History and Development of Clinical Use of Functional Stereotaxy for Radiation Oncologists: From Its Origins to Its Current State
Simple Summary
Abstract
1. Introduction
2. Methods
3. Brief History of Stereotaxy
4. Clinical Beginnings of Stereotactic Neurosurgery
4.1. Treatment of Movement Disorders
4.2. Treatment of Epilepsy
4.3. Treatment of Psychiatric Conditions
4.4. Treatment of Chronic Pain
5. Deep Brain Stimulation: Treatment Without Destruction
5.1. Treatment of Movement Disorders by DBS
5.2. DBS in Epilepsy
5.3. DBS in Psychiatric Disorders
5.4. DBS in Pain Treatment
6. Radiosurgery and Its Possibilities: The Revival of Its Role in Functional Neurosurgery
6.1. SRS for Functional Neurosurgery
6.2. Movement Disorders
6.3. Epilepsy
6.4. Psychiatric Conditions
6.5. Pain
6.6. Linking Historical Evolution to Current Radiotherapy Paradigms
7. Ethical Challenges
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gildenberg, P.L.; Krauss, J.K. History of Stereotactic Surgery. In Textbook of Stereotactic and Functional Neurosurgery; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Ganz, J.C. The journey from proton to gamma knife. Prog Brain Res. 2014, 215, 67–75. [Google Scholar] [CrossRef]
- Davidson, B.; Hamani, C.; Huang, Y.; Jones, R.M.; Meng, Y.; Giacobbe, P.; Lipsman, N. Magnetic Resonance-Guided Focused Ultrasound Capsulotomy for Treatment-Resistant Psychiatric Disorders. Oper. Neurosurg. 2020, 19, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Kondziolka, D. Functional radiosurgery. Neurosurgery 1999, 44, 12–20; discussion 12–20. [Google Scholar] [CrossRef]
- Schultke, E. Theodor Kocher’s craniometer. Neurosurgery 2009, 64, 1001–1004; discussion 1004–1005. [Google Scholar] [CrossRef] [PubMed]
- Blomstedt, P.; Olivecrona, M.; Sailer, A.; Hariz, M.I. Dittmar and the history of stereotaxy; or rats, rabbits, and references. Neurosurgery 2007, 60, 198–201; discussion 201–192. [Google Scholar] [CrossRef]
- Fodstad, H.; Hariz, M.; Ljunggren, B. History of Clarke’s stereotactic instrument. Stereotact. Funct. Neurosurg. 1991, 57, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Horsley, V.; Clarke, R.H. The structure and functions of the cerebellum examined by a new method. Brain 1908, 31, 45–124. [Google Scholar] [CrossRef]
- Bertrand, G. Stereotactic surgery at McGill: The early years. Neurosurgery 2004, 54, 1244–1251; discussion 1242–1251. [Google Scholar] [CrossRef]
- Zanello, M.; Duriez, P.; Savoureux, A.S.; Vinckier, F.; Chretien, F.; Gavaret, M.; Gorwood, P.; Gaillard, R.; Pallud, J. Jean Talairach (1911–2007). An untold story of the pioneer of stereotactic and functional neurosurgery. Neurochirurgie 2022, 68, 398–408. [Google Scholar] [CrossRef]
- Spiegel, E.A.; Wycis, H.T.; Marks, M.; Lee, A.J. Stereotaxic Apparatus for Operations on the Human Brain. Science 1947, 106, 349–350. [Google Scholar] [CrossRef]
- Lehman, R.M.; Augustine, J.R. Evolution and rebirth of functional stereotaxy in the subthalamus. World Neurosurg. 2013, 80, 521–533. [Google Scholar] [CrossRef]
- Leksell, L. The stereotaxic method and radiosurgery of the brain. Acta Chir. Scand. 1951, 102, 316–319. [Google Scholar]
- Lunsford, L.D.; Flickinger, J.C.; Steiner, L. The gamma knife. JAMA 1988, 259, 2544. [Google Scholar] [CrossRef] [PubMed]
- Dagi, T.F. Stereotactic surgery. Neurosurg. Clin. N. Am. 2001, 12, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Horsley, V. The Linacre Lecture on the function of the so-called motor area of the brain: Delivered to the Master and Fellows of St. John’s College, Cambridge, May 6th, 1909. Br. Med. J. 1909, 2, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Rostami, C. History of surgery for temporal lobe epilepsy. Epilepsy Behav. 2017, 70 Pt A, 57–60. [Google Scholar] [CrossRef]
