Evaluating the Effects of Prostate Radiotherapy Intensified with Pelvic Nodal Radiotherapy and Androgen Deprivation Therapy on Myelosuppression: Single-Institution Experience
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCa | Prostate cancer |
PRT | Prostate radiotherapy |
PNRT | Pelvic nodal radiotherapy |
RT | Radiotherapy |
ADT | Androgen deprivation therapy |
LHRH | Luteinizing hormone-releasing hormone |
3D-CRT | 3D conformal radiotherapy |
IMRT | Intensity-modulated radiotherapy |
HGB | Hemoglobin |
WBC | White blood cell |
PLT | Platelets |
NEUT | Neutrophils |
LYMPH | Lymphocytes |
BM | Bone marrow |
CTCAE | Common Terminology Criteria for Adverse Effects |
References
- Bray, F.; Vyas, M.; Henderson, A.M.; Leslie, S.W. Nuclear Medicine Applications in Prostate Cancer. In Stat Pearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Islami, F.; Ward, E.M.; Sung, H.; Cronin, K.; Tangka, F.K.L.; Sherman, R.L.; Zhao, J.; Anderson, R.N.; Henley, S.J.; Yabroff, K.R.; et al. Annual report to the nation on the status of cancer, part 1: National cancer statistics. J. Natl. Cancer Inst. 2021, 113, 1648–1669. [Google Scholar] [CrossRef] [PubMed]
- Rasul, S.; Haug, A.R. Clinical Applications of PSMA PET Examination in Patients with Prostate Cancer. Cancers 2022, 14, 3768. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Iagaru, A.; Aparici, C.M. Radiotheranostics—Precision Medicine in Nuclear Medicine and Molecular Imaging. Nanotheranostics 2022, 6, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Gillessen, S.; Heidenreich, A.; Horwich, A. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v69–v77. [Google Scholar] [CrossRef] [PubMed]
- Bolla, M.; de Reijke, T.M.; Van Tienhoven, G.; Bergh, A.C.V.D.; Oddens, J.; Poortmans, P.M.; Gez, E.; Kil, P.; Akdas, A.; Soete, G.; et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 2009, 360, 2516–2527. [Google Scholar] [CrossRef]
- Erpolat, O.P.; Alco, G.; Caglar, H.B.; Igdem, S.; Saran, A.; Dagoglu, N.; Aslay, I.; Ozsaran, Z.; Demirci, S.; Keven, E.; et al. Comparison of hematologic toxicity between 3DCRT and IMRT planning in cervical cancer patients after concurrent chemoradiotherapy: A national multi-center study. Eur. J. Gynaecol. Oncol. 2014, 35, 62–66. [Google Scholar]
- Hayman, J.A.; Callahan, J.W.; Herschtal, A.; Everitt, S.; Binns, D.S.; Hicks, R.J.; Mac Manus, M. Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 847–852. [Google Scholar] [CrossRef]
- Strum, S.B.; McDermed, J.E.; Scholz, M.C.; Johnson, H.; Tisman, G. Anaemia associated with androgen deprivation in patients with prostate cancer receiving combined hormone blockade. Br. J. Urol. 1997, 79, 933–941. [Google Scholar] [CrossRef]
- Gruca, D.; Bacher, P.; Tunn, U. Safety and tolerability of intermittent androgen deprivation therapy: A literature review. Int. J. Urol. 2012, 19, 614–625. [Google Scholar] [CrossRef]
- Lehar, T.J.; Kiely, J.M.; Pease, G.L.; Scanlon, P.W. Effect of focal irradiation on human bone marrow. Am. J. Roentgenol. Radium. Ther. Nucl. Med. 1966, 96, 183–190. [Google Scholar] [CrossRef]
