Consensus on Malignant and Benign Tumors in Pediatric Patients with Neurofibromatosis Type 1: On Behalf of the Brazilian Society of Pediatric Oncology (SOBOPE)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Selection of Experts
2.3. Questionnaire Development
2.4. Delphi Procedure
- Gliomas in the optic pathway—6 statements
- Non-optical gliomas—2 statements
- Plexiform Neurofibromas—5 statements
- Malignant Peripheral Nerve Sheath Tumors (MPNST)—6 statements
- Melanoma—1 statement
- Juvenile myelomonocytic leukemia (JMML)—1 statement
- Pheochromocytoma and Paraganglioma—2 statements
- Gastrointestinal Stromal Tumors (GIST)—1 statement
- 9.
- 1 = Strongly Disagree
- 10.
- 2 = Disagree
- 11.
- 3 = Neutral or Indifferent
- 12.
- 4 = Agree
- 13.
- 5 = Strongly Agree
2.5. Consensus Criteria and Level of Evidence
3. Results
3.1. Characterization of Expert Sample
3.2. Optic Pathway Glioma
3.3. Non-Optical Gliomas
3.4. Plexiform Neurofibromas
3.5. Malignant Peripheral Nerve Sheath Tumors (MPNST)
3.6. Melanoma
3.7. Juvenile Myelomonocytic Leukemia (JMML)
3.8. Pheochromocytomand Paraganglioma
3.9. Gastrointestinal Stromal Tumors (GIST)
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AE | Adverse Event |
| adjOR | Adjusted odds ratio |
| BBT | Bevacizumab-based therapy |
| CK | Creatine kinase |
| CTCAE | Common terminology criteria for adverse events |
| CV | Carboplatin and vincristine |
| cpRNFL | Circumpapillary retinal nerve fiber layer |
| EFS | Event-free survival |
| FDA | Food and Drug Administration |
| FSIQ | Full-Scale Intelligence Quotient |
| GBCA | Gadolinium-based contrast agents |
| GIST | Gastrointestinal stromal tumors |
| JMML | Juvenile myelomonocytic leukemia |
| LGG | Low-grade gliomas |
| MEK | Mitogen-activated extracellular signal-regulated kinas |
| MPNST | Malignant peripheral nerve sheath tumors |
| MRI | Magnetic resonance imaging |
| NCR | Netherlands Cancer Registry |
| NF1 | Neurofibromatosis type 1 |
| NIH | National Institutes of Health |
| NPV | Negative predictive value |
| OCT | Optical coherence tomography |
| OPG | Optic pathway gliomas |
| OS | Overall survival |
| PALGA | Dutch Pathology Database |
| PCC | Oheochromocytoma |
| PGL | Paraganglioma |
| PN | Plexiform neurofibromas |
| PPV | Positive predictive value |
| PRI | Perceptual Reasoning Index |
| PSI | Processing Speed Index |
| RCT | Randomized Controlled Trial |
| SD-OCT | Spectra domain optical coherence tomography |
| SOBOPE | Brazilian Society of Pediatric Oncology |
| VA | Visual acuity |
| VCI | Verbal Comprehension Index |
| VF | Visual field testing |
| VMA | Vanillylmandelic acid |
| WB-MRI | Whole-body magnetic resonance imaging |
Appendix A
| Name | Specialty |
| Adrialdo José Santos | Clinical neurologist |
| Adriana Pessoa Mendes Eris | Dermathologist |
| Alayde Vieira Wanderley | Pediatric Oncology |
| Ana Karolina Maia | Geneticist |
| Augusto Elias Mamere | Radiologist |
| Camila Maia Martin Daiggi | Pediatric Oncology |
| Carlos Magno Leprevost | Geneticist |
| Diogo Soares | Geneticist |
| Dov Charles Goldenberg | Surgeon |
| Elvis Terci Valera | Pediatric Oncology |
| Gabriel Batistella | Clinical neurologist |
| Izabella Costa Santos | Surgeon |
| Karine Corrêa Fonseca | Pediatric Oncology |
| Mara Lucia Santos | Pediatric Neurology |
| Marcia Gonçalves Ribeiro | Geneticist |
| Marina Cormedi | Geneticist |
| Mauro Gueller | Immunogeneticist |
| Nonato Mendonça Lott Monteiro | Pediatric Oncology |
| Rafael Guerra Cintra | Pediatric Neurology |
| Rayana Maia | Geneticist |
| Rebeca Ferreira Marques | Pediatric Oncology |
| Roberto Bueno | Dermathologist |
| Victor Evangelhista | Geneticist |
Appendix B
References
- Lee, T.-S.J.; Chopra, M.; Kim, R.H.; Parkin, P.C.; Barnett-Tapia, C. Incidence and Prevalence of Neurofibromatosis Type 1 and 2: A Systematic Review and Meta-Analysis. Orphanet J. Rare Dis. 2023, 18, 292. [Google Scholar] [CrossRef]
- Neurofibromatosis: Conference Statement. Arch. Neurol. 1988, 45, 575–578. [CrossRef]
- Hirbe, A.C.; Gutmann, D.H. Neurofibromatosis Type 1: A Multidisciplinary Approach to Care. Lancet Neurol. 2014, 13, 834–843. [Google Scholar] [CrossRef]