- Barbosa, D.A.N.; de Oliveira-Souza, R.; Monte Santo, F.; de Oliveira Faria, A.C.; Gorgulho, A.A.; De Salles, A.A.F. The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg. Focus 2017, 43, E15. [Google Scholar] [CrossRef]
- Stone, J.L. Dr. Gottlieb Burckhardt--the pioneer of psychosurgery. J. Hist. Neurosci. 2001, 10, 79–92. [Google Scholar] [CrossRef]
- Zanello, M.; Pallud, J.; Baup, N.; Peeters, S.; Turak, B.; Krebs, M.O.; Oppenheim, C.; Gaillard, R.; Devaux, B. History of psychosurgery at Sainte-Anne Hospital, Paris, France, through translational interactions between psychiatrists and neurosurgeons. Neurosurg. Focus 2017, 43, E9. [Google Scholar] [CrossRef]
- Lichterman, B.L.; Schulder, M.; Liu, B.; Yang, X.; Taira, T. A comparative history of psychosurgery. Prog. Brain Res. 2022, 270, 1–31. [Google Scholar] [CrossRef]
- Lapidus, K.A.; Kopell, B.H.; Ben-Haim, S.; Rezai, A.R.; Goodman, W.K. History of psychosurgery: A psychiatrist’s perspective. World Neurosurg. 2013, 80, S27.e1–S27.e16. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.P.; Alterman, R.L.; Goodrich, J.T. Contemporary psychosurgery and a look to the future. J. Neurosurg. 2001, 95, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Cavallieri, F.; Mulroy, E.; Moro, E. The history of deep brain stimulation. Parkinsonism Relat. Disord. 2024, 121, 105980. [Google Scholar] [CrossRef]
- Miocinovic, S.; Somayajula, S.; Chitnis, S.; Vitek, J.L. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013, 70, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Pycroft, L.; Stein, J.; Aziz, T. Deep brain stimulation: An overview of history, methods, and future developments. Brain Neurosci. Adv. 2018, 2, 2398212818816017. [Google Scholar] [CrossRef]
- de Oliveira, T.; Cukiert, A. Deep Brain Stimulation for Treatment of Refractory Epilepsy. Neurol. India 2021, 69, 42–44. [Google Scholar] [CrossRef]
- Remore, L.G.; Omidbeigi, M.; Tsolaki, E.; Bari, A.A. Deep brain stimulation of thalamic nuclei for the treatment of drug-resistant epilepsy: Are we confident with the precise surgical target? Seizure 2023, 105, 22–28. [Google Scholar] [CrossRef]
- Yassin, A.; Al-Kraimeen, L.; Qarqash, A.; AbuShukair, H.; Ababneh, O.; Al-Aomar, S.; Abu-Rub, M.; Alsherbini, K. Deep brain stimulation targets in drug-resistant epilepsy: Systematic review and meta-analysis of effectiveness and predictors of response. Seizure 2024, 122, 144–152. [Google Scholar] [CrossRef]
- Alonso, P.; Cuadras, D.; Gabriels, L.; Denys, D.; Goodman, W.; Greenberg, B.D.; Jimenez-Ponce, F.; Kuhn, J.; Lenartz, D.; Mallet, L.; et al. Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Meta-Analysis of Treatment Outcome and Predictors of Response. PLoS ONE 2015, 10, e0133591. [Google Scholar] [CrossRef]
- Cleary, D.R.; Ozpinar, A.; Raslan, A.M.; Ko, A.L. Deep brain stimulation for psychiatric disorders: Where we are now. Neurosurg. Focus 2015, 38, E2. [Google Scholar] [CrossRef] [PubMed]
- Frizon, L.A.; Yamamoto, E.A.; Nagel, S.J.; Simonson, M.T.; Hogue, O.; Machado, A.G. Deep Brain Stimulation for Pain in the Modern Era: A Systematic Review. Neurosurgery 2020, 86, 191–202. [Google Scholar] [CrossRef]
- Martinez-Alvarez, R. Radiosurgery for Behavioral Disorders. Prog. Neurol. Surg. 2019, 34, 289–297. [Google Scholar] [CrossRef]
- Regis, J. Gamma knife for functional diseases. Neurotherapeutics 2014, 11, 583–592. [Google Scholar] [CrossRef]
- Regis, J.; Carron, R.; Park, M. Is radiosurgery a neuromodulation therapy?: A 2009 Fabrikant award lecture. J. Neurooncol. 2010, 98, 155–162. [Google Scholar] [CrossRef]
- Regis, J. Radiosurgery as neuromodulation therapy! Acta Neurochir. Suppl. 2013, 116, 121–126. [Google Scholar] [CrossRef]
