46, e83–e86. [Google Scholar] [CrossRef]
- Jefford, C.E.; Irminger-Finger, I. Mechanisms of chromosome instability in cancers. Crit. Rev. Oncol. Hematol. 2006, 59, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sosnowska-Sienkiewicz, P.; Kamińska, A.; Anderko, I.; Telman-Kołodziejczyk, G.; Mańkowski, P.; Januszkiewicz-Lewandowska, D. Therapeutic Management and Outcomes of Hepatoblastoma in a Pediatric Patient with Mosaic Edwards Syndrome. Genes 2024, 15, 463. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Sahoo, B.; Kumar, K.; Malhotra, S.; Sibal, A. Hepatoblastoma in a cirrhotic child with Alagille syndrome. BMJ Case Rep. 2024, 17, e253080. [Google Scholar] [CrossRef] [PubMed]
- Kluiver, T.A.; Lu, Y.; Schubert, S.A.; Kraaier, L.J.; Ringnalda, F.; Lijnzaad, P.; DeMartino, J.; Megchelenbrink, W.L.; Amo-Addae, V.; Eising, S.; et al. Divergent WNT signaling and drug sensitivity profiles within hepatoblastoma tumors and organoids. Nat. Commun. 2024, 15, 8576. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, N.; Chen, L.; Zhao, X.; Shan, Y.; Yang, F.; Wang, B.; Gao, H.; Xu, M.; Tang, P.; et al. Whole-genome sequencing and RNA sequencing analysis reveals novel risk genes and differential expression patterns in hepatoblastoma. Gene 2024, 897, 147991. [Google Scholar] [CrossRef]
- Cairo, S.; Armengol, C.; Maibach, R.; Häberle, B.; Becker, K.; Carrillo-Reixach, J.; Guettier, C.; Vokuhl, C.; Schmid, I.; Buendia, M.A.; et al. A combined clinical and biological risk classification improves prediction of outcome in hepatoblastoma patients. Eur. J. Cancer 2020, 141, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Shen, H.; Zhang, J.; Yan, Q.; Liu, H. DNA methylation in Hepatoblastoma-a literature review. Ital. J. Pediatr. 2020, 46, 113. [Google Scholar] [CrossRef] [PubMed]
- Regel, I.; Eichenmüller, M.; Mahajan, U.M.; Hagl, B.; Benitz, S.; Häberle, B.; Vokuhl, C.; von Schweinitz, D.; Kappler, R. Downregulation of SFRP1 is a protumorigenic event in hepatoblastoma and correlates with beta-catenin mutations. J. Cancer Res. Clin. Oncol. 2020, 146, 1153–1167. [Google Scholar] [CrossRef]
- Carrillo-Reixach, J.; Torrens, L.; Simon-Coma, M.; Royo, L.; Domingo-Sàbat, M.; Abril-Fornaguera, J.; Akers, N.; Sala, M.; Ragull, S.; Arnal, M.; et al. Epigenetic footprint enables molecular risk stratification of hepatoblastoma with clinical implications. J. Hepatol. 2020, 73, 328–341. [Google Scholar] [CrossRef]
- Kondo, T.; Honda, S.; Suzuki, H.; Ito, Y.M.; Kawakita, I.; Okumura, K.; Ara, M.; Minato, M.; Kitagawa, N.; Tanaka, Y.; et al. A novel risk stratification model based on the Children’s Hepatic Tumours International Collaboration-Hepatoblastoma Stratification and deoxyribonucleic acid methylation analysis for hepatoblastoma. Eur. J. Cancer 2022, 172, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Abril-Fornaguera, J.; Torrens, L.; Andreu-Oller, C.; Carrillo-Reixach, J.; Rialdi, A.; Balaseviciute, U.; Pinyol, R.; Montironi, C.; Haber, P.K.; Del Río-Álvarez, Á.; et al. Identification of IGF2 as Genomic Driver and Actionable Therapeutic Target in Hepatoblastoma. Mol. Cancer Ther. 2023, 22, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Demir, S.; Razizadeh, N.; Indersie, E.; Branchereau, S.; Cairo, S.; Kappler, R. Targeting G9a/DNMT1 methyltransferase activity impedes IGF2-mediated survival in hepatoblastoma. Hepatol. Commun. 2024, 8, e0378. [Google Scholar] [CrossRef]
- Beck, A.; Trippel, F.; Wagner, A.; Joppien, S.; Felle, M.; Vokuhl, C.; Schwarzmayr, T.; Strom, T.M.; von Schweinitz, D.; Längst, G.; et al. Overexpression of UHRF1 promotes silencing of tumor suppressor genes and predicts outcome in hepatoblastoma. Clin. Epigenet. 2018, 10, 27. [Google Scholar] [CrossRef]
- Clavería-Cabello, A.; Herranz, J.M.; Latasa, M.U.; Arechederra, M.; Uriarte, I.; Pineda-Lucena, A.; Prosper, F.; Berraondo, P.; Alonso, C.; Sangro, B.; et al. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J. Hepatol. 2023, 79, 989–1005. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Gao, P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2022, 13, 877–919. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, Q.; Wang, H.; Zhou, J.; Jiang, B. Long non-coding RNA Linc00205 promotes hepatoblastoma progression through regulating microRNA-154-3p/Rho-associated coiled-coil Kinase 1 axis via mitogen-activated protein kinase signaling. Aging 2022, 14, 1782–1796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liang, F.; Li, Q.; Sun, H.; Li, F.; Jiao, Z.; Lei, J. LncRNA MIR205HG accelerates cell proliferation, migration and invasion in hepatoblastoma through the activation of MAPK signaling pathway and PI3K/AKT signaling pathway. Biol. Direct 2022, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Shaikh, I.I.; Bhandari, R.; Chapagain, S. LINC01023 Promotes the Hepatoblastoma Tumorigenesis via miR-378a-5p/WNT3 Axis. Mol. Cell Biochem. 2023, 478, 1867–1885. [Google Scholar] [CrossRef]