- Azizi, A.A.; Walker, D.A.; Liu, J.-F.; Sehested, A.; Jaspan, T.; Pemp, B.; Simmons, I.; Ferner, R.; Grill, J.; Hargrave, D.; et al. NF1 Optic Pathway Glioma: Analyzing Risk Factors for Visual Outcome and Indications to Treat. Neuro-Oncology 2021, 23, 100–111. [Google Scholar] [CrossRef]
- Shekelle, P.G.; Woolf, S.H.; Eccles, M.; Grimshaw, J. Developing Clinical Guidelines. West. J. Med. 1999, 170, 348–351. [Google Scholar] [PubMed]
- Helfferich, J.; Nijmeijer, R.; Brouwer, O.F.; Boon, M.; Fock, A.; Hoving, E.W.; Meijer, L.; den Dunnen, W.F.A.; de Bont, E.S.J.M. Neurofibromatosis Type 1 Associated Low Grade Gliomas: A Comparison with Sporadic Low Grade Gliomas. Crit. Rev. Oncol./Hematol. 2016, 104, 30–41. [Google Scholar] [CrossRef]
- Glombova, M.; Petrak, B.; Lisy, J.; Zamecnik, J.; Sumerauer, D.; Liby, P. Brain Gliomas, Hydrocephalus and Idiopathic Aqueduct Stenosis in Children with Neurofibromatosis Type 1. Brain Dev. 2019, 41, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Prada, C.E.; Hufnagel, R.B.; Hummel, T.R.; Lovell, A.M.; Hopkin, R.J.; Saal, H.M.; Schorry, E.K. The Use of Magnetic Resonance Imaging Screening for Optic Pathway Gliomas in Children with Neurofibromatosis Type 1. J. Pediatr. 2015, 167, 851–856.e1. [Google Scholar] [CrossRef] [PubMed]
- Caen, S.; Cassiman, C.; Legius, E.; Casteels, I. Comparative Study of the Ophthalmological Examinations in Neurofibromatosis Type 1. Proposal for a New Screening Algorithm. Eur. J. Paediatr. Neurol. 2015, 19, 415–422. [Google Scholar] [CrossRef]
- Robert-Boire, V.; Rosca, L.; Samson, Y.; Ospina, L.H.; Perreault, S. Clinical Presentation and Outcome of Patients With Optic Pathway Glioma. Pediatr. Neurol. 2017, 75, 55–60. [Google Scholar] [CrossRef]
- Kinori, M.; Armarnik, S.; Listernick, R.; Charrow, J.; Zeid, J.L. Neurofibromatosis Type 1-Associated Optic Pathway Glioma in Children: A Follow-Up of 10 Years or More. Am. J. Ophthalmol. 2021, 221, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wolsey, D.H.; Larson, S.A.; Creel, D.; Hoffman, R. Can Screening for Optic Nerve Gliomas in Patients with Neurofibromatosis Type I Be Performed with Visual-Evoked Potential Testing? J. AAPOS Off. Publ. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2006, 10, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Vagge, A.; Camicione, P.; Pellegrini, M.; Gatti, G.; Capris, P.; Severino, M.; Di Maita, M.; Panarello, S.; Traverso, C.E. Role of Visual Evoked Potentials and Optical Coherence Tomography in the Screening for Optic Pathway Gliomas in Patients with Neurofibromatosis Type I. Eur. J. Ophthalmol. 2021, 31, 698–703. [Google Scholar] [CrossRef]
- Fisher, M.J.; Avery, R.A.; Allen, J.C.; Ardern-Holmes, S.L.; Bilaniuk, L.T.; Ferner, R.E.; Gutmann, D.H.; Listernick, R.; Martin, S.; Ullrich, N.J.; et al. Functional outcome measures for NF1-associated optic pathway glioma clinical trials. Neurology 2013, 81, S15–S24. [Google Scholar] [CrossRef]
- Parrozzani, R.; Miglionico, G.; Leonardi, F.; Pulze, S.; Trevisson, E.; Clementi, M.; Opocher, E.; Licata, V.; Viscardi, E.; Pilotto, E.; et al. Correlation of Peripapillary Retinal Nerve Fibre Layer Thickness with Visual Acuity in Paediatric Patients Affected by Optic Pathway Glioma. Acta Ophthalmol. 2018, 96, E1004–E1009. [Google Scholar] [CrossRef]
- Jiang, Z.; Parida, A.; Anwar, S.M.; Tang, Y.; Roth, H.R.; Fisher, M.J.; Packer, R.J.; Avery, R.A.; Linguraru, M.G. Automatic Visual Acuity Loss Prediction in Children with Optic Pathway Gliomas Using Magnetic Resonance Imaging. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Bowman, R.; Walters, B.; Smith, V.; Prise, K.L.; Handley, S.E.; Green, K.; Mankad, K.; O’Hare, P.; Dahl, C.; Jorgensen, M.; et al. Visual Outcomes and Predictors in Optic Pathway Glioma: A Single Centre Study. Eye 2023, 37, 1178–1183. [Google Scholar] [CrossRef]
- Marsault, P.; Ducassou, S.; Menut, F.; Bessou, P.; Havez-Enjolras, M.; Chateil, J.-F. Diagnostic Performance of an Unenhanced MRI Exam for Tumor Follow-up of the Optic Pathway Gliomas in Children. Neuroradiology 2019, 61, 711–720. [Google Scholar] [CrossRef]
- Maloney, E.; Stanescu, A.L.; Perez, F.A.; Iyer, R.S.; Otto, R.K.; Leary, S.; Steuten, L.; Phipps, A.I.; Shaw, D.W.W. Surveillance Magnetic Resonance Imaging for Isolated Optic Pathway Gliomas: Is Gadolinium Necessary? Pediatr. Radiol. 2018, 48, 1472–1484. [Google Scholar] [CrossRef]