- Schneider, M.B.; Walcott, B.; Adler, J.R., Jr. Neuromodulation via Focal Radiation: Radiomodulation Update. Cureus 2021, 13, e14700. [Google Scholar] [CrossRef] [PubMed]
- Stancanello, J.; Romanelli, P.; Modugno, N.; Cerveri, P.; Ferrigno, G.; Uggeri, F.; Cantore, G. Atlas-based identification of targets for functional radiosurgery. Med. Phys. 2006, 33, 1603–1611. [Google Scholar] [CrossRef]
- Lindquist, C.; Kihlstrom, L.; Hellstrand, E. Functional neurosurgery--a future for the gamma knife? Stereotact. Funct. Neurosurg. 1991, 57, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Kostjuchenko, V.V.; Golanov, A.V. LINAC-based radiosurgery for functional and psychiatric disorders: Problems and their solutions. Prog. Brain Res. 2022, 270, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Niranjan, A.; Raju, S.S.; Kooshkabadi, A.; Monaco, E., 3rd; Flickinger, J.C.; Lunsford, L.D. Stereotactic radiosurgery for essential tremor: Retrospective analysis of a 19-year experience. Mov. Disord. 2017, 32, 769–777. [Google Scholar] [CrossRef]
- Friehs, G.M.; Ojakangas, C.L.; Schrottner, O.; Ott, E.; Pendl, G. Radiosurgical lesioning of the caudate nucleus as a treatment for parkinsonism: A preliminary report. Neurol. Res. 1997, 19, 97–103. [Google Scholar] [CrossRef]
- Martinez-Moreno, N.E.; Sahgal, A.; De Salles, A.; Hayashi, M.; Levivier, M.; Ma, L.; Paddick, I.; Regis, J.; Ryu, S.; Slotman, B.J.; et al. Stereotactic radiosurgery for tremor: Systematic review. J. Neurosurg. 2019, 130, 589–600. [Google Scholar] [CrossRef]
- Goc, B.; Roch-Zniszczol, A.; Larysz, D.; Zarudzki, L.; Stapor-Fudzinska, M.; Rozek, A.; Wozniak, G.; Boczarska-Jedynak, M.; Miszczyk, L.; Napieralska, A. The Effectiveness and Toxicity of Frameless CyberKnife Based Radiosurgery for Parkinson’s Disease-Phase II Study. Biomedicines 2023, 11, 288. [Google Scholar] [CrossRef]
- Khattab, M.H.; Cmelak, A.J.; Sherry, A.D.; Luo, G.; Wang, L.; Yu, H.; Hedera, P.; Phibbs, F.T.; Lindsell, C.J.; Neimat, J.; et al. Noninvasive Thalamotomy for Refractory Tremor by Frameless Radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 121–130. [Google Scholar] [CrossRef]
- Chintapalli, R.; Chang, S.; Kaprealian, T.; Savjani, R.; Tenn, S.; Bari, A. Gamma knife versus linear accelerator thalamotomy for essential tremor and Parkinson’s disease: A systematic review and meta-analysis. J. Clin. Neurosci. 2025, 133, 111050. [Google Scholar] [CrossRef]
- Bilski, M.; Szklener, K.; Szklener, S.; Rudzinska, A.; Kluz, N.; Klas, J.; Rodzajewska, A.; Kurylo, W.; Korga, M.; Baranowska, I.; et al. Stereotactic radiosurgery in the treatment of essential tremor—A systematic review. Front. Neurol. 2024, 15, 1370091. [Google Scholar] [CrossRef]
- Goncalves, O.R.; Lima, H.F.; Borges, C.E.S.; Junior, A.; Batista, S.; Romeiro, P.; Fukunaga, C.K.; Goes, B.G.; Monteiro, G.A.; Chen, H.C.; et al. Efficacy and safety of stereotactic radiosurgery with gamma knife machine in patients with essential tremor: A systematic review and single-arm meta-analysis. Neurosurg. Rev. 2024, 47, 862. [Google Scholar] [CrossRef]
- Perez-Sanchez, J.R.; Martinez-Alvarez, R.; Martinez Moreno, N.E.; Torres Diaz, C.; Rey, G.; Parees, I.; Del Barrio, A.A.; Alvarez-Linera, J.; Kurtis, M.M. Gamma Knife(R) stereotactic radiosurgery as a treatment for essential and parkinsonian tremor: Long-term experience. Neurologia 2020, 38, 188–196. [Google Scholar] [CrossRef]
- Ochiai, T. Gamma Knife Thalamotomy for a Medically Refractory Tremors: Longitudinal Evaluation of Clinical Effects and MRI Response Patterns. Acta Neurochir. Suppl. 2021, 128, 127–132. [Google Scholar] [CrossRef]