- James, N.D.; Spears, M.R.; Clarke, N.W.; Dearnaley, D.P.; De Bono, J.S.; Gale, J.; Hetherington, J.; Hoskin, P.J.; Jones, R.J.; Laing, R.; et al. Survival with newly diagnosed meta- static prostate cancer in the “docetaxel era”: Data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019). Eur. Urol. 2015, 67, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Everitt, S.; Hicks, R.J.; Ball, D.; Kron, T.; Schneider-Kolsky, M.; Walter, T.; Binns, D.; Mac Manus, M. Imaging cellular proliferation during chemo-radiotherapy: A pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Sykes, M.P.; Chu, F.C.; Savel, H.; Bonadonna, G.; Mathis, H. The effects of varying dosages of irradiation upon sternal-marrow regeneration. Radiology 1964, 83, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Sykes, M.P.; Savel, H.; Chu, F.C.; Bonadonna, G.; Farrow, J.; Mathis, H. Long-term effects of therapeutic irradiation upon bone marrow. Cancer 1964, 17, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Tubiana, M.; Frindel, E.; Croizat, H.; Parmentier, C. Effects of radiations on bone marrow. Pathol. Biol. 1979, 27, 326–334. [Google Scholar]
- Hui, B.; Zhang, Y.; Shi, F.; Wang, J.; Wang, T.; Wang, J.; Yuan, W.; Li, Y.; Liu, Z. Association between bone marrow dosimetric parameters and acute hematologic toxicity in cervical cancer patients undergoing concurrent chemoradiotherapy: Comparison of three-dimensional conformal radiotherapy and intensity-modulated radiation therapy. Int. J. Gynecol. Cancer 2014, 24, 1648–1652. [Google Scholar] [CrossRef]
- Rose, B.S.; Aydogan, B.; Liang, Y.; Yeginer, M.; Hasselle, M.D.; Dandekar, V.; Bafana, R.; Yashar, C.M.; Mundt, A.J.; Roeske, J.C.; et al. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 800–807. [Google Scholar] [CrossRef]
- Blomlie, V.; Rofstad, E.K.; Skjønsberg, A.; Tverå, K.; Lien, H.H. Female pelvic bone marrow: Serial MR imaging before, during, and after radiation therapy. Radiology 1995, 194, 537–543. [Google Scholar] [CrossRef]
- Sacks, E.L.; Goris, M.L.; Glatstein, E.; Gilbert, E.; Kaplan, H.S. Bone marrow regeneration following large field radiation: Influence of volume, age, dose, and time. Cancer 1978, 42, 1057–1065. [Google Scholar] [CrossRef]
- Mauch, P.; Constine, L.; Greenberger, J.; Knospe, W.; Sullivan, J.; Liesveld, J.L.; Deeg, H. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1319–1339. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Fuks, Z.; Happersett, L.; Lee, H.J.; Ling, C.; Burman, C.M.; Hunt, M.; Wolfe, T.; Venkatraman, E.; Jackson, A.; et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother. Oncol. 2000, 55, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Hummel, S.; Simpson, E.L.; Hemingway, P.; Stevenson, M.D.; Rees, A. Intensity-modulated radiotherapy for the treatment of prostate cancer: A systematic review and economic evaluation. Health Technol. Assess. 2010, 14, 1–108, iii–iv. [Google Scholar] [CrossRef] [PubMed]
- Miszczyk, M.; Majewski, W. Hematologic Toxicity of Conformal Radiotherapy and Intensity Modulated Radiotherapy in Prostate and Bladder Cancer Patients. Asian Pac. J. Cancer Prev. 2018, 19, 2803–2806. [Google Scholar]
- Mell, L.K.; Kochanski, J.D.; Roeske, J.C.; Haslam, J.J.; Mehta, N.; Yamada, S.D.; Hurteau, J.A.; Collins, Y.C.; Lengyel, E.; Mundt, A.J. Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1356–1365. [Google Scholar] [CrossRef]
- Mell, L.K.; Schomas, D.A.; Salama, J.K.; Devisetty, K.; Aydogan, B.; Miller, R.C.; Jani, A.B.; Kindler, L.H.; Mundt, A.J.; Roeske, J.C.; et al. Association between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.S.; Kim, R.Y.; Duan, J.; Meleth, S.; Jennifer, F.; Fiveash, J.B. IMRT dose escalation for positive para-aortic lymph nodes in patients with locally advanced cervical cancer while reducing dose to bone marrow and other organs at risk. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 505–512. [Google Scholar] [CrossRef]
- Brixey, C.J.; Roeske, J.C.; Lujan, A.E.; Yamada, S.D.; Rotmensch, J.; Mundt, A.J. Impact of intensity-modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 1388–1396. [Google Scholar] [CrossRef]