- Carton, C.; Evans, D.G.; Blanco, I.; Friedrich, R.E.; Ferner, R.E.; Farschtschi, S.; Salvador, H.; Azizi, A.A.; Mautner, V.; Röhl, C.; et al. ERN GENTURIS Tumour Surveillance Guidelines for Individuals with Neurofibromatosis Type 1. eClinicalMedicine 2023, 56, 101818. [Google Scholar] [CrossRef]
- Henning, A.M.; Handrup, M.M.; Kjeldsen, S.M.; Larsen, D.A.; Ejerskov, C. Optic Pathway Glioma and the Sex Association in Neurofibromatosis Type 1: A Single-Center Study. Orphanet J. Rare Dis. 2021, 16, 489. [Google Scholar] [CrossRef] [PubMed]
- Trevisson, E.; Cassina, M.; Opocher, E.; Vicenzi, V.; Lucchetta, M.; Parrozzani, R.; Miglionico, G.; Mardari, R.; Viscardi, E.; Midena, E.; et al. Natural History of Optic Pathway Gliomas in a Cohort of Unselected Patients Affected by Neurofibromatosis 1. J. Neurooncol. 2017, 134, 279–287. [Google Scholar] [CrossRef]
- Sellmer, L.; Farschtschi, S.; Marangoni, M.; Heran, M.K.S.; Birch, P.; Wenzel, R.; Mautner, V.-F.; Friedman, J.M. Serial MRIs Provide Novel Insight into Natural History of Optic Pathway Gliomas in Patients with Neurofibromatosis 1. Orphanet J. Rare Dis. 2018, 13, 62. [Google Scholar] [CrossRef]
- Doganis, D.; Pourtsidis, A.; Tsakiris, K.; Baka, M.; Kouri, A.; Bouhoutsou, D.; Varvoutsi, M.; Servitzoglou, M.; Dana, H.; Kosmidis, H. Optic Pathway Glioma in Children: 10 Years of Experience in a Single Institution. Pediatr. Hematol. Oncol. 2016, 33, 102–108. [Google Scholar] [CrossRef]
- Ater, J.L.; Xia, C.; Mazewski, C.M.; Booth, T.N.; Freyer, D.R.; Packer, R.J.; Sposto, R.; Vezina, G.; Pollack, I.F. Nonrandomized Comparison of Neurofibromatosis Type 1 and Non–Neurofibromatosis Type 1 Children Who Received Carboplatin and Vincristine for Progressive Low-grade Glioma: A Report from the Children’s Oncology Group. Cancer 2016, 122, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, A.; Attinà, G.; Campanelli, A.; Maurizi, P.; Triarico, S.; Romano, A.; Massimi, L.; Tamburrini, G.; Verdolotti, T.; Mastrangelo, S. Pediatric Low-Grade Glioma and Neurofibromatosis Type 1: A Single-Institution Experience. J. Cancer Res. Ther. 2023, 19, 228–234. [Google Scholar] [CrossRef]
- Cappellano, A.M.; Petrilli, A.S.; Da Silva, N.S.; Silva, F.A.; Paiva, P.M.; Cavalheiro, S.; Bouffet, E. Single Agent Vinorelbine in Pediatric Patients with Progressive Optic Pathway Glioma. J. Neurooncol. 2015, 121, 405–412. [Google Scholar] [CrossRef]
- Kalra, M.; Heath, J.A.; Kellie, S.J.; Dalla Pozza, L.; Stevens, M.M.; Swamy, S.; McCowage, G.B. Confirmation of Bevacizumab Activity, and Maintenance of Efficacy in Retreatment After Subsequent Relapse, in Pediatric Low-Grade Glioma. J. Pediatr. Hematol./Oncol. 2015, 37, e341–e346. [Google Scholar] [CrossRef]
- Green, K.; Panagopoulou, P.; D’Arco, F.; O’Hare, P.; Bowman, R.; Walters, B.; Dahl, C.; Jorgensen, M.; Patel, P.; Slater, O.; et al. A Nationwide Evaluation of Bevacizumab-Based Treatments in Pediatric Low-Grade Glioma in the UK: Safety, Efficacy, Visual Morbidity, and Outcomes. Neuro-Oncology 2023, 25, 774–785. [Google Scholar] [CrossRef]
- Schmalhofer, M.-L.; Farschtschi, S.; Kluwe, L.; Mautner, V.F.; Adam, G.; Well, L.; Ristow, I. Whole-Body MRI-Based Long-Term Evaluation of Pediatric NF1 Patients without Initial Tumor Burden with Evidence of Newly Developed Peripheral Nerve Sheath Tumors. Orphanet J. Rare Dis. 2024, 19, 412. [Google Scholar] [CrossRef] [PubMed]
- Collins-Sawaragi, Y.C.; Ferner, R.; Vassallo, G.; De Agrò, G.; Eccles, S.; Cadwgan, J.; Hargrave, D.; Hupton, E.; Eelloo, J.; Lunt, L.; et al. Location, Symptoms, and Management of Plexiform Neurofibromas in 127 Children with Neurofibromatosis 1, Attending the National Complex Neurofibromatosis 1 Service, 2018–2019. Am. J. Med. Genet. Part A 2022, 188, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
- Ejerskov, C.; Farholt, S.; Nielsen, F.S.K.; Berg, I.; Thomasen, S.B.; Udupi, A.; Ågesen, T.; De Fine Licht, S.; Handrup, M.M. Clinical Characteristics and Management of Children and Adults with Neurofibromatosis Type 1 and Plexiform Neurofibromas in Denmark: A Nationwide Study. Oncol. Ther. 2023, 11, 97–110. [Google Scholar] [CrossRef]