- Chen, K.; You, Y.; Tang, W.; Tian, X.; Zhu, C.; Yin, Z.; Zeng, M.; He, X. HAND2-AS1 plays a tumor-suppressive role in hepatoblastoma through the negative regulation of CDK1. Heliyon 2024, 10, e35930. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zai, H.; Jiang, W.; Ou, Z.; Yao, Y.; Zhu, Q. Hepatoblastoma: Derived Exosomal LncRNA NEAT1 Induces BMSCs Differentiation into Tumor-Supporting Myofibroblasts via Modulating the miR-132/MMP9 Axis. J. Oncol. 2022, 2022, 7630698. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Liu, Z.; Chen, J.; Wu, T.; Zhang, K. Mir 135a inhibits tumor cell proliferation by regulating the expression of notch pathway in hepatoblastoma. Cell. Mol. Biol. 2022, 67, 125–131. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, S.; Zuo, T.; Fu, J.; Gong, J.; Liu, D.; Wang, B. miR-139-3p/Wnt5A Axis Inhibits Metastasis in Hepatoblastoma. Mol. Biotechnol. 2023, 65, 2030–2037. [Google Scholar] [CrossRef]
- Roehrig, A.; Hirsch, T.Z.; Pire, A.; Morcrette, G.; Gupta, B.; Marcaillou, C.; Imbeaud, S.; Chardot, C.; Gonzales, E.; Jacquemin, E.; et al. Single-cell multiomics reveals the interplay of clonal evolution and cellular plasticity in hepatoblastoma. Nat. Commun. 2024, 15, 3031. [Google Scholar] [CrossRef]
- Desterke, C.; Francés, R.; Monge, C.; Marchio, A.; Pineau, P.; Mata-Garrido, J. Single-Cell RNA-Seq Analysis Links DNMT3B and PFKFB4 Transcriptional Profiles with Metastatic Traits in Hepatoblastoma. Biomolecules 2024, 14, 1394. [Google Scholar] [CrossRef]
- Monge, C.; Francés, R.; Marchio, A.; Pineau, P.; Desterke, C.; Mata-Garrido, J. Characterization of an Activated Metabolic Transcriptional Program in Hepatoblastoma Tumor Cells Using scRNA-seq. Int. J. Mol. Sci. 2024, 25, 13044. [Google Scholar] [CrossRef]
- Huang, H.; Wu, L.; Lu, L.; Zhang, Z.; Qiu, B.; Mo, J.; Luo, Y.; Xi, Z.; Feng, M.; Wan, P.; et al. Single-cell transcriptomics uncovers cellular architecture and developmental trajectories in hepatoblastoma. Hepatology 2023, 77, 1911–1928. [Google Scholar] [CrossRef]
- Tamai, K.; Zeng, X.; Liu, C.; Zhang, X.; Harada, Y.; Chang, Z.; He, X. A mechanism for Wnt coreceptor activation. Mol. Cell 2004, 13, 149–156. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef]
- Tamai, K.; Semenov, M.; Kato, Y.; Spokony, R.; Liu, C.; Katsuyama, Y.; Hess, F.; Saint-Jeannet, J.P.; He, X. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000, 407, 530–535. [Google Scholar] [CrossRef]
- Bell, D.; Ranganathan, S.; Tao, J.; Monga, S.P. Novel Advances in Understanding of Molecular Pathogenesis of Hepatoblastoma: A Wnt/β-Catenin Perspective. Gene Expr. 2017, 17, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Archana, B.; D’Cruze, L.; Nazneen, S.; Thanka, J.; Scott, J.X. Immunohistochemical expression of beta-catenin in hepatoblastoma and its clinical significance. J. Cancer Res. Ther. 2022, 18, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Zheng, Q.; Qu, H.; Zhao, Z.; Xu, Y.; Wang, H.; Gao, H.; Zhan, J. SOX7 modulates the progression of hepatoblastoma through the regulation of Wnt/β-catenin signaling pathway. J. Cancer Res. Ther. 2022, 18, 370–377. [Google Scholar] [CrossRef]
- Gest, C.; Sena, S.; Dif, L.; Neaud, V.; Loesch, R.; Dugot-Senant, N.; Paysan, L.; Piquet, L.; Robbe, T.; Allain, N.; et al. Antagonism between wild-type and mutant β-catenin controls hepatoblastoma differentiation via fascin-1. JHEP Rep. 2023, 5, 100691. [Google Scholar] [CrossRef]
- Ji, C.; Chen, L.; Yuan, M.; Xie, W.; Sheng, X.; Yin, Q. KDM1A drives hepatoblastoma progression by activating the Wnt/β-catenin pathway through inhibition of DKK3 transcription. Tissue Cell 2023, 81, 101989. [Google Scholar] [CrossRef]
- Ilmer, M.; Garnier, A.; Vykoukal, J.; Alt, E.; von Schweinitz, D.; Kappler, R.; Berger, M. Targeting the Neurokinin-1 Receptor Compromises Canonical Wnt Signaling in Hepatoblastoma. Mol. Cancer Ther. 2015, 14, 2712–2721. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Z.; Tian, F. Quercetin inhibited the proliferation and invasion of hepatoblastoma cells through facilitating SIRT6-medicated FZD4 silence. Hum. Exp. Toxicol. 2021, 40, S96–S107. [Google Scholar] [CrossRef]
- Fu, M.; Hu, Y.; Lan, T.; Guan, K.L.; Luo, T.; Luo, M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct. Target. Ther. 2022, 7, 376. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wolfe, A.; Septer, S.; Edwards, G.; Zhong, X.; Abdulkarim, A.B.; Ranganathan, S.; Apte, U. Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int. 2012, 32, 38–47. [Google Scholar] [CrossRef]
- Gong, W.; Han, Z.; Fang, F.; Chen, L. Yap Expression Is Closely Related to Tumor Angiogenesis and Poor Prognosis in Hepatoblastoma. Fetal Pediatr. Pathol. 2022, 41, 929–939. [Google Scholar] [CrossRef]