- Luo, G.; Cameron, B.D.; Wang, L.; Yu, H.; Neimat, J.S.; Hedera, P.; Phibbs, F.; Bradley, E.B.; Cmelak, A.J.; Kirschner, A.N. Targeting for stereotactic radiosurgical thalamotomy based on tremor treatment response. J. Neurosurg. 2022, 136, 1387–1394. [Google Scholar] [CrossRef]
- Ankrah, N.K.; Thomas, E.M.; Bredel, M.; Middlebrooks, E.H.; Walker, H.; Fiveash, J.B.; Guthrie, B.L.; Popple, R.A.; Roper, J.; Brinkerhoff, S. Frameless LINAC-Based Stereotactic Radiosurgery is Safe and Effective for Essential and Parkinsonian Tremor. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117 (Suppl. S2), S173. [Google Scholar] [CrossRef]
- Horisawa, S.; Hayashi, M.; Tamura, N.; Kohara, K.; Nonaka, T.; Hanada, T.; Kawamata, T.; Taira, T. Gamma Knife Thalamotomy for Essential Tremor: A Retrospective Analysis. World Neurosurg. 2023, 175, e90–e96. [Google Scholar] [CrossRef]
- Tuleasca, C.; Carey, G.; Barriol, R.; Touzet, G.; Dubus, F.; Luc, D.; Carriere, N.; Reyns, N. Impact of biologically effective dose on tremor decrease after stereotactic radiosurgical thalamotomy for essential tremor: A retrospective longitudinal analysis. Neurosurg. Rev. 2024, 47, 73. [Google Scholar] [CrossRef]
- Quigg, M.; Rolston, J.; Barbaro, N.M. Radiosurgery for epilepsy: Clinical experience and potential antiepileptic mechanisms. Epilepsia 2012, 53, 7–15. [Google Scholar] [CrossRef]
- Regis, J.; Rey, M.; Bartolomei, F.; Vladyka, V.; Liscak, R.; Schrottner, O.; Pendl, G. Gamma knife surgery in mesial temporal lobe epilepsy: A prospective multicenter study. Epilepsia 2004, 45, 504–515. [Google Scholar] [CrossRef]
- Barbaro, N.M.; Quigg, M.; Ward, M.M.; Chang, E.F.; Broshek, D.K.; Langfitt, J.T.; Yan, G.; Laxer, K.D.; Cole, A.J.; Sneed, P.K.; et al. Radiosurgery versus open surgery for mesial temporal lobe epilepsy: The randomized, controlled ROSE trial. Epilepsia 2018, 59, 1198–1207. [Google Scholar] [CrossRef]
- Mohsen, Y.; Sarhan, K.; Alawadi, I.S.; Elmahdi, R.R.; Kozaa, Y.A.; Gomaa, M.A.; Serag, I.; Shahein, M. Efficacy and safety of laser interstitial thermal therapy versus radiofrequency ablation and stereotactic radiosurgery in the treatment of intractable mesial temporal lobe epilepsy: A systematic review and meta-analysis. Neurosurg. Rev. 2025, 48, 71. [Google Scholar] [CrossRef]
- Usami, K.; Kawai, K.; Koga, T.; Shin, M.; Kurita, H.; Suzuki, I.; Saito, N. Delayed complication after Gamma Knife surgery for mesial temporal lobe epilepsy. J. Neurosurg. 2012, 116, 1221–1225. [Google Scholar] [CrossRef]
- Kawamura, T.; Onishi, H.; Kohda, Y.; Hirose, G. Serious adverse effects of gamma knife radiosurgery for mesial temporal lobe epilepsy. Neurol. Med. Chir. 2012, 52, 892–898. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, X.D.; Han, Y.M.; Shi, X.F.; Lan, Z.B.; Men, X.X.; Pan, Y.W. Clinical efficacy of gamma knife and surgery treatment of mesial temporal lobe epilepsy and their effects on EF-Tumt and EF-Tsmt expression. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1774–1779. Available online: https://www.europeanreview.org/wp/wp-content/uploads/1774-1779-Clinical-efficacy-of-gamma-knife-and-surgery-treatment-of-mesial-temporal-lobe-epilepsy.pdf (accessed on 24 October 2025).
- McGonigal, A.; Sahgal, A.; De Salles, A.; Hayashi, M.; Levivier, M.; Ma, L.; Martinez, R.; Paddick, I.; Ryu, S.; Slotman, B.J.; et al. Radiosurgery for epilepsy: Systematic review and International Stereotactic Radiosurgery Society (ISRS) practice guideline. Epilepsy Res. 2017, 137, 123–131. [Google Scholar] [CrossRef]
- Tripathi, M.; Mukherjee, K.; Chhabra, R.; Radotra, I.; Singh, A.P.; Radotra, B. Gamma knife for obsessive compulsive disorder: Can it be detrimental? Turk. Neurosurg. 2014, 24, 583–586. Available online: https://pubmed.ncbi.nlm.nih.gov/25050687/ (accessed on 6 July 2025).
