Predictors of Pathologic Complete Response and Its Prognostic Value in Early Breast Cancer: A Real-World Cohort Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Oversight
2.2. Participants: Eligibility Criteria
2.3. Imaging, Treatment, Surgery, and Pathology
2.4. Outcomes
2.5. Variables and Data Sources
2.6. Statistical Analysis
2.7. Data Protection
3. Results
3.1. Patient Characteristics
3.2. Treatment and Radiologic Response
3.3. Adjuvant Therapy
3.4. Pathologic Response
3.5. Survival Outcomes
3.6. Multivariable Analysis
4. Discussion
4.1. Limitations
4.2. Clinical Implications and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.; Bergh, J.; Burstein, H.; Cardoso, M.; Carey, L.; Dawood, S.; Del Mastro, L.; et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.-S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Dent, R.; McArthur, H.; Pusztai, L.; Kümmel, S.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Overall Survival with Pembrolizumab in Early-Stage Triple-Negative Breast Cancer. N. Engl. J. Med. 2024, 391, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Sikov, W.M.; Berry, D.A.; Perou, C.M.; Singh, B.; Cirrincione, C.T.; Tolaney, S.M.; Kuzma, C.S.; Pluard, T.J.; Somlo, G.; Port, E.R.; et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J. Clin. Oncol. 2015, 33, 13–21. [Google Scholar] [PubMed]
- von Minckwitz, G.; Schneeweiss, A.; Loibl, S.; Salat, C.; Denkert, C.; Rezai, M.; Blohmer, J.U.; Jackisch, C.; Paepke, S.; Gerber, B.; et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol. 2014, 15, 747–756. [Google Scholar] [CrossRef]
- Geyer, C.; Sikov, W.; Huober, J.; Rugo, H.; Wolmark, N.; O’shaughnessy, J.; Maag, D.; Untch, M.; Golshan, M.; Lorenzo, J.P.; et al. Long-term efficacy and safety of addition of carboplatin with or without veliparib to standard neoadjuvant chemotherapy in triple-negative breast cancer: 4-year follow-up data from BrighTNess, a randomized phase III trial. Ann. Oncol. 2022, 33, 384–394. [Google Scholar] [CrossRef]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Zhang, P.; Xue, S.; Chen, Y.; Sun, L.; Yang, R. Predictive and prognostic values of tumor infiltrating lymphocytes in breast cancers treated with neoadjuvant chemotherapy: A meta-analysis. Breast 2022, 66, 97–109. [Google Scholar] [CrossRef]
- Sun, H.-K.; Jiang, W.-L.; Zhang, S.-L.; Xu, P.-C.; Wei, L.-M.; Liu, J.-B. Predictive value of tumor-infiltrating lymphocytes for neoadjuvant therapy response in triple-negative breast cancer: A systematic review and meta-analysis. World J. Clin. Oncol. 2024, 15, 920–935. [Google Scholar] [CrossRef]
- Kim, H.; Chun, J.W.; Hwang, J.; Yun, S.G.; Kim, J.; Jung, S.P.; Moon, H.-G.; Lee, E.-S.; Han, W. Impact of germline BRCA1/2 mutations on response to neoadjuvant systemic therapy and prognosis in breast cancer: A propensity score matched cohort study. Breast Cancer Res. 2025, 27, 89. [Google Scholar] [CrossRef]