- Tao, J.; Calvisi, D.F.; Ranganathan, S.; Cigliano, A.; Zhou, L.; Singh, S.; Jiang, L.; Fan, B.; Terracciano, L.; Armeanu-Ebinger, S.; et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 2014, 147, 690–701. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Evert, K.; Li, X.; Liu, P.; Kiss, A.; Schaff, Z.; Ament, C.; Zhang, Y.; Serra, M.; et al. The Hippo Effector Transcriptional Coactivator with PDZ-Binding Motif Cooperates with Oncogenic β-Catenin to Induce Hepatoblastoma Development in Mice and Humans. Am. J. Pathol. 2020, 190, 1397–1413. [Google Scholar] [CrossRef]
- Zhu, G.; Xie, Y.; Bian, Z.; Ma, J.; Zhen, N.; Chen, T.; Zhu, J.; Mao, S.; Tang, X.; Liu, L.; et al. N6-methyladenosine modification of LATS2 promotes hepatoblastoma progression by inhibiting ferroptosis through the YAP1/ATF4/PSAT1 axis. Int. J. Biol. Sci. 2024, 20, 4146–4161. [Google Scholar] [CrossRef]
- Kopan, R.; Ilagan, M.X. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell 2009, 137, 216–233. [Google Scholar] [CrossRef] [PubMed]
- Litten, J.B.; Chen, T.T.; Schultz, R.; Herman, K.; Comstock, J.; Schiffman, J.; Tomlinson, G.E.; Rakheja, D. Activated NOTCH2 is overexpressed in hepatoblastomas: An immunohistochemical study. Pediatr. Dev. Pathol. 2011, 14, 378–383. [Google Scholar] [CrossRef] [PubMed]
- López-Terrada, D.; Gunaratne, P.H.; Adesina, A.M.; Pulliam, J.; Hoang, D.M.; Nguyen, Y.; Mistretta, T.A.; Margolin, J.; Finegold, M.J. Histologic subtypes of hepatoblastoma are characterized by differential canonical Wnt and Notch pathway activation in DLK+ precursors. Hum. Pathol. 2009, 40, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Acar, A.; Hidalgo-Sastre, A.; Leverentz, M.K.; Mills, C.G.; Woodcock, S.; Baron, M.; Collu, G.M.; Brennan, K. Inhibition of Wnt signalling by Notch via two distinct mechanisms. Sci. Rep. 2021, 11, 9096. [Google Scholar] [CrossRef]
- Buenemann, C.L.; Willy, C.; Buchmann, A.; Schmiechen, A.; Schwarz, M. Transforming growth factor-beta1-induced Smad signaling, cell-cycle arrest and apoptosis in hepatoma cells. Carcinogenesis 2001, 22, 447–452. [Google Scholar] [CrossRef]
- Fu, X.; Cui, P.; Chen, F.; Xu, J.; Gong, L.; Jiang, L.; Zhang, D.; Xiao, Y. Thymosin β4 promotes hepatoblastoma metastasis via the induction of epithelial-mesenchymal transition. Mol. Med. Rep. 2015, 12, 127–132. [Google Scholar] [CrossRef]
- Matsumoto, S.; Yamamichi, T.; Shinzawa, K.; Kasahara, Y.; Nojima, S.; Kodama, T.; Obika, S.; Takehara, T.; Morii, E.; Okuyama, H.; et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat. Commun. 2019, 10, 3882. [Google Scholar] [CrossRef]
- Xiang, X.; Hao, Y.; Cheng, C.; Hu, H.; Chen, H.; Tan, J.; Wang, Y.; Liu, X.; Peng, B.; Liao, J.; et al. A TGF-β-dominant chemoresistant phenotype of hepatoblastoma associated with aflatoxin exposure in children. Hepatology 2024, 79, 650–665. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.G.; Eriksson, T.; Ekström, C.; Holm, S.; von Schweinitz, D.; Kogner, P.; Sandstedt, B.; Pietsch, T.; Ekström, T.J. Altered expression of members of the IGF-axis in hepatoblastomas. Br. J. Cancer 2000, 82, 1561–1567. [Google Scholar] [CrossRef]
- Regel, I.; Eichenmüller, M.; Joppien, S.; Liebl, J.; Häberle, B.; Müller-Höcker, J.; Vollmar, A.; von Schweinitz, D.; Kappler, R. IGFBP3 impedes aggressive growth of pediatric liver cancer and is epigenetically silenced in vascular invasive and metastatic tumors. Mol. Cancer 2012, 11, 9. [Google Scholar] [CrossRef]
- Tomizawa, M.; Saisho, H. Signaling pathway of insulin-like growth factor-II as a target of molecular therapy for hepatoblastoma. World J. Gastroenterol. 2006, 12, 6531–6535. [Google Scholar] [CrossRef] [PubMed]
- Zhen, N.; Gu, S.; Ma, J.; Zhu, J.; Yin, M.; Xu, M.; Wang, J.; Huang, N.; Cui, Z.; Bian, Z.; et al. CircHMGCS1 Promotes Hepatoblastoma Cell Proliferation by Regulating the IGF Signaling Pathway and Glutaminolysis. Theranostics 2019, 9, 900–919. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Calvisi, D.F.; Kiss, A.; Cigliano, A.; Schaff, Z.; Che, L.; Ribback, S.; Dombrowski, F.; Zhao, D.; Chen, X. Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. Oncotarget 2017, 8, 73433–73447. [Google Scholar] [CrossRef]
- Cui, X.; Liu, X.; Han, Q.; Zhu, J.; Li, J.; Ren, Z.; Liu, L.; Luo, Y.; Wang, Z.; Zhang, D.; et al. DPEP1 is a direct target of miR-193a-5p and promotes hepatoblastoma progression by PI3K/Akt/mTOR pathway. Cell Death Dis. 2019, 10, 701. [Google Scholar] [CrossRef]
- Barros, J.S.; Aguiar, T.F.M.; Costa, S.S.; Rivas, M.P.; Cypriano, M.; Toledo, S.R.C.; Novak, E.M.; Odone, V.; Cristofani, L.M.; Carraro, D.M.; et al. Copy Number Alterations in Hepatoblastoma: Literature Review and a Brazilian Cohort Analysis Highlight New Biological Pathways. Front. Oncol. 2021, 11, 741526. [Google Scholar] [CrossRef]