- Hwang, J.; Yoon, H.M.; Lee, B.H.; Kim, P.H.; Kim, K.W. Efficacy and Safety of Selumetinib in Pediatric Patients With Neurofibromatosis Type 1: A Systematic Review and Meta-Analysis. Neurology 2022, 98, E938–E946. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.M.; Wolters, P.L.; Dombi, E.; Baldwin, A.; Whitcomb, P.; Fisher, M.J.; Weiss, B.; Kim, A.; Bornhorst, M.; Shah, A.C.; et al. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N. Engl. J. Med. 2020, 382, 1430–1442. [Google Scholar] [CrossRef] [PubMed]
- Moertel, C.L.; Hirbe, A.C.; Shuhaiber, H.H.; Bielamowicz, K.; Sidhu, A.; Viskochil, D.; Weber, M.D.; Lokku, A.; Smith, L.M.; Foreman, N.K.; et al. ReNeu: A Pivotal, Phase IIb Trial of Mirdametinib in Adults and Children With Symptomatic Neurofibromatosis Type 1-Associated Plexiform Neurofibroma. J. Clin. Oncol. 2025, 43, 716–729. [Google Scholar] [CrossRef]
- Solares, I.; Viñal, D.; Morales-Conejo, M.; Rodriguez-Salas, N.; Feliu, J. Novel Molecular Targeted Therapies for Patients with Neurofibromatosis Type 1 with Inoperable Plexiform Neurofibromas: A Comprehensive Review. ESMO Open 2021, 6, 100223. [Google Scholar] [CrossRef]
- Kim, H.; Yoon, H.M.; Kim, E.K.; Ra, Y.S.; Kim, H.-W.; Yum, M.-S.; Kim, M.-J.; Baek, J.S.; Sung, Y.S.; Lee, S.M.; et al. Safety and Efficacy of Selumetinib in Pediatric and Adult Patients with Neurofibromatosis Type 1 and Plexiform Neurofibroma. Neuro-Oncology 2024, 26, 2352–2363. [Google Scholar] [CrossRef]
- Baldo, F.; Grasso, A.G.; Cortellazzo Wiel, L.; Maestro, A.; Trojniak, M.P.; Murru, F.M.; Basso, L.; Magnolato, A.; Bruno, I.; Barbi, E. Selumetinib in the Treatment of Symptomatic Intractable Plexiform Neurofibromas in Neurofibromatosis Type 1: A Prospective Case Series with Emphasis on Side Effects. Pediatr. Drugs 2020, 22, 417–423. [Google Scholar] [CrossRef]
- Coltin, H.; Perreault, S.; Larouche, V.; Black, K.; Wilson, B.; Vanan, M.I.; Gupta, A.A.; Morgenstern, D.A.; Parkin, P.C.; Bouffet, E.; et al. Selumetinib for Symptomatic, Inoperable Plexiform Neurofibromas in Children with Neurofibromatosis Type 1: A National Real-world Case Series. Pediatr. Blood Cancer 2022, 69, e29633. [Google Scholar] [CrossRef]
- Dombi, E.; Baldwin, A.; Marcus, L.J.; Fisher, M.J.; Weiss, B.; Kim, A.; Whitcomb, P.; Martin, S.; Aschbacher-Smith, L.E.; Rizvi, T.A.; et al. Activity of Selumetinib in Neurofibromatosis Type 1–Related Plexiform Neurofibromas. N. Engl. J. Med. 2016, 375, 2550–2560. [Google Scholar] [CrossRef]
- Gross, A.M.; Glassberg, B.; Wolters, P.L.; Dombi, E.; Baldwin, A.; Fisher, M.J.; Kim, A.; Bornhorst, M.; Weiss, B.D.; Blakeley, J.O.; et al. Selumetinib in Children with Neurofibromatosis Type 1 and Asymptomatic Inoperable Plexiform Neurofibroma at Risk for Developing Tumor-Related Morbidity. Neuro-Oncology 2022, 24, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Suenobu, S.; Terashima, K.; Akiyama, M.; Oguri, T.; Watanabe, A.; Sugeno, M.; Higashimori, M.; So, K.; Nishida, Y. Selumetinib in Japanese Pediatric Patients with Neurofibromatosis Type 1 and Symptomatic, Inoperable Plexiform Neurofibromas: An Open-Label, Phase I Study. Neuro-Oncol. Adv. 2023, 5, vdad054. [Google Scholar] [CrossRef]
- Espírito Santo, V.; Passos, J.; Nzwalo, H.; Carvalho, I.; Santos, F.; Martins, C.; Salgado, L.; Silva, C.E.; Vinhais, S.; Vilares, M.; et al. Selumetinib for Plexiform Neurofibromas in Neurofibromatosis Type 1: A Single-Institution Experience. J. Neurooncol. 2020, 147, 459–463. [Google Scholar] [CrossRef]
- Ahlawat, S.; Blakeley, J.O.; Rodriguez, F.J.; Fayad, L.M. Imaging Biomarkers for Malignant Peripheral Nerve Sheath Tumors in Neurofibromatosis Type 1. Neurology 2019, 93, e1076–e1084. [Google Scholar] [CrossRef]
- King, A.A.; Debaun, M.R.; Riccardi, V.M.; Gutmann, D.H. Malignant Peripheral Nerve Sheath Tumors in Neurofibromatosis 1. Am. J. Med. Genet. 2000, 93, 388–392. [Google Scholar] [CrossRef]
- Darrigo Junior, L.G.; Ferraz, V.E.d.F.; Cormedi, M.C.V.; Araujo, L.H.H.; Magalhães, M.P.S.; Carneiro, R.C.; Sales, L.H.N.; Suchmacher, M.; Cunha, K.S.; Filho, A.B.; et al. Epidemiological Profile and Clinical Characteristics of 491 Brazilian Patients with Neurofibromatosis Type 1. Brain Behav. 2022, 12, e2599. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.R.; Baser, M.E.; McGaughran, J.; Sharif, S.; Howard, E.; Moran, A. Malignant Peripheral Nerve Sheath Tumours in Neurofibromatosis 1. J. Med. Genet. 2002, 39, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.R.; Huson, S.M.; Birch, J.M. Malignant Peripheral Nerve Sheath Tumours in Inherited Disease. Clin. Sarcoma Res. 2012, 2, 17. [Google Scholar] [CrossRef]