- Loibl, S.; O’Shaughnessy, J.; Untch, M.; Sikov, W.M.; Rugo, H.S.; McKee, M.D.; Huober, J.; Golshan, M.; von Minckwitz, G.; Maag, D.; et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): A randomised, phase 3 trial. Lancet Oncol. 2018, 19, 497–509. [Google Scholar] [CrossRef]
- Shepherd, J.H.; Ballman, K.; Polley, M.-Y.C.; Campbell, J.D.; Fan, C.; Selitsky, S.; Fernandez-Martinez, A.; Parker, J.S.; Hoadley, K.A.; Hu, Z.; et al. CALGB 40603 (Alliance): Long-Term Outcomes and Genomic Correlates of Response and Survival After Neoadjuvant Chemotherapy With or Without Carboplatin and Bevacizumab in Triple-Negative Breast Cancer. J. Clin. Oncol. 2022, 40, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; De La Haba-Rodriguez, J.; Im, S.-A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.-F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef] [PubMed]
- Yau, C.; Osdoit, M.; van der Noordaa, M.; Shad, S.; Wei, J.; de Croze, D.; Hamy, A.-S.; Laé, M.; Reyal, F.; Sonke, G.S.; et al. Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: A multicentre pooled analysis of 5161 patients. Lancet Oncol. 2022, 23, 149–160. [Google Scholar] [CrossRef]
- O Nielsen, T.; Leung, S.C.Y.; Rimm, D.L.; Dodson, A.; Acs, B.; Badve, S.; Denkert, C.; Ellis, M.J.; Fineberg, S.; Flowers, M.; et al. Assessment of Ki67 in Breast Cancer: Updated Recommendations From the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2021, 113, 808–819. [Google Scholar] [CrossRef]
- Burstein, H.; Regan, M.; Aebi, S.; André, F.; Barrios, C.; Bergh, J.; Bonnefoi, H.; Morales, D.B.; Brucker, S.; Burstein, H.; et al. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Hayes, D.F.; Lakhani, S.R.; Chavez-MacGregor, M.; Perlmutter, J.; et al. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J. Clin. Oncol. 2020, 38, 1346–1366. [Google Scholar] [CrossRef] [PubMed]
- Cullinane, C.; Creavin, B.; O’lEary, D.P.; O’sUllivan, M.J.; Kelly, L.; Redmond, H.P.; Corrigan, M.A. Can the Neutrophil to Lymphocyte Ratio Predict Complete Pathologic Response to Neoadjuvant Breast Cancer Treatment? A Systematic Review and Meta-analysis. Clin. Breast Cancer 2020, 20, e675–e681. [Google Scholar] [CrossRef]
- Arici, M.O.; Salim, D.K.; Kocer, M.; Alparslan, A.S.; Karakas, B.R.; Ozturk, B. Predictive and Prognostic Value of Inflammatory and Nutritional Indexes in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. Medicina 2024, 60, 1849. [Google Scholar] [CrossRef]
- Ogston, K.N.; Miller, I.D.; Payne, S.; Hutcheon, A.W.; Sarkar, T.K.; Smith, I.; Schofield, A.; Heys, S.D. A new histological grading system to assess response of breast cancers to primary chemotherapy: Prognostic significance and survival. Breast 2003, 12, 320–327. [Google Scholar] [CrossRef] [PubMed]