- Berkemeyer, S. Primary Liver Cancers: Connecting the Dots of Cellular Studies and Epidemiology with Metabolomics. Int. J. Mol. Sci. 2023, 24, 2409. [Google Scholar] [CrossRef]
- Chen, L.; Tian, X.; Gong, W.; Sun, B.; Li, G.; Liu, D.; Guo, P.; He, Y.; Chen, Z.; Xia, Y.; et al. Periostin mediates epithelial-mesenchymal transition through the MAPK/ERK pathway in hepatoblastoma. Cancer Biol. Med. 2019, 16, 89–100. [Google Scholar] [CrossRef]
- Li, J.; Hu, S.; Zhang, Z.; Qian, L.; Xue, Q.; Qu, X. LASP2 is downregulated in human liver cancer and contributes to hepatoblastoma cell malignant phenotypes through MAPK/ERK pathway. Biomed. Pharmacother. 2020, 127, 110154. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.Y.; Lee, W.; Lee, O.W.; Ylaya, K.; Nambiar, D.; Sheehan-Klenk, J.; Fayn, S.; Hewitt, S.M.; Choyke, P.L.; Escorcia, F.E. Glypican-3 deficiency in liver cancer upregulates MAPK/ERK pathway but decreases cell proliferation. Am. J. Cancer Res. 2024, 14, 3348–3371. [Google Scholar] [CrossRef]
- Purcell, R.; Childs, M.; Maibach, R.; Miles, C.; Turner, C.; Zimmermann, A.; Sullivan, M. HGF/c-Met related activation of β-catenin in hepatoblastoma. J. Exp. Clin. Cancer Res. 2011, 30, 96. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, Z.; Liu, L.; Liu, X.; Zhang, D.; Li, J.; Zhu, J.; Pan, J.; Zhang, D.; Cui, G. The Long Non-coding RNA ZFAS1 Sponges miR-193a-3p to Modulate Hepatoblastoma Growth by Targeting RALY via HGF/c-Met Pathway. Front. Cell Dev. Biol. 2019, 7, 271. [Google Scholar] [CrossRef]
- Zhang, Y.; Solinas, A.; Cairo, S.; Evert, M.; Chen, X.; Calvisi, D.F. Molecular Mechanisms of Hepatoblastoma. Semin. Liver Dis. 2021, 41, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liang, N.; Liu, C.; Li, J.; Bai, Y.; Lei, S.; Huang, Q.; Sun, L.; Tang, L.; Zeng, C.; et al. BEX1 supports the stemness of hepatoblastoma by facilitating Warburg effect in a PPARγ/PDK1 dependent manner. Br. J. Cancer 2023, 129, 1477–1489. [Google Scholar] [CrossRef]
- Whitby, A.; Pabla, P.; Shastri, B.; Amugi, L.; Del Río-Álvarez, Á.; Kim, D.H.; Royo, L.; Armengol, C.; Dandapani, M. Characterisation of Aberrant Metabolic Pathways in Hepatoblastoma Using Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS). Cancers 2023, 15, 5182. [Google Scholar] [CrossRef]
- Wang, D.; Tian, J.; Yan, Z.; Yuan, Q.; Wu, D.; Liu, X.; Yang, S.; Guo, S.; Wang, J.; Yang, Y.; et al. Mitochondrial fragmentation is crucial for c-Myc-driven hepatoblastoma-like liver tumors. Mol. Ther. 2022, 30, 1645–1660. [Google Scholar] [CrossRef]
- Guo, J.J.; Ye, Y.Q.; Liu, Y.D.; Wu, W.F.; Mei, Q.Q.; Zhang, X.Y.; Lao, J.; Wang, B.; Wang, J.Y. Interaction between human leukocyte antigen (HLA-C) and killer cell Ig-like receptors (KIR2DL) inhibits the cytotoxicity of natural killer cells in patients with hepatoblastoma. Front. Med. 2022, 9, 947729. [Google Scholar] [CrossRef]
- Adawy, A.; Komohara, Y.; Hibi, T. Tumor-associated macrophages: The key player in hepatoblastoma microenvironment and the promising therapeutic target. Microbiol. Immunol. 2024, 68, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiang, X.; Chen, H.; Zhou, L.; Chen, S.; Zhang, G.; Liu, X.; Ren, X.; Liu, J.; Kuang, M.; et al. Intratumoral erythroblastic islands restrain anti-tumor immunity in hepatoblastoma. Cell Rep. Med. 2023, 4, 101044. [Google Scholar] [CrossRef] [PubMed]
- Münter, D.; de Faria, F.W.; Richter, M.; Aranda-Pardos, I.; Hotfilder, M.; Walter, C.; Paga, E.; Inserte, C.; Albert, T.K.; Roy, R.; et al. Multiomic analysis uncovers a continuous spectrum of differentiation and Wnt-MDK-driven immune evasion in hepatoblastoma. J. Hepatol. 2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Yin, Q.; Luo, H. Development and validation of genomic and epigenomic signatures associated with tumor immune microenvironment in hepatoblastoma. BMC Cancer 2021, 21, 1156. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, I.; Fukuzawa, H.; Urushihara, N.; Kosaka, Y.; Kuroda, Y.; Fujieda, Y.; Takeuchi, Y.; Uemura, K.; Iwade, T.; Samejima, Y.; et al. AFP-L3 as a Prognostic Predictor of Recurrence in Hepatoblastoma: A Pilot Study. J. Pediatr. Hematol. Oncol. 2021, 43, e76–e79. [Google Scholar] [CrossRef] [PubMed]
- Kahana-Edwin, S.; Torpy, J.; Cain, L.E.; Mullins, A.; McCowage, G.; Woodfield, S.E.; Vasudevan, S.A.; Shea, D.P.T.; Minoche, A.E.; Espinoza, A.F.; et al. Quantitative ctDNA Detection in Hepatoblastoma: Implications for Precision Medicine. Cancers 2023, 16, 12. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Ma, Y.; Tang, M.; Yuan, X.; Shen, L. Elevated serum uric acid is associated with the risk of advanced staging and vascular involvement in patients with hepatoblastoma: A 14-year retrospective study. Front. Oncol. 2023, 13, 1144349. [Google Scholar] [CrossRef]