- Rasmussen, S.A.; Yang, Q.; Friedman, J.M. Mortality in Neurofibromatosis 1: An Analysis Using U.S. Death Certificates. Am. J. Hum. Genet. 2001, 68, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Smith, K.D.; Liu, J.; Lahat, G.; Myers, S.; Wang, W.-L.; Zhang, W.; McCutcheon, I.E.; Slopis, J.M.; Lazar, A.J.; et al. Clinical, Pathological, and Molecular Variables Predictive of Malignant Peripheral Nerve Sheath Tumor Outcome. Ann. Surg. 2009, 249, 1014–1022. [Google Scholar] [CrossRef]
- Friedrich, R.E.; Beer, C.; Glatzel, M.; Hagel, C. Vascular Endothelial Growth Factor, Basic Fibroblast Growth Factor and Epithelial Growth Factor Receptor in Peripheral Nerve Sheath Tumors of Neurofibromatosis Type 1. Anticancer Res. 2015, 35, 137–144. [Google Scholar]
- An, H.Y.; Hong, K.T.; Kang, H.J.; Choi, J.Y.; Hong, C.; Kim, H.; Choi, T.H.; Kang, C.H.; Kim, H.-S.; Cheon, J.-E.; et al. Malignant Peripheral Nerve Sheath Tumor in Children: A Single-Institute Retrospective Analysis. Pediatr. Hematol. Oncol. 2017, 34, 468–477. [Google Scholar] [CrossRef]
- Miao, R.; Wang, H.; Jacobson, A.; Lietz, A.P.; Choy, E.; Raskin, K.A.; Schwab, J.H.; Deshpande, V.; Nielsen, G.P.; DeLaney, T.F.; et al. Radiation-Induced and Neurofibromatosis-Associated Malignant Peripheral Nerve Sheath Tumors (MPNST) Have Worse Outcomes than Sporadic MPNST. Radiother. Oncol. 2019, 137, 61–70. [Google Scholar] [CrossRef]
- Valentin, T.; Le Cesne, A.; Ray-Coquard, I.; Italiano, A.; Decanter, G.; Bompas, E.; Isambert, N.; Thariat, J.; Linassier, C.; Bertucci, F.; et al. Management and Prognosis of Malignant Peripheral Nerve Sheath Tumors: The Experience of the French Sarcoma Group (GSF-GETO). Eur. J. Cancer 2016, 56, 77–84. [Google Scholar] [CrossRef]
- Valeyrie-Allanore, L.; Ismaili, N.; Bastuji-Garin, S.; Zeller, J.; Wechsler, J.; Revuz, J.; Wolkenstein, P. Symptoms Associated with Malignancy of Peripheral Nerve Sheath Tumours: A Retrospective Study of 69 Patients with Neurofibromatosis 1. Br. J. Dermatol. 2005, 153, 79–82. [Google Scholar] [CrossRef]
- Azizi, A.A.; Slavc, I.; Theisen, B.E.; Rausch, I.; Weber, M.; Happak, W.; Aszmann, O.; Hojreh, A.; Peyrl, A.; Amann, G.; et al. Monitoring of Plexiform Neurofibroma in Children and Adolescents with Neurofibromatosis Type 1 by [18F]FDG-PET Imaging. Is It of Value in Asymptomatic Patients? Pediatr. Blood Cancer 2018, 65, e26733. [Google Scholar] [CrossRef]
- Brahmi, M.; Thiesse, P.; Ranchere, D.; Mognetti, T.; Pinson, S.; Renard, C.; Decouvelaere, A.-V.; Blay, J.-Y.; Combemale, P. Diagnostic Accuracy of PET/CT-Guided Percutaneous Biopsies for Malignant Peripheral Nerve Sheath Tumors in Neurofibromatosis Type 1 Patients. PLoS ONE 2015, 10, e0138386. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.J.R.; Lovat, E.; Siddique, M.; Goh, V.; Ferner, R.; Warbey, V.S. Characterisation of Malignant Peripheral Nerve Sheath Tumours in Neurofibromatosis-1 Using Heterogeneity Analysis of 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1845–1852. [Google Scholar] [CrossRef]
- Moharir, M.; London, K.; Howman-Giles, R.; North, K. Utility of Positron Emission Tomography for Tumour Surveillance in Children with Neurofibromatosis Type 1. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1309–1317. [Google Scholar] [CrossRef]
- Tsai, L.L.; Drubach, L.; Fahey, F.; Irons, M.; Voss, S.; Ullrich, N.J. [18F]-Fluorodeoxyglucose Positron Emission Tomography in Children with Neurofibromatosis Type 1 and Plexiform Neurofibromas: Correlation with Malignant Transformation. J. Neuro-Oncol. 2012, 108, 469–475. [Google Scholar] [CrossRef]
- Malbari, F.; Spira, M.; Knight, P.B.; Zhu, C.; Roth, M.; Gill, J.; Abbott, R.; Levy, A.S. Malignant Peripheral Nerve Sheath Tumors in Neurofibromatosis: Impact of Family History. J. Pediatr. Hematol./Oncol. 2018, 40, e359–e363. [Google Scholar] [CrossRef]
- Lu, V.M.; Wang, S.; Daniels, D.J.; Spinner, R.J.; Levi, A.D.; Niazi, T.N. The Clinical Course and Role of Surgery in Pediatric Malignant Peripheral Nerve Sheath Tumors: A Database Study. J. Neurosurg. Pediatr. 2022, 29, 92–99. [Google Scholar] [CrossRef]