- Leveque, M.; Carron, R.; Regis, J. Radiosurgery for the treatment of psychiatric disorders: A review. World Neurosurg. 2013, 80, S32.e1–S32.e9. [Google Scholar] [CrossRef]
- Sadashiva, N.; Tripathi, M.; De Salles, A. Contemporary Role of Stereotactic Radiosurgery for Psychiatric Disorders. Neurol. India 2023, 71 (Suppl. S1), S31–S38. [Google Scholar] [CrossRef]
- Martinez-Alvarez, R.; Torres-Diaz, C. Modern Gamma Knife radiosurgery for management of psychiatric disorders. Prog. Brain Res. 2022, 270, 171–183. [Google Scholar] [CrossRef]
- Gupta, R.; Chen, J.W.; Hughes, N.C.; Hamo, M.; Jean-Baptiste, S.; Paulo, D.L.; Chanbour, H.; Fan, R.; Ye, F.; Vadali, A.; et al. Benefits of stereotactic radiosurgical anterior capsulotomy for obsessive-compulsive disorder: A meta-analysis. J. Neurosurg. 2024, 141, 394–405. [Google Scholar] [CrossRef]
- Laseca-Zaballa, G.; Lubrini, G.; Perianez, J.A.; Simon-Martinez, V.; Martin Bejarano, M.; Torres-Diaz, C.; Martinez Moreno, N.; Alvarez-Linera, J.; Martinez Alvarez, R.; Rios-Lago, M. Cognitive outcomes following functional neurosurgery in refractory OCD patients: A systematic review. Neurosurg. Rev. 2023, 46, 145. [Google Scholar] [CrossRef]
- Miguel, E.C.; Lopes, A.C.; McLaughlin, N.C.R.; Noren, G.; Gentil, A.F.; Hamani, C.; Shavitt, R.G.; Batistuzzo, M.C.; Vattimo, E.F.Q.; Canteras, M.; et al. Evolution of gamma knife capsulotomy for intractable obsessive-compulsive disorder. Mol. Psychiatry 2019, 24, 218–240. [Google Scholar] [CrossRef]
- Rasmussen, S.A.; Noren, G.; Greenberg, B.D.; Marsland, R.; McLaughlin, N.C.; Malloy, P.J.; Salloway, S.P.; Strong, D.R.; Eisen, J.L.; Jenike, M.A.; et al. Gamma Ventral Capsulotomy in Intractable Obsessive-Compulsive Disorder. Biol. Psychiatry 2018, 84, 355–364. [Google Scholar] [CrossRef]
- Gupta, A.; Shepard, M.J.; Xu, Z.; Maiti, T.; Martinez-Moreno, N.; Silverman, J.; Iorio-Morin, C.; Martinez-Alvarez, R.; Barnett, G.; Mathieu, D.; et al. An International Radiosurgery Research Foundation Multicenter Retrospective Study of Gamma Ventral Capsulotomy for Obsessive Compulsive Disorder. Neurosurgery 2019, 85, 808–816. [Google Scholar] [CrossRef]
- Peker, S.; Samanci, M.Y.; Yilmaz, M.; Sengoz, M.; Ulku, N.; Ogel, K. Efficacy and Safety of Gamma Ventral Capsulotomy for Treatment-Resistant Obsessive-Compulsive Disorder: A Single-Center Experience. World Neurosurg. 2020, 141, e941–e952. [Google Scholar] [CrossRef]
- Ekmekci Ertek, I.; Ucar, O.; Emre Yaman, M.; Hakan Emmez, O.; Candansayar, S. Treatment Outcomes of Gamma-Knife Radio Surgery in Refractory Obsessive-Compulsive Disorder. Psychiatry Clin. Psychopharmacol. 2021, 31, 401–407. [Google Scholar] [CrossRef]
- Pattankar, S.; Sankhe, M.; Chavda, K. Efficacy of Gamma Knife Radiosurgery in Refractory Obsessive-Compulsive Disorder: An Indian Experience. J. Neurosci. Rural Pract. 2022, 13, 23–31. [Google Scholar] [CrossRef]
- Tuleasca, C.; Regis, J.; Sahgal, A.; De Salles, A.; Hayashi, M.; Ma, L.; Martinez-Alvarez, R.; Paddick, I.; Ryu, S.; Slotman, B.J.; et al. Stereotactic radiosurgery for trigeminal neuralgia: A systematic review. J. Neurosurg. 2019, 130, 733–757. [Google Scholar] [CrossRef]
- Lu, V.M.; Duvall, J.B.; Phan, K.; Jonker, B.P. First treatment and retreatment of medically refractive trigeminal neuralgia by stereotactic radiosurgery versus microvascular decompression: A systematic review and Meta-analysis. Br. J. Neurosurg. 2018, 32, 355–364. [Google Scholar] [CrossRef]
- Shields, L.B.E.; Malkawi, A.; Daniels, M.W.; Rao, A.J.; Plato, B.M.; Yao, T.L.; Howe, J.N.; Spalding, A.C. Frameless image-guided linear accelerator (LINAC) stereotactic radiosurgery for medically refractory trigeminal neuralgia: Clinical outcomes in 116 patients. Surg. Neurol. Int. 2024, 15, 181. [Google Scholar] [CrossRef]
- De La Pena, N.M.; Singh, R.; Anderson, M.L.; Koester, S.W.; Sio, T.T.; Ashman, J.B.; Vora, S.A.; Patel, N.P. High-Dose Frameless Stereotactic Radiosurgery for Trigeminal Neuralgia: A Single-Institution Experience and Systematic Review. World Neurosurg. 2022, 167, e432–e443. [Google Scholar] [CrossRef]