- Celtik, U.; Dokumcu, Z.; Divarci, E.; Guler, E.; Ataseven, E.; Nart, D.; Yilmaz, F.; Celik, A.; Ergün, O. Intracellular localization of beta-catenin expression plays a possible prognostic role on the outcome of hepatoblastoma patients. Pediatr. Surg. Int. 2020, 36, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Tsai, J.H.; Jeng, Y.M. Complementary roles of β-catenin and glutamine synthetase immunostaining in diagnosis of chemotherapy-treated and untreated hepatoblastoma. J. Formos. Med. Assoc. 2017, 116, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Muench, M.O.; Fomin, M.E.; Gutierrez, A.G.; López-Terrada, D.; Gilfanova, R.; Nosworthy, C.; Beyer, A.I.; Ostolaza, G.; Kats, D.; Matlock, K.L.; et al. CD203c is expressed by human fetal hepatoblasts and distinguishes subsets of hepatoblastoma. Front. Oncol. 2023, 13, 927852. [Google Scholar] [CrossRef]
- Kim, P.H.; Hwang, J.; Yoon, H.M.; Shin, H.J.; Yoon, H.; Lee, M.J.; Jung, A.Y.; Cho, Y.A.; Lee, J.S.; Koh, K.N.; et al. Outcome of staging chest CT and identification of factors associated with lung metastasis in children with hepatoblastoma. Eur. Radiol. 2021, 31, 8850–8857. [Google Scholar] [CrossRef]
- Sharma, K.; Agarwala, S.; Kandasamy, D.; Jana, M.; Sharma, R.; Dhua, A.; Jain, V.; Bhatnagar, V. Role of Diffusion Weighted MRI (DW-MR) in Detection of Satellite Lesions Not Detected with Multiphase CT Scans in Hepatoblastoma and Its Implications for Management. Indian J. Pediatr. 2022, 89, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Guo, J.; Chen, C.; Jiang, L.; Lai, C.; Wang, C. Congenital hepatoblastoma presenting with hepatic arteriovenous fistulas: A case report. Front. Pediatr. 2023, 11, 1199224. [Google Scholar] [CrossRef]
- Li, H.; Chang, X.; Meng, D.; Shi, K.; Wang, H. A case report of congenital hepatoblastoma. Int. J. Surg. Case Rep. 2024, 124, 110337. [Google Scholar] [CrossRef]
- Perilongo, G.; Brown, J.; Shafford, E.; Brock, P.; De Camargo, B.; Keeling, J.W.; Vos, A.; Philips, A.; Pritchard, J.; Plaschkes, J. Hepatoblastoma presenting with lung metastases: Treatment results of the first cooperative, prospective study of the International Society of Paediatric Oncology on childhood liver tumors. Cancer 2000, 89, 1845–1853. [Google Scholar] [CrossRef]
- De Ioris, M.; Brugieres, L.; Zimmermann, A.; Keeling, J.; Brock, P.; Maibach, R.; Pritchard, J.; Shafford, L.; Zsiros, J.; Czaudzerna, P.; et al. Hepatoblastoma with a low serum alpha-fetoprotein level at diagnosis: The SIOPEL group experience. Eur. J. Cancer 2008, 44, 545–550. [Google Scholar] [CrossRef]
- Perilongo, G.; Shafford, E.; Maibach, R.; Aronson, D.; Brugières, L.; Brock, P.; Childs, M.; Czauderna, P.; MacKinlay, G.; Otte, J.B.; et al. Risk-adapted treatment for childhood hepatoblastoma. final report of the second study of the International Society of Paediatric Oncology--SIOPEL 2. Eur. J. Cancer 2004, 40, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Zsíros, J.; Maibach, R.; Shafford, E.; Brugieres, L.; Brock, P.; Czauderna, P.; Roebuck, D.; Childs, M.; Zimmermann, A.; Laithier, V.; et al. Successful treatment of childhood high-risk hepatoblastoma with dose-intensive multiagent chemotherapy and surgery: Final results of the SIOPEL-3HR study. J. Clin. Oncol. 2010, 28, 2584–2590. [Google Scholar] [CrossRef] [PubMed]
- Zsiros, J.; Brugieres, L.; Brock, P.; Roebuck, D.; Maibach, R.; Zimmermann, A.; Childs, M.; Pariente, D.; Laithier, V.; Otte, J.B.; et al. Dose-dense cisplatin-based chemotherapy and surgery for children with high-risk hepatoblastoma (SIOPEL-4): A prospective, single-arm, feasibility study. Lancet Oncol. 2013, 14, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Katzenstein, H.M.; Malogolowkin, M.H.; Krailo, M.D.; Piao, J.; Towbin, A.J.; McCarville, M.B.; Tiao, G.M.; Dunn, S.P.; Langham, M.R.; McGahren, E.D.; et al. Doxorubicin in combination with cisplatin, 5-flourouracil, and vincristine is feasible and effective in unresectable hepatoblastoma: A Children’s Oncology Group study. Cancer 2022, 128, 1057–1065. [Google Scholar] [CrossRef]
- Pondrom, M.; Pariente, D.; Mallon, B.; Taque, S.; Branchereau, S.; Chardot, C.; Laithier, V.; Tabone, M.D.; Lejeune, J.; Faure-Conter, C.; et al. Tumor rupture in hepatoblastoma: A high risk factor? Pediatr. Blood Cancer 2020, 67, e28549. [Google Scholar] [CrossRef]
- Agarwala, S.; Jain, V.; Dhua, A.; Srinivas, M.; Goel, P.; Bakhshi, S.; Iyer, V.K.; Yadav, R.; Jana, M.; Naranje, P.; et al. Comparison of Cisplatin Monotherapy and PLADO in the Management in Children with Standard-Risk Hepatoblastoma in a Resource-Challenged Nation. J. Indian Assoc. Pediatr. Surg. 2022, 27, 317–322. [Google Scholar] [CrossRef]
- Watanabe, K.; Mori, M.; Hishiki, T.; Yokoi, A.; Ida, K.; Yano, M.; Fujimura, J.; Nogami, Y.; Iehara, T.; Hoshino, K.; et al. Feasibility of dose-dense cisplatin-based chemotherapy in Japanese children with high-risk hepatoblastoma: Analysis of the JPLT3-H pilot study. Pediatr. Blood Cancer 2022, 69, e29389. [Google Scholar] [CrossRef]