- Bhattacharyya, A.K.; Perrin, R.; Guha, A. Peripheral Nerve Tumors: Management Strategies and Molecular Insights. J. Neuro-Oncol. 2004, 69, 335–349. [Google Scholar]
- Van Noesel, M.M.; Orbach, D.; Brennan, B.; Kelsey, A.; Zanetti, I.; De Salvo, G.L.; Gaze, M.N.; Craigie, R.J.; McHugh, K.; Francotte, N.; et al. Outcome and Prognostic Factors in Pediatric Malignant Peripheral Nerve Sheath Tumors: An Analysis of the European Pediatric Soft Tissue Sarcoma Group (EpSSG) NRSTS-2005 Prospective Study. Pediatr. Blood Cancer 2019, 66, e27833. [Google Scholar] [CrossRef]
- Martin, E.; Coert, J.H.; Flucke, U.E.; Slooff, W.-B.M.; Ho, V.K.Y.; Van Der Graaf, W.T.; Van Dalen, T.; Van De Sande, M.A.J.; Van Houdt, W.J.; Grünhagen, D.J.; et al. A Nationwide Cohort Study on Treatment and Survival in Patients with Malignant Peripheral Nerve Sheath Tumours. Eur. J. Cancer 2020, 124, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Meister, M.T.; Scheer, M.; Hallmen, E.; Stegmaier, S.; Vokuhl, C.; Von Kalle, T.; Fuchs, J.; Münter, M.; Niggli, F.; Ladenstein, R.; et al. Malignant Peripheral Nerve Sheath Tumors in Children, Adolescents, and Young Adults: Treatment Results of Five Cooperative Weichteilsarkom Studiengruppe (CWS) Trials and One Registry. J. Surg. Oncol. 2020, 122, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Ferrari, A.; Mattke, A.; Zanetti, I.; Casanova, M.; Bisogno, G.; Cecchetto, G.; Alaggio, R.; De Sio, L.; Koscielniak, E.; et al. Pediatric Malignant Peripheral Nerve Sheath Tumor: The Italian and German Soft Tissue Sarcoma Cooperative Group. J. Clin. Oncol. 2005, 23, 8422–8430. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, G.; Narula, G.; Nathany, S.; Tembhare, P.; Subramanian, P.G.; Gujral, S.; Prasad, M.; Roy Moulik, N.; Bhat, V.; Dhamne, C.A.; et al. Genomic Landscape of Juvenile Myelomonocytic Leukemia: A Real World Context. Blood 2019, 134, 1728. [Google Scholar] [CrossRef]
- Nathany, S.; Chatterjee, G.; Ghai, S.; Moulik, N.R.; Shetty, D.; Subramanian, P.G.; Tembhare, P.; Gujral, S.; Dhamne, C.; Banavali, S.; et al. Mutational Landscape of Juvenile Myelomonocytic Leukemia (JMML)-A Real-World Context. Int. J. Lab. Hematol. 2021, 43, 1531–1538. [Google Scholar] [CrossRef]
- Bholah, R.; Bunchman, T.E. Review of Pediatric Pheochromocytoma and Paraganglioma. Front. Pediatr. 2017, 5, 155. [Google Scholar] [CrossRef]
| Database | Terms | Results |
|---|---|---|
| MEDLINE (PubMed) | ((“Pediatrics”[MeSH Terms] OR “Child”[MeSH Terms] OR “Adolescent”[MeSH Terms] OR “teenager*”[Title/Abstract] OR “kids”[Title/Abstract] OR “children”[Title/Abstract]) AND (“neurofibromatosis 1”[MeSH Terms] OR “neurofibromatosis type 1”[Title/Abstract] OR “NF1”[Title/Abstract])) AND (y_10[Filter]) | 1846 |
| LILACS (via BVS) | (Pediatrics OR Child OR Adolescent OR teenager* OR kids OR children) AND (neurofibromatosis 1 OR neurofibromatosis type 1 OR NF1) | 42 |
| Cochrane Library | (Pediatrics OR Child OR Adolescent OR teenager* OR kids OR children):ti,ab,kw AND (neurofibromatosis 1 OR neurofibromatosis type 1 OR NF1):ti,ab,kw with Cochrane Library publication date from Jan 2014 to Nov 2024 | 125 |
| Links Sent According to the Area of Expertise | Number of Experts Invited in the First Round | Number of Experts Invited in the Second Round |
|---|---|---|
| Link 1—Related to Glioma recommendations | 22 | 12 |
| Link 2—Related to Plexiform Neurofibromas and Malignant Peripheral Nerve Sheath Tumors | 24 | 16 |
| Link 3—Related to all other categories | 19 | Consensus reached in the first round |
| TOTAL | 65 * | 28 * |
| Evidence Level Description | |
|---|---|
| IA | Evidence from meta-analysis of RCTs |
| IB | Evidence from at least 1 RCT or meta-analysis using RCTs and non-RCTs |
| IIA | Evidence from at least 1 controlled study without randomization |
| IIB | Evidence from at least 1 other type of quasi-experimental study |
| III | Evidence from non-experimental descriptive studies, such as comparative studies, correlation studies, and case–control studies |
| IV | Evidence from expert committee reports or opinions, or clinical experience of respected authorities, or both |
| N | Recommendations | Consensus Percentage | Level of Evidence |
|---|---|---|---|