| Median | Min–Max | Mean ± sd/n% | ||||||
|---|---|---|---|---|---|---|---|---|
| Age | 52 | 27 | – | 84 | 52.76 | ± | 11.41 | |
| Menopausal status | Premenopausal | 102 | 51.0% | |||||
| Postmenopausal | 98 | 49.0% | ||||||
| Clinical Stage | 2A | 13 | 6.5% | |||||
| 2B | 105 | 52.5% | ||||||
| 3A | 46 | 23.0% | ||||||
| 3B | 22 | 11.0% | ||||||
| 3C | 14 | 7.0% | ||||||
| cT stage | T1 | 21 | 10.5% | |||||
| T2 | 132 | 66.0% | ||||||
| T3 | 23 | 11.5% | ||||||
| T4 | 24 | 12.0% | ||||||
| cN stage | N0 | 4 | 2.0% | |||||
| N1 | 145 | 72.5% | ||||||
| N2 | 37 | 18.5% | ||||||
| N3 | 14 | 7.0% | ||||||
| Grade | Grade 1 | 6 | 3.0% | |||||
| Grade 2 | 148 | 74.0% | ||||||
| Grade 3 | 46 | 23.0% | ||||||
| Ki-67 | 30 | 1 | – | 90 | 33.52 | ± | 23.44 | |
| ER status | negative | 55 | 27.5% | |||||
| positive | 145 | 72.5% | ||||||
| ER category | <%10 | 61 | 30.5% | |||||
| ≥%10 | 139 | 69.5% | ||||||
| PR status | negative | 82 | 41.0% | |||||
| positive | 118 | 59.0% | ||||||
| PR category | <%20 | 110 | 55.0% | |||||
| ≥%20 | 90 | 45.0% | ||||||
| HER2 status | Neg | 74 | 37.0% | |||||
| 1+ | 18 | 9.0% | ||||||
| 2+ FISH− | 39 | 19.5% | ||||||
| 2+ FISH+ | 14 | 7.0% | ||||||
| 3+ | 55 | 27.5% | ||||||
| Molecular subtype | Luminal-a | 36 | 18.0% | |||||
| Luminal-b her2 neg | 71 | 35.5% | ||||||
| Luminal-b her2 pos | 42 | 21.0% | ||||||
| Her2 positive | 24 | 12.0% | ||||||
| Triple negative | 27 | 13.5% | ||||||
| NLR | 2.3 | 1 | – | 13 | 2.64 | ± | 1.35 | |
| PIV | 345 | 80 | – | 2276 | 430.5 | ± | 296.3 | |
| CEA | ≤5 | 185 | 92.5% | |||||
| >5 | 15 | 7.5% | ||||||
| CA15.3 | ≤30 | 183 | 91.5% | |||||
| >30 | 17 | 8.5% | ||||||
| Anthracycline-based chemo | no | 5 | 2.5% | |||||
| yes | 195 | 97.5% | ||||||
| Taxane-based chemo | no | 4 | 2.0% | |||||
| yes | 196 | 98.0% | ||||||
| Neoadjuvant Anti-HER-2 agent | no | 132 | 66.0% | |||||
| trastuzumab | 26 | 13.0% | ||||||
| trastuzumab plus pertuzumab | 42 | 21.0% | ||||||
| Neoadjuvant platin | no | 173 | 86.5% | |||||
| yes | 27 | 13.5% | ||||||
| Radiologic response | Progressive disease | 1 | 0.5% | |||||
| Stable disease | 15 | 7.5% | ||||||
| Partial response | 160 | 80.0% | ||||||
| Complete response | 24 | 12.0% | ||||||
| ypT | ypT0/is | 78 | 39.0% | |||||
| ypT1 | 71 | 35.5% | ||||||
| ypT2 | 42 | 21.0% | ||||||
| ypT3 | 8 | 4.0% | ||||||
| ypT4 | 1 | 0.5% | ||||||
| ypN | ypN0 | 115 | 57.5% | |||||
| ypN1 | 55 | 27.5% | ||||||
| ypN2 | 21 | 10.5% | ||||||
| ypN3 | 9 | 4.5% | ||||||
| Miller-Payne Regression Score | MP1 | 23 | 11.5% | |||||
| MP2 | 26 | 13.0% | ||||||
| MP3 | 48 | 24.0% | ||||||
| MP4 | 31 | 15.5% | ||||||
| MP5 | 72 | 36.0% | ||||||
| pCR | no | 128 | 64.0% | |||||
| yes | 72 | 36.0% | ||||||
| Adjuvant ET | no | 52 | 26.0% | |||||