- Demir, S.; Hotes, A.; Schmid, T.; Cairo, S.; Indersie, E.; Pisano, C.; Hiyama, E.; Hishiki, T.; Vokuhl, C.; Branchereau, S.; et al. Drug prioritization identifies panobinostat as a tailored treatment element for patients with metastatic hepatoblastoma. J. Exp. Clin. Cancer Res. 2024, 43, 299. [Google Scholar] [CrossRef] [PubMed]
- Uchida, H.; Sakamoto, S.; Komine, R.; Kodama, T.; Nakao, T.; Okada, N.; Yanagi, Y.; Shimizu, S.; Fukuda, A.; Shioda, Y.; et al. Strategy for hepatoblastoma with major vascular involvement: A guide for surgical decision-making. Surgery 2023, 173, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Xiu, W.L.; Liu, J.; Zhang, J.L.; Wang, J.M.; Wang, X.F.; Wang, F.F.; Mi, J.; Hao, X.W.; Xia, N.; Dong, Q. Computer-assisted three-dimensional individualized extreme liver resection for hepatoblastoma in proximity to the major liver vasculature. World J. Gastrointest. Surg. 2024, 16, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Wu, Y.; Su, J.; Chen, L.; Liao, M.; Zhao, Z.; Lu, Z.; Xiong, X.; Jin, S.; Deng, X. Deploying Indocyanine Green Fluorescence-Guided Navigation System in Precise Laparoscopic Resection of Pediatric Hepatoblastoma. Cancers 2022, 14, 6057. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiu, W.; Duan, G.; Dong, Q. Application of 3D Simulation Software in Chemotherapy and Hepatoblastoma Surgery in Children. Front. Surg. 2022, 9, 908381. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.L.; Yeh, Y.C.; Yu, T.Y.; Lee, C.Y.; Hung, G.Y.; Yeh, Y.T.; Liu, C.S.; Yen, H.J. Complete and durable response to immune checkpoint inhibitor in a patient with refractory and metastatic hepatoblastoma. Pediatr. Hematol. Oncol. 2021, 38, 385–390. [Google Scholar] [CrossRef]
- Shimizu, Y.; Suzuki, T.; Yoshikawa, T.; Endo, I.; Nakatsura, T. Next-Generation Cancer Immunotherapy Targeting Glypican-3. Front. Oncol. 2019, 9, 248. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, T.; Wang, R.; Lin, X.; Hu, Z.; Zhao, Z.; Dai, Z.; Sun, D. Synergistically Augmenting Cancer Immunotherapy by Physical Manipulation of Pyroptosis Induction. Phenomics 2024, 4, 298–312. [Google Scholar] [CrossRef]
- Shomura, M.; Okabe, H.; Sakakibara, M.; Yaguchi, N.; Takahira, S.; Sato, E.; Shiraishi, K.; Arase, Y.; Tsuruya, K.; Hirose, S.; et al. Immune-related adverse event detection in liver cancer patients treated with immune checkpoint inhibitors: Nationwide exploratory survey in Japan. Hepatol. Res. 2024; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.X.; Zang, D.; Liu, C.G.; Han, X.; Chen, J. Immune checkpoint inhibitor-related pneumonitis: Research advances in prediction and management. Front. Immunol. 2024, 15, 1266850. [Google Scholar] [CrossRef]
- Zhou, J.M.; Xiong, H.F.; Chen, X.P.; Zhang, Z.W.; Zhu, L.P.; Wu, B. Correlation between immune-related adverse events and long-term outcomes in pembrolizumab-treated patients with unresectable hepatocellular carcinoma: A retrospective study. World J. Gastrointest. Oncol. 2023, 15, 689–699. [Google Scholar] [CrossRef]
- Arakaki, S.; Ono, S.; Kawamata, F.; Ishino, S.; Uesato, Y.; Nakajima, T.; Nishi, Y.; Morishima, S.; Arakaki, S.; Maeshiro, T.; et al. Fatal acquired coagulation factor V deficiency after hepatectomy for advanced hepatocellular carcinoma as a possible immune checkpoint inhibitor-related adverse event: A case report. Surg. Case Rep. 2023, 9, 16. [Google Scholar] [CrossRef]
- Moore, D.C.; Elmes, J.B.; Arnall, J.R.; Strassel, S.A.; Patel, J.N. PD-1/PD-L1 inhibitor-induced immune thrombocytopenia: A pharmacovigilance study and systematic review. Int. Immunopharmacol. 2024, 129, 111606. [Google Scholar] [CrossRef]
- Naidoo, J.; Murphy, C.; Atkins, M.B.; Brahmer, J.R.; Champiat, S.; Feltquate, D.; Krug, L.M.; Moslehi, J.; Pietanza, M.C.; Riemer, J.; et al. Society for Immunotherapy of Cancer (SITC) consensus definitions for immune checkpoint inhibitor-associated immune-related adverse events (irAEs) terminology. J. Immunother. Cancer 2023, 11, e006398. [Google Scholar] [CrossRef] [PubMed]
- Julson, J.R.; Quinn, C.H.; Butey, S.; Erwin, M.H.; Marayati, R.; Nazam, N.; Stewart, J.E.; Beierle, E.A. PIM Kinase Inhibition Attenuates the Malignant Progression of Metastatic Hepatoblastoma. Int. J. Mol. Sci. 2023, 25, 427. [Google Scholar] [CrossRef]
- Espinoza, A.F.; Patel, R.H.; Patel, K.R.; Badachhape, A.A.; Whitlock, R.; Srivastava, R.K.; Govindu, S.R.; Duong, A.; Kona, A.; Kureti, P.; et al. A novel treatment strategy utilizing panobinostat for high-risk and treatment-refractory hepatoblastoma. J. Hepatol. 2024, 80, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Fujiyoshi, S.; Honda, S.; Ara, M.; Kondo, T.; Kobayashi, N.; Taketomi, A. SGLT2 is upregulated to acquire cisplatin resistance and SGLT2 inhibition reduces cisplatin resistance in hepatoblastoma. J. Hepatobiliary Pancreat. Sci. 2024, 31, 223–233. [Google Scholar] [CrossRef]