| 1 | It is recommended for all patients newly diagnosed with NF1 should be followed up by an ophthalmologist to evaluate visual acuity, visual fields, pupillary reflexes, eye movements, and optic disc aspect. Ophthalmic follow-up should be annual until early adulthood. | 100% | III |
| 2 | It is recommended that pediatric patients with NF1 undergo regular clinical ophthalmologic evaluations, complemented by imaging tests such as optical coherence tomography (OCT), to investigate choroidal and retinal alterations. The evaluation should be performed at least once, according to the clinical and visual evolution of the patient. | 100% | III |
| 3 | Routine screening with MRI of the central nervous system and optical pathways is recommended for pediatric patients with NF1 and associated symptoms such as recent visual impairment or physical signs such as proptosis, strabismus, nystagmus, persistent headache, precocious puberty, abnormal growth patterns, or other ophthalmological and/or neurological signs and symptoms suggestive of optic tumors. In addition, in regions with limited access to specialized ophthalmologic evaluation, MRI in pediatric patients with asymptomatic NF1 represents an important and safe tool for monitoring these patients. | 100% | III |
| 4 | Biopsy is not recommended for diagnostic confirmation of optic pathway gliomas in pediatric patients with NF1. | 100% | III |
| 5 | An initial approach with vincristine and carboplatin is recommended as the first line of treatment for pediatric patients with NF1 and the presence of symptomatic optic pathway gliomas. | 83% | III |
| 6 | The following therapeutic options are recommended as second-line therapy for pediatric patients with NF1 and the presence of recurrent or refractory optic pathway gliomas: vinblastine, carboplatin, vinorelbine, or bevacizumab, isolated or in combination. | 83% | III |
| 7 | It is recommended for pediatric patients with NF1, and gliomas not associated with symptomatic or progressive optic pathway, the complete surgical excision whenever possible. When inoperable, chemotherapy should be instituted, always avoiding the association with radiotherapy. | 100% | IV |
| 8 | Pediatric patients with NF1 who have symptomatic gliomas—with or without optic pathway involvement—should be referred early to specialized cancer or neurological treatment centers. | 100% | IV |
| 9 | It is recommended that pediatric patients with NF1 and asymptomatic plexiform neurofibromas undergo periodic clinical and radiological (MRI) surveillance. | 93.75% | IIA |
| 10 | It is recommended that pediatric patients with NF1 and symptomatic or disfiguring plexiform neurofibromas be evaluated by a multidisciplinary team. Where possible and safe, partial or complete surgical resection of the lesion should be considered. | 90.91 | III |
| 11 | For pediatric patients with NF1 and symptomatic, inoperable plexiform neurofibromas, treatment with MEK inhibitors is recommended as the best therapeutic option to reduce tumor volume, alleviate pain, and improve quality of life and functional outcomes. | 93.75 | IIA |
| 12 | Rigorous monitoring is recommended for all pediatric patients with NF1 and symptomatic, inoperable plexiform neurofibromas who are treated with MEK inhibitors, to ensure appropriate management of side effects and optimization of dosing. | 100% | IIA |
| 13 | Whenever possible, a whole-body MRI is recommended for all patients with NF1 during the transition to adulthood, regardless of whether plexiform neurofibromas have been previously identified. | 87.50% | III |
| 14 | Pediatric patients with NF1 and plexiform neurofibromas should be closely monitored for signs of malignant transformation, including persistent pain or change in pre-existing pain pattern, increased tumor growth velocity, and/or neurological deficit. | 100% | III |
| 15 | Pediatric patients with NF1 and plexiform neurofibromas showing possible signs of malignancy should undergo MRI and a thorough clinical assessment before deciding if a biopsy is necessary. | 93.75% | III |
| 16 | Imaging-guided percutaneous biopsy (PET/CT, PET MRI, or US) is currently the most effective approach for the diagnosis of MPNST in pediatric patients with NF1 and plexiform neurofibromas with suspected malignancy. | 87.50% | III |