| yes | 148 | 74.0% | ||||||
| Adjuvant Capesitabine | no | 187 | 93.5% | |||||
| yes | 13 | 6.5% | ||||||
| Adjuvant Trastuzumab | no | 135 | 67.5% | |||||
| yes | 65 | 32.5% | ||||||
| Adjuvant TDM-1 | no | 194 | 97.0% | |||||
| yes | 6 | 3.0% | ||||||
| Non-pCR (n: 128) | pCR (n: 72) | p | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | ± | sd/n% | Median | Mean | ± | sd/n-% | Median | ||||
| Age | 51.99 | ± | 11.66 | 51.5 | 54.11 | ± | 10.89 | 52.5 | 0.208 | t | |
| Menopausal status | Premenopausal | 66 | 51.60% | 36 | 50.00% | 0.832 | X2 | ||||
| Postmenopausal | 62 | 48.40% | 36 | 50.00% | |||||||
| cT stage | T1 | 13 | 10.20% | 8 | 11.10% | 0.359 | X2 | ||||
| T2 | 80 | 62.50% | 52 | 72.20% | |||||||
| T3 | 18 | 14.10% | 5 | 6.90% | |||||||
| T4 | 17 | 13.30% | 7 | 9.70% | |||||||
| cN stage | N0 | 3 | 2.30% | 1 | 1.40% | 0.395 | X2 | ||||
| N1 | 88 | 68.80% | 57 | 79.20% | |||||||
| N2 | 28 | 21.90% | 9 | 12.50% | |||||||
| N3 | 9 | 7.00% | 5 | 6.90% | |||||||
| Grade | Grade 1 | 6 | 4.70% | 0 | 0.00% | 0.074 | |||||
| Grade 2 | 97 | 75.80% | 51 | 70.80% | |||||||
| Grade 3 | 25 | 19.50% | 21 | 29.20% | |||||||
| Ki-67 | 28.24 | ± | 20.42 | 25 | 42.92 | ± | 25.57 | 40 | <0.001 | m | |
| ER status | negative | 21 | 16.40% | 34 | 47.20% | <0.001 | X2 | ||||
| positive | 107 | 83.60% | 38 | 52.80% | |||||||
| ER category | <%10 | 23 | 18.00% | 38 | 52.80% | <0.001 | X2 | ||||
| ≥%10 | 105 | 82.00% | 34 | 47.20% | |||||||
| PR status | negative | 38 | 29.70% | 44 | 61.10% | <0.001 | X2 | ||||
| positive | 90 | 70.30% | 28 | 38.90% | |||||||
| PR category | <%20 | 55 | 43.00% | 55 | 76.40% | <0.001 | X2 | ||||
| ≥%20 | 73 | 57.00% | 17 | 23.60% | |||||||
| HER2 status | 0 | 60 | 46.90% | 14 | 19.40% | <0.001 | X2 | ||||
| 1+ | 13 | 10.20% | 5 | 6.90% | |||||||
| 2+ FISH- | 31 | 24.20% | 8 | 11.10% | |||||||
| 2+ FISH+ | 8 | 6.30% | 6 | 8.30% | |||||||
| 3+ | 16 | 12.50% | 39 | 54.20% | |||||||
| Molecular subtype | Luminal-a | 33 | 25.80% | 3 | 4.20% | <0.001 | X2 | ||||
| Luminal-b her-2 neg | 60 | 46.90% | 11 | 15.30% | |||||||
| Luminal-b her-2 pos | 15 | 11.70% | 27 | 37.50% | |||||||
| Her-2 positive | 8 | 6.30% | 16 | 22.20% | |||||||
| Triple negative | 12 | 9.40% | 15 | 20.80% | |||||||
| NLR | 2.64 | ± | 1.18 | 2.35 | 2.64 | ± | 1.61 | 2.28 | 0.52 | m | |
| PIV | 428.1 | ± | 281.8 | 353 | 434.7 | ± | 322.4 | 341 | 0.998 | m | |
| CEA | ≤5 | 119 | 93.00% | 66 | 91.70% | 0.737 | X2 | ||||
| >5 | 9 | 7.00% | 6 | 8.30% | |||||||
| CA15.3 | ≤30 | 118 | 92.20% | 65 | 90.30% | 0.642 | X2 | ||||
| >30 | 10 | 7.80% | 7 | 9.70% | |||||||
| Anthracycline-based chemo | no | 4 | 3.10% | 1 | 1.40% | 0.656 | X2 | ||||
| yes | 124 | 96.90% | 71 | 98.60% | |||||||
| Taxane-based | no | 3 | 2.30% | 1 | 1.40% | 0.999 | X2 | ||||
| chemo | yes | 125 | 97.70% | 71 | 98.60% | ||||||