- Guillemette, A.; Heymann, S.; Roberge, D.; Menard, C.; Fournier-Gosselin, M.P. CyberKnife radiosurgery for trigeminal neuralgia: A retrospective review of 168 cases. Neurosurg. Focus 2022, 53, E4. [Google Scholar] [CrossRef]
- Akkara, Y.; Singh, J.M.; Thorne, L.; Hill, C.S. Stereotactic Radiosurgery versus Neuroablative Techniques for Medically Refractory Trigeminal Neuralgia: A Systematic Review and Meta-Analysis of Outcomes. Stereotact. Funct. Neurosurg. 2025, 103, 154–165. [Google Scholar] [CrossRef]
- Khaboushan, A.S.; Maroufi, S.F.; Jarrah, N.; Moafi, M.; Sabahi, M.; Borghei-Razavi, H.; Sheehan, J.P. Comparison of stereotactic radiosurgery and rhizotomy for trigeminal neuralgia: A systematic review and Meta-Analysis. Neurosurg. Rev. 2025, 48, 613. [Google Scholar] [CrossRef]
- Debono, B.; Lotterie, J.A.; Sol, J.C.; Bousquet, P.; Duthil, P.; Monfraix, S.; Lazorthes, Y.; Sabatier, J.; Latorzeff, I. Dedicated Linear Accelerator Radiosurgery for Classic Trigeminal Neuralgia: A Single-Center Experience with Long-Term Follow-Up. World Neurosurg. 2019, 121, e775–e785. [Google Scholar] [CrossRef]
- Koca, S.; Distel, L.; Lubgan, D.; Weissmann, T.; Lambrecht, U.; Lang-Welzenbach, M.; Eyupoglu, I.; Bischoff, B.; Buchfelder, M.; Semrau, S.; et al. Time course of pain response and toxicity after whole-nerve-encompassing LINAC-based stereotactic radiosurgery for trigeminal neuralgia-a prospective observational study. Strahlenther. Onkol. 2019, 195, 745–755. [Google Scholar] [CrossRef]
- Barzaghi, L.R.; Albano, L.; Scudieri, C.; Gigliotti, C.R.; Nadin, F.; Del Vecchio, A.; Mortini, P. Gamma Knife Radiosurgery for Trigeminal Neuralgia: Role of Trigeminal Length and Pontotrigeminal Angle on Target Definition and on Clinical Effects. World Neurosurg. 2020, 142, e140–e150. [Google Scholar] [CrossRef]
- Kienzler, J.C.; Tenn, S.; Chivukula, S.; Chu, F.I.; Sparks, H.D.; Agazaryan, N.; Kim, W.; Salles, A.; Selch, M.; Gorgulho, A.; et al. Linear accelerator-based radiosurgery for trigeminal neuralgia: Comparative outcomes of frame-based and mask-based techniques. J. Neurosurg. 2022, 137, 217–226. [Google Scholar] [CrossRef]
- Okunlola, A.I.; Pattankar, S.; Warade, A.; Khandhar, A.; Mistry, V.; Misra, B.K. Safety and Efficacy of Gamma Knife Radiosurgery for the Management of Trigeminal Neuralgia: A Retrospective and Cross-Sectional Study. Neurol. India 2023, 71 (Suppl. S1), S161–S167. [Google Scholar] [CrossRef]
- Orlev, A.; Feghali, J.; Kimchi, G.; Sun, L.; Pierre, C.; Gragnaniello, C.; Cotrutz, C.; Loiselle, C.; Vermeulen, S.; Litvack, Z. TN-RS: A novel scoring system predicts Gamma Knife Radiosurgery outcome for trigeminal neuralgia patients. Acta Neurochir. 2023, 165, 3895–3903. [Google Scholar] [CrossRef]
- Sato, D.; Hayashi, M.; Horiba, A.; Horisawa, S.; Kawamata, T. Long-Term Results of Gamma Knife Radiosurgery for Trigeminal Neuralgia. World Neurosurg. 2023, 171, e787–e791. [Google Scholar] [CrossRef]
- Roberts, D.G.; Pouratian, N. Stereotactic Radiosurgery for the Treatment of Chronic Intractable Pain: A Systematic Review. Oper. Neurosurg. 2017, 13, 543–551. [Google Scholar] [CrossRef]
- Steiner, L.; Forster, D.; Leksell, L.; Meyerson, B.A.; Boethius, J. Gammathalamotomy in intractable pain. Acta Neurochir. 1980, 52, 173–184. [Google Scholar] [CrossRef]
- Tian, F.; Dai, H.; Sha, D.; Yu, Y.; Jing, H.; Sun, C.; Shang, L.; Liu, Y.; Feng, R.; Li, J.; et al. Total neoadjuvant treatment with short-course radiotherapy followed by sintilimab plus capecitabine–oxaliplatin versus short-course radiotherapy followed by capecitabine–oxaliplatin in patients with locally advanced rectal cancer (SPRING-01): A single-centre, open-label, phase 2, randomised controlled trial. Lancet Oncol. 2025, 26, 1043–1054. [Google Scholar] [CrossRef]