- Li, L.; Wu, Y.; Huang, H.T.; Yong, J.K.; Lv, Z.; Zhou, Y.; Xiang, X.; Zhao, J.; Xi, Z.; Feng, H.; et al. IMPDH2 suppression impedes cell proliferation by instigating cell cycle arrest and stimulates apoptosis in pediatric hepatoblastoma. J. Cancer Res. Clin. Oncol. 2024, 150, 377. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Demir, S.; Del Río-Álvarez, Á.; Maxwell, R.; Wagner, A.; Carrillo-Reixach, J.; Armengol, C.; Vokuhl, C.; Häberle, B.; von Schweinitz, D.; et al. Targeting the Unwindosome by Mebendazole Is a Vulnerability of Chemoresistant Hepatoblastoma. Cancers 2022, 14, 4196. [Google Scholar] [CrossRef]
- Tsukada, R.; Nomura, M.; Ueno, T.; Okuyama, H. Inhibition of cIAP1 in the effective suppression of chemotherapy-resistant hepatoblastoma. Oncol. Rep. 2022, 47, 79. [Google Scholar] [CrossRef]
- Wang, X.H.; Fu, Y.L.; Xu, Y.N.; Zhang, P.C.; Zheng, T.X.; Ling, C.Q.; Feng, Y.L. Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor. J. Integr. Med. 2024, 22, 709–718. [Google Scholar] [CrossRef]
lncRNAs/miRNAs | Regulatory Axis or Signaling Pathway | Effect on Tumor | References |
---|---|---|---|
Linc00205 | miR-154-3p/ROCK1 axis | Promotes tumorigenesis | [34] |
MAPK pathway | Promotes tumorigenesis | [34] | |
MIR205HG | MAPK pathway | Promotes tumorigenesis | [35] |
PI3K/AKT pathway | Promotes tumorigenesis | [35] | |
Linc01023 | miR-378a-5p/WNT3 axis | Promotes tumorigenesis | [36] |
HAND2-AS1 | HAND2-AS1/CDK1 axis | Inhibits tumorigenesis | [37] |
NEAT1 | miR-132/MMP9 axis | Promotes tumorigenesis | [38] |
miR-135a | Notch pathway | Inhibits tumorigenesis | [39] |
miR-139-3p | miR-139-3p/Wnt5A axis | Inhibits tumorigenesis | [40] |
Signaling Pathway | Genes in the Pathway | Effect on Tumors | References |
---|---|---|---|
Wnt/β-Catenin pathway | β-Catenin, Fascin-1, KDM1A | Promotes tumorigenesis | [50,51,52] |
SOX7 | Inhibits tumorigenesis | ||
Hippo pathway | YAP, TAZ, VEGF | Promotes tumorigenesis | [56,57,58,59] |
Notch pathway | Notch2 | Promotes tumorigenesis | [62] |
TGF-β pathway | TGF-β1, Smad2/3, Smad4 | Promotes tumorigenesis | [65] |
IGF pathway | IGF2, IGF1R | Promotes tumorigenesis | [69,70,71] |
PI3K/AKT/mTOR pathway | mTORC1, DPEP1 | Promotes tumorigenesis | [73,74] |
MAPK/ERK pathway | POSTN, ERK, | Promotes tumorigenesis | [77,78] |
HGF/c-MET pathway | c-Met, RALY | Promotes tumorigenesis | [80,81] |
Diagnostic Method | Key Features | Advantages | Limitations | References |
---|---|---|---|---|
Serum Markers | AFP: Key marker for diagnosis and monitoring of HB. | Non-invasive, easy to measure, provides initial insights into tumor burden, recurrence, and prognosis. | AFP is less specific for HB vs. other liver conditions. | [91] |
AFP-L3: Sensitive for predicting recurrence following surgery. | More sensitive than AFP for predicting recurrence. | Limited availability, requires specialized assays. | [91] | |
ctDNA: Sensitive for detecting tumor mutations (CTNNB1). | Non-invasive, highly sensitive, correlates with tumor burden, treatment response, and progression. | Requires specialized sequencing techniques. | [92] | |
SUA: Prognostic marker linked to advanced tumor stages and poor treatment responses. | Provides insight into tumor staging and predicts clinical outcomes. | SUA’s predictive value is still emerging, and its role is not fully established. | [93] | |
IHC Markers | β-catenin: Key in HB pathogenesis and a strong prognostic indicator. | Provides prognostic insights regarding chemotherapy response, vascular involvement, and survival. | Requires biopsy and tissue sample; not useful for real-time monitoring. | [94] |
GS: Assesses tumor differentiation and detects residual disease. | Useful for evaluating differentiation, especially post-chemotherapy, and for detecting residual disease. | Requires biopsy and tissue sample; may not be available in all settings. | [95] | |
CD203c: Indicator of aggressiveness, especially in less differentiated tumors. | Helps identify more aggressive tumor phenotypes, aiding in prognosis and treatment planning. | Requires biopsy; limited availability in clinical practice. | [96] | |
Imaging Techniques | US: Initial detection of liver lesions, distinguishing solid and cystic components. | Non-invasive, accessible, cost-effective, useful for monitoring during treatment. | Limited in resolution and detail for staging and vascular involvement. | [97] |
CT: Provides detailed anatomical imaging, including tumor size, extent, and staging. | Offers comprehensive anatomical details, crucial for tumor staging and metastasis evaluation. | Radiation exposure, misses smaller lesions compared to MRI, less sensitive for vascular assessment. | [97] | |