| 17 | Surgical resection with wide, tumor-free margins is the cornerstone of treatment for malignant peripheral nerve sheath tumors (MPNST) associated with NF1 and is considered the therapy of choice. | 87.50% | III |
| 18 | In cases of unresectable malignant peripheral nerve sheath tumors (MPNST), with partial or large resection (>5 cm), and in the absence of access to target therapy, it is recommended to consider the inclusion of radiotherapy and/or chemotherapy in the therapeutic plan. The decision should be individualized based on tumor location and extent. | 86.70% | III |
| 19 | If chemotherapy is indicated, the first-line treatment for pediatric patients with NF1 and malignant peripheral nerve sheath tumors (MPNST) is recommended to be a combination of ifosfamide and doxorubicin. However, this decision can be individualized based on tumor characteristics, the patient’s clinical condition, and the experience of the multidisciplinary team. | 86.70% | III |
| 20 | Currently, there is insufficient data in the literature, particularly in the pediatric population, to provide formal recommendations regarding melanoma development in patients with NF1. However, annual follow-up with a dermatologist and an ophthalmologist is suggested, although the optimal age to begin this surveillance remains unclear. | 100% | IV |
| 21 | Although rare, juvenile myelomonocytic leukemia (JMML) has been reported in pediatric patients with NF1. Healthcare professionals should be aware of clinical signs such as adenomegaly, hepatosplenomegaly, and pallor, but extensive investigations should be avoided unless clearly indicated. | 100% | III |
| 22 | Laboratory and imaging screening is not recommended for the investigation of pheochromocytoma and paraganglioma in pediatric patients with asymptomatic NF1. | 100% | III |
| 23 | For pediatric patients with NF1 who present with symptoms such as hypertension, headache, or palpitations, diagnostic evaluation for pheochromocytoma (PCC) and paraganglioma (PGL) is recommended, including biochemical testing (catecholamines and urinary or plasma metanephrines) and imaging studies. | 100% | III |
| 24 | Although rare, gastrointestinal stromal tumors (GISTs) have been reported in pediatric patients with NF1. Healthcare professionals should be alert to signs and symptoms such as gastrointestinal discomfort, weight loss, anemia, gastrointestinal bleeding, abdominal pain, a moderately palpable abdominal mass, or intestinal obstruction. Diagnostic evaluation for GISTs should be performed only when there is clinical suspicion. | 100% | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darrigo Junior, L.G.; Sonaglio, V.; Ferman, S.E.; Caran, E.; Filho, N.P.C.; Epelman, S.; Pileggi, V.N.; Lima, J.; Grigolon, R.B.; Geller, M. Consensus on Malignant and Benign Tumors in Pediatric Patients with Neurofibromatosis Type 1: On Behalf of the Brazilian Society of Pediatric Oncology (SOBOPE). Curr. Oncol. 2025, 32, 664. https://doi.org/10.3390/curroncol32120664
Darrigo Junior LG, Sonaglio V, Ferman SE, Caran E, Filho NPC, Epelman S, Pileggi VN, Lima J, Grigolon RB, Geller M. Consensus on Malignant and Benign Tumors in Pediatric Patients with Neurofibromatosis Type 1: On Behalf of the Brazilian Society of Pediatric Oncology (SOBOPE). Current Oncology. 2025; 32(12):664. https://doi.org/10.3390/curroncol32120664
Chicago/Turabian StyleDarrigo Junior, Luiz Guilherme, Viviane Sonaglio, Sima Esther Ferman, Eliana Caran, Neviçolino Pereira Carvalho Filho, Sidnei Epelman, Vicky Nogueira Pileggi, Julia Lima, Ruth Bartelli Grigolon, and Mauro Geller. 2025. "Consensus on Malignant and Benign Tumors in Pediatric Patients with Neurofibromatosis Type 1: On Behalf of the Brazilian Society of Pediatric Oncology (SOBOPE)" Current Oncology 32, no. 12: 664. https://doi.org/10.3390/curroncol32120664
APA StyleDarrigo Junior, L. G., Sonaglio, V., Ferman, S. E., Caran, E., Filho, N. P. C., Epelman, S., Pileggi, V. N., Lima, J., Grigolon, R. B., & Geller, M. (2025). Consensus on Malignant and Benign Tumors in Pediatric Patients with Neurofibromatosis Type 1: On Behalf of the Brazilian Society of Pediatric Oncology (SOBOPE). Current Oncology, 32(12), 664. https://doi.org/10.3390/curroncol32120664