- Gani, C.; Fokas, E.; Polat, B.; Ott, O.J.; Diefenhardt, M.; Königsrainer, A.; Böke, S.; Kirschniak, A.; Bachmann, R.; Wichmann, D.; et al. Organ preservation after total neoadjuvant therapy for locally advanced rectal cancer (CAO/ARO/AIO-16): An open-label, multicentre, single-arm, phase 2 trial. Lancet Gastroenterol. Hepatol. 2025, 10, 562–572. [Google Scholar] [CrossRef]
- Kawamura, M.; Kamomae, T.; Yanagawa, M.; Kamagata, K.; Fujita, S.; Ueda, D.; Matsui, Y.; Fushimi, Y.; Fujioka, T.; Nozaki, T.; et al. Revolutionizing radiation therapy: The role of AI in clinical practice. J. Radiat. Res. 2024, 65, 1–9. [Google Scholar] [CrossRef]
- Spaas, M.; Sundahl, N.; Kruse, V.; Rottey, S.; De Maeseneer, D.; Duprez, F.; Lievens, Y.; Surmont, V.; Brochez, L.; Reynders, D.; et al. Checkpoint inhibitors in combination with stereotactic body radiotherapy in patients with advanced solid tumors: The CHEERS phase 2 randomized clinical trial. JAMA Oncol. 2023, 9, 1205–1213. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, Z.; Tang, Y.; Chen, W.; Zhong, L.; Mao, L.; Hu, S.; Wu, Y.; Deng, K.; Yang, W.; et al. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: A two-centre, multi-vendor study. Eur. Radiol. 2023, 33, 1906–1917. [Google Scholar] [CrossRef]
- Westerhoff, J.M.; Daamen, L.A.; Christodouleas, J.P.; Blezer, E.L.A.; Choudhury, A.; Westley, R.L.; Erickson, B.A.; Fuller, C.D.; Hafeez, S.; van der Heide, U.A.; et al. Safety and Tolerability of Online Adaptive High-Field Magnetic Resonance–Guided Radiotherapy. JAMA Netw. Open 2024, 7, e2410819. [Google Scholar] [CrossRef]
- Appelt, A.; Elhaminia, B.; Gooya, A.; Gilbert, A.; Nix, M. Deep Learning for Radiotherapy Outcome Prediction Using Dose Data—A Review. Clin. Oncol. 2022, 34, e87–e96. [Google Scholar] [CrossRef]

| Author and Year | Patients | Radiotherapy Modality | Maximal Dose | Target | Efficacy | Toxicity |
|---|---|---|---|---|---|---|
| Niranjan, 2017 [41] | 73 | Gamma Knife | 130–150 Gy | VIM | RR: 93.2% RR 12 m: N/A | AE: 3.8% Hemiparesis; facial weakness; dysphasia; numbness in the contralateral hand |
| Pérez-Sanchez, 2020 [49] | 13 | Gamma Knife | 130 Gy | VIM | RR: 84.6% RR 12 m: 63.6% | AE: 23% Paraesthesia; minor cognitive complaints; depression |
| Khattab, 2021 [45] | 33 | Gamma Knife | 160 Gy | VIM | RR: 83% RR 12 m: 50% | AE: 6% Headache |
| Ochiai, 2021 [50] | 17 | Gamma Knife | 130 Gy | VIM | More than 50% decreased tremor: RR: 77% RR 12 m: 71% | AE: 12% Motor weakness; neurological deficit |
| Luo, 2022 [51] | 23 | LINAC | 145–160 Gy | VIM | RR: 82.6% RR 12 m: N/A | AE: N/A |
| Ankrah, 2023 [52] | 42 | LINAC | 135 Gy | VIM | RR: 89.7% RR 12 m: N/A | AE: 2.4%, severe; 9.5%, mild |
| Horisawa, 2023 [53] | 27 | Gamma Knife | 130 Gy | VIM | RR: 88.9% RR 12 m: N/A | AE: 22% Complete hemiparesis; foot weakness; dysarthria; dysphagia (death by pneumonia); lip and finger numbness |
| Tuleasca, 2023 [54] | 78 | Gamma Knife | 130 Gy | VIM | RR: 67.6% RR 12 m: N/A | AE: 8.9% Transient hemiparesis |
| Author and Year | Patients | Radiotherapy Modality | Dose | Target | Efficacy | Toxicity |
|---|---|---|---|---|---|---|
| Usami, 2012 [59] | 7 | Gamma Knife | 18–25 Gy at 50% isodose | Amygdala, hippocampal head and body, most of the parahippocampal gyrus, and the entorhinal cortex | 29% seizure remission | 29% symptomatic radiation necrosis (headache, edema, gait disturbance); 14% death before seizure control |
| Kawamura, 2012 [60] | 11 | Gamma Knife | 20–25 Gy at 50% isodose | Anterior 2.5 cm of the hippocampus, the amygdala, and parahippocampal gyrus | 36% seizure remission | 9% death due to seizure; 9% cognitive impairment, aphasia, and hemiparesis; 9% severe headache and visual changes; 9% cognitive impairment and hemiparesis |
| Wang, 2017 [61] | 37 | Gamma Knife | 15–25 Gy at 50% isodose | Edges of amygdaloid nucleus and hippocampal area and edges of forehead and anterior temporal lobe | Seizure-free N/A RR: 89.2% | 8% mental symptoms; 3% extradural hematoma; 3% memory decline |
| Barbaro, 2018 [57] | 31 | Gamma Knife | 24 Gy at 50% isodose | Amygdala, anterior 2 cm of hippocampus and parahippocampal gyrus | 52% seizure remission | AE: 45.2% Headaches, transient neurological deficits, transient exacerbation of seizures; cerebral edema; pin site infection |