MRI: Gold standard for accurate staging, satellite lesions detection, and vascular involvement. | High resolution, especially with DW-MRI, providing detailed staging and vascular assessment. | Expensive, less accessible, requires specialized equipment. | [98] | |
DSA: Evaluates tumor vasculature, especially in cases with HAVF. | Provides a detailed view of the tumor’s vascular structures, aiding surgical and interventional planning. | Invasive, requires contrast agents, and is used only in specific cases. | [99] | |
PET: Assesses metabolic activity, especially in metastatic cases. | Helps detect metastasis and assesses tumor metabolic behavior, especially when conventional imaging is insufficient. | Expensive, radiation exposure, and limited availability in some settings. | [99] | |
3D Visual Analysis: Enhances preoperative assessment, particularly for complex or large tumors. | Improves surgical planning by providing precise, three-dimensional models of the tumor, especially useful for complex tumors. | Requires advanced imaging technologies (CT/MRI), may not be available in all centers. | [100] |
Study Period | Study Protocol | Chemotherapy Regimen | First-Line or Second-Line | Efficacy | Applicability | References |
---|---|---|---|---|---|---|
1990–1994 | SIOPEL 1 | PLADO (CDDP + DOX) | First-line | 5-year OS: 57% | Approved | [101,102] |
1995–1998 | SIOPEL 2 | CDDP (SR)/PLADO (HR) | First-line | SR-3-year OS: 91%; HR-3-year OS: 53% | Approved | [103] |
1998–2004 | SIOPEL 3 | CDDP + CARBO + DOXO (HR) | First-line | 3-year OS: 69% | Approved | [104] |
2005–2009 | SIOPEL 4 | Dose-dense CDDP + CARBO + DOX (HR) | First-line | 3-year OS: 83% | Approved | [105] |
2009–2012 | COG-C5VD | C5VD (CDDP + 5-FU + VCR + DOX) (MR) | First-line | 5-year OS: 95% | Approved | [106] |
2000–2014 | SIOPEL 3/4 | CDDP + CARBO + DOX (HR) | First-line | 3-year OS: 68.2% | Approved | [107] |
2021 | JPLT3-H | Dose-dense CDDP + CARBO + DOX (HR) | First-line | - | Approved | [109] |
2022 | SIOPEL | CDDP monotherapy vs. PLADO | First-line | SR group: CDDP monotherapy superior to PLADO | Approved | [108] |
2024 | Panobinostat + SIOPEL 4 | Panobinostat + CDDP + DOX | Not yet established | Combination therapy shows efficacy | Pre-clinical trials | [110] |
Treatment Methods | Treatment Plans | Treatment Mechanism | Applicability | References |
---|---|---|---|---|
Surgical treatment | Liver resection | Resectable HB | approved | [111] |
LT | Cases with major vascular involvement or multifocal tumors | approved | [111] | |
Minimally invasive techniques, including ICG fluorescence imaging and 3D simulation | Improved surgical precision and reduced LT reliance | clinical trials | [100,112,113] | |
Immunotherapy | Pembrolizumab | Block immune checkpoint proteins (e.g., PD-1/PD-L1), enhancing the immune system’s ability to attack tumor cells | approved | [110] |
GPC3-targeted vaccines, monoclonal antibodies and CAR-T cell therapies | Activated immune system targets GPC3-expressing tumor cells | clinical trials | [16,111] | |
Macrophage immune checkpoint inhibitors and CAR macrophage therapies | Reprograms TAMs to enhance immune response | clinical trials | [112] | |
Targeted therapy | AZD1208 (PIM inhibitor) + CDDP | Target tumor cell proliferation in metastatic HB by inhibiting the ATM DNA damage response pathway | pre-clinical trials | [115] |
Panobinostat (HDAC inhibitor) + VCR + CPT-11 | Restore normal gene expression and overcome chemotherapy resistance | pre-clinical trials | [116] | |
Dapagliflozin (SGLT2 inhibitors) + CDDP | Overcome CDDP resistance by reducing glucose uptake in tumor cells | pre-clinical trials | [117] | |
IMPDH2 inhibitors + DOX | Inhibiting IMPDH2 enhances the effectiveness of chemotherapy agents like DOX | pre-clinical trials | [118] | |
Mebendazole + CDDP | Inhibit tumor growth, especially in chemoresistant HB | pre-clinical trials | [119] | |
Birinapant (cIAP1 inhibitors) + CDDP | Overcome resistance to CDDP by inhibiting the proteins that block apoptosis in HB cells | pre-clinical trials | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Na, J.; Shi, T.; Liao, Y. Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies. Curr. Oncol. 2025, 32, 149. https://doi.org/10.3390/curroncol32030149
Fan L, Na J, Shi T, Liao Y. Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies. Current Oncology. 2025; 32(3):149. https://doi.org/10.3390/curroncol32030149
Chicago/Turabian StyleFan, Ling, Jintong Na, Tieliu Shi, and Yuan Liao. 2025. "Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies" Current Oncology 32, no. 3: 149. https://doi.org/10.3390/curroncol32030149
APA StyleFan, L., Na, J., Shi, T., & Liao, Y. (2025). Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies. Current Oncology, 32(3), 149. https://doi.org/10.3390/curroncol32030149