| Neoadjuvant Anti-HER-2 agent | no | 105 | 82% | 27 | 37.50% | <0.001 | X2 | ||||
| trastuzumab | 13 | 10.20% | 13 | 18.10% | |||||||
| trastuzumab plus pertuzumab | 10 | 7.80% | 32 | 44.40% | |||||||
| Neoadjuvant platin | no | 111 | 86.70% | 62 | 86.10% | 0.904 | X2 | ||||
| yes | 17 | 13.30% | 10 | 13.90% | |||||||
| Radiologic response | Progressive disease | 1 | 0.80% | 0 | 0% | <0.001 | X2 | ||||
| Outcome | Group | Mean Survival (Months, 95% CI) | 1-Year Survival % | 3-Year Survival % | 5-Year Survival % | p-Value |
|---|---|---|---|---|---|---|
| DFS | Non-pCR | 70.0 (63.6–76.5) | 94.9 | 81.8 | 72.8 | 0.014 |
| pCR | 81.0 (75.8–86.3) | 100 | 100 | 91.5 | ||
| OS | Non-pCR | 76.6 (70.9–82.2) | 98.3 | 91.5 | 87.0 | 0.150 |
| pCR | 81.5 (76.8–86.3) | 100 | 97.6 | 92.2 |
| Non-pCR | pCR | |
|---|---|---|
| Events n/N (%) | 22/128 (17.19) | 2/72 (2.78) |
| Mean PFS, months (%95 CI) | 70.02 (63.58–76.47) | 81.04 (75.78–86.29) |
| HR (%95 CI) | HR 0.16 (0.04–0.70) | |
| Log-rank p-value | 0.014 | |
| Non-pCR | pCR | |
|---|---|---|
| Events n/N (%) | 12/128 (9.37) | 2/72 (2.78) |
| mOS, months (%95 CI) | 76.56 (70.96–82.15) | 81.53 (76.81–86.26) |
| HR (%95 CI) | HR 0.33 (0.07–1.49) | |
| Log-rank p-value | 0.150 | |
| Predictor | β (SE) | z | p-Value | OR | 95% CI |
|---|---|---|---|---|---|
| HER2 positive (vs. negative) | 1.43 (0.42) | 3.38 | <0.001 | 4.21 | 1.83–9.67 |
| Ki-67 > 47.5% (vs. ≤47.5%) | 1.28 (0.39) | 3.28 | 0.001 | 3.62 | 1.68–7.80 |
| ER < 10% (vs. ≥10%) | 1.01 (0.43) | 2.34 | 0.019 | 2.77 | 1.18–6.50 |
| PR < 20% (vs. ≥20%) | 0.67 (0.43) | 1.55 | 0.122 | 1.96 | 0.83–4.61 |
| Radiographic complete response (yes vs. no) | 2.30 (0.63) | 3.65 | <0.001 | 10.03 | 2.91–34.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayram, S.; Tatli, A.M.; Cakir, M.O.; Ozdogan, M. Predictors of Pathologic Complete Response and Its Prognostic Value in Early Breast Cancer: A Real-World Cohort Study. Curr. Oncol. 2025, 32, 603. https://doi.org/10.3390/curroncol32110603
Bayram S, Tatli AM, Cakir MO, Ozdogan M. Predictors of Pathologic Complete Response and Its Prognostic Value in Early Breast Cancer: A Real-World Cohort Study. Current Oncology. 2025; 32(11):603. https://doi.org/10.3390/curroncol32110603
Chicago/Turabian StyleBayram, Selami, Ali Murat Tatli, Muharrem Okan Cakir, and Mustafa Ozdogan. 2025. "Predictors of Pathologic Complete Response and Its Prognostic Value in Early Breast Cancer: A Real-World Cohort Study" Current Oncology 32, no. 11: 603. https://doi.org/10.3390/curroncol32110603
APA StyleBayram, S., Tatli, A. M., Cakir, M. O., & Ozdogan, M. (2025). Predictors of Pathologic Complete Response and Its Prognostic Value in Early Breast Cancer: A Real-World Cohort Study. Current Oncology, 32(11), 603. https://doi.org/10.3390/curroncol32110603