| Author and Year | Patients | Radiotherapy Modality | Maximal Dose | Number of Shots | Target | Efficacy | Toxicity |
|---|---|---|---|---|---|---|---|
| Rasmussen, 2018 [70] | 55 | Gamma Knife | 180 Gy | Single: 2 Single repeated: 13 Double: 40 | VP of ALIC bilat | FR: 56% (FR of 7% with single shot vs. double shots) | 9% transient edema; 5% cyst; 1.8% radio-necrosis; transient headache |
| Gupta, 2019 [71] | 40 | Gamma Knife | 120–180 Gy | N/A | VP of ALIC bilat | FR: 45% Remission: 40% | 25% mood disturbance; 7.5% neurological complications (headache with difficulty in speech, dizziness, tinnitus, forgetfulness); 2.5% radio-necrosis; 20% weight changes |
| Peker, 2020 [72] | 21 | Gamma Knife | 140–150 Gy | Single: 1 Double: 20 | VP of ALIC bilat | FR: 75% Remission: 35% | 23.8% headache (14.3% transient, 9.5% persistent); 9.5% cyst |
| Ertek, 2021 [73] | 12 | Gamma Knife | 140–180 Gy | Single: 3 Double: 9 | ALIC bilat | FR: 50% Remission: 16.7% | 16.7% headache |
| Pattankar, 2022 [74] | 9 | Gamma Knife | 120–160 Gy | Double: 3 Triple: 5 Nonuple: 1 | 1 anterior portion of the cingula; 8 midputaminal points of ALIC bilat | FR *: 44.4% | None |
| Author and Year | Patients | Radiotherapy Modality | Maximal Dose | Target | Efficacy | Toxicity |
|---|---|---|---|---|---|---|
| Debono, 2019 [82] | 301 | LINAC | 90 Gy | RG | Pain-free: 82% at 3 months Recurrence: 26.4% | 26.2% facial hypesthesia; 19.6% paresthesia; 1.3% eye irritation |
| Koca, 2019 [83] | 21 | LINAC | 70 Gy | Trigeminal Cistern | Pain-free: 57.1% at 16 months At least once for everyday pain: 90.5% Recurrence: not significant | 52.4% hypoesthesia; dysphagia and paresthesia 61.9%; difficulties eating 57.1%; difficulties speaking 52.4%; 33.3% vision impairment |
| Barzaghi, 2020 [84] | 112 | Gamma Knife | 70–90 Gy | RG | Pain-free: 84.8% at 6 months Recurrence: 72% | 14.1% hypoesthesia |
| Kienzler, 2021 [85] | 234 | LINAC | 90 Gy | REZ | Maximal pain-free *: 91% and 88.1% at 12 months Recurrence: 27.8% | 32.4% hypesthesia; 4.7% dry eye syndrome; 0.4% anesthesia dolorosa; 0.4% hearing loss |
| Okunlola, 2023 [86] | 153 | Gamma Knife | 70–80 Gy | Trigeminal Cistern | Pain-free: 78.3% Recurrence: 9.2% | 1.3% transient headache, giddiness, and imbalance; 3.3% facial numbness |
| Orlev, 2023 [87] | 162 | Gamma Knife | 70–90 Gy | REZ | Pain-free *: 80% at 12 months Recurrence: N/A | N/A |
| Sato, 2023 [88] | 103 | Gamma Knife | 90 Gy | RG | Pain-free: 82.5% at initial evaluation and 58.2% at 10 years Recurrence: 27.1% | 24.3% facial numbness |
| Shields, 2024 [77] | 116 | LINAC | 80–90 Gy | REZ: 31.9% Meckel’s cave: 68.1% | Pain-free *: 94.8% at last follow-up Recurrence: N/A | 36.2% fatigue; 4.3% pain flare; 1.7% dry eye |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulet, M.; Masucci, G.L.; Taussky, D.; Levivier, M. History and Development of Clinical Use of Functional Stereotaxy for Radiation Oncologists: From Its Origins to Its Current State. Curr. Oncol. 2025, 32, 656. https://doi.org/10.3390/curroncol32120656
Goulet M, Masucci GL, Taussky D, Levivier M. History and Development of Clinical Use of Functional Stereotaxy for Radiation Oncologists: From Its Origins to Its Current State. Current Oncology. 2025; 32(12):656. https://doi.org/10.3390/curroncol32120656
Chicago/Turabian StyleGoulet, Merrik, Giuseppina Laura Masucci, Daniel Taussky, and Marc Levivier. 2025. "History and Development of Clinical Use of Functional Stereotaxy for Radiation Oncologists: From Its Origins to Its Current State" Current Oncology 32, no. 12: 656. https://doi.org/10.3390/curroncol32120656
APA StyleGoulet, M., Masucci, G. L., Taussky, D., & Levivier, M. (2025). History and Development of Clinical Use of Functional Stereotaxy for Radiation Oncologists: From Its Origins to Its Current State. Current Oncology, 32(12), 656. https://doi.org/10.3390/curroncol32120656