- Mell, L.K.; Tiryaki, H.; Ahn, K.H.; Mundt, A.J.; Roeske, J.C.; Aydogan, B. Dosimetric comparison of bone marrow-sparing intensity-modulated radiotherapy versus conventional techniques for treatment of cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1504A–1510A. [Google Scholar] [CrossRef]
- Viani, G.A.; Viana, B.S.; Martin, J.E.; Rossi, B.T.; Zuliani, G.; Stefano, E.J. Intensity-modulated radiotherapy reduces toxicity with similar biochemical control compared with 3-dimensional conformal radiotherapy for prostate cancer: A randomized clinical trial. Cancer 2016, 122, 2004–2011. [Google Scholar] [CrossRef]
- Moreno, A.; Clemente, J.; Crespo, C.; Martínez, A.; Navarro, M.; Fernández, L.; Minguell, J.; Vázquez, G.; Andreu, F.J. Pelvic insufficiency fractures in patients with pelvic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 61–66. [Google Scholar] [CrossRef]
- Ikushima, H.; Osaki, K.; Furutani, S.; Yamashita, K.; Kishida, Y.; Kudoh, T.; Nishitani, H. Pelvic bone complications following radiation therapy of gynecologic malignancies: Clinical evaluation of radiation-induced pelvic insufficiency fractures. Gynecol. Oncol. 2006, 103, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- Okonogi, N.; Saitoh, J.-I.; Suzuki, Y.; Noda, S.-E.; Ohno, T.; Oike, T.; Ohkubo, Y.; Ando, K.; Sato, H.; Nakano, T. Changes in bone mineral density in uterine cervical cancer patients after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Avinash, H.U.; Arul Ponni, T.R.; Janaki, M.G.; Kirthi Koushik, A.S.; Kumar, S.M. A prospective dosimetric and clinical comparison of acute hematological toxicities in three-dimensional conformal radiation therapy and intensity modulated radiation therapy with concurrent chemotherapy in carcinoma cervix. J. Cancer Res. Ther. 2015, 11, 83–87. [Google Scholar] [CrossRef] [PubMed]
Frequency n/(%) | |
---|---|
Age | |
Mean | 71.5 |
Range | 52–86 |
Associated Chronic Diseases | |
DM | |
Yes | 132 (22.3%) |
No | 460 (77.7%) |
HTN | |
Yes | 303 (51.2% |
No | 289 (48.8%) |
Cholesterol | |
Yes | 221 (37.3%) |
No | 371 (62.7%) |
AJCC Tumor Stage (n = 600) | |
| 194 (32.3%) |
| 212 (35.3%) |
| 167 (27.8%) |
| 004 (0.7%) |
| 021 (3.5%) |
| 598 (99.7%) |
| 2 (0.3%) |
Global stage | |
| 2 (0.3%) |
Gleason score | |
| 041 (6.9%) |
| 281 (47.1%) |
| 275 (46.1%) |
NCCN risk group | |
| 015 (2.5%) |
| 220 (36.6%) |
. Favorable | 129 (21.5%) |
. Unfavorable | 91 (15.1%) |
| 365 (60.8%) |
Treatment techniques | |
| 171 (28.5%) |
| 429 (71.5%) |
Treatment site | |
| 360 (60%) |
| 240 (40%) |
LHRH | |
| 412 (68.7%) |
| 188 (31.3%) |
Type of treatment | |
Cohort 1: Prostate radiation only | 149 (24.8%) |
Cohort 2: Prostate radiation and ADT | 091 (24.8%) |
Cohort 3: Prostate and pelvic radiation | 039 (6.5%) |
Cohort 4: prostate, pelvic radiation, and ADT | 321 (53.5%) |
Hematological Counts (median/range) | |
Hemoglobin | 138.5 (82–176) |
Neutrophils | 4.2 (0–16.9) |
Lymphocytes | 1.8 (0–30.4) |
Platelets | 207 (0–612) |
HGB (<140 g/L) * | HGB (≥140 g/L) | PLT (<150 × 109/L) | PLT (≥150 × 109/L) | WBC (<4 × 109/L) | WBC (≥4 × 109/L) | NEUT (<1.8 × 109/L) | NEUT (≥1.8 × 109/L) | LYMPH (<1.2 × 109/L) | LYMPH (≥1.2 × 109/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N. | % | N. | % | N. | % | N. | % | N. | % | N. | % | N. | % | N. | % | N. | % | N. | % | |
Cohort 1 | 56 | 37.6 | 93 | 62.4 | 18 | 12.1 | 131 | 87.9 | 4 | 2.7 | 145 | 97.3 | 5 | 3.4 | 144 | 96.6 | 17 | 11.4 | 132 | 88.6 |
Cohort 2 | 49 | 53.8 | 42 | 46.2 | 11 | 12.1 | 80 | 87.9 | 3 | 3.3 | 88 | 96.7 | 2 | 2.2 | 89 | 97.8 | 11 | 12.1 | 80 | 87.9 |
Cohort 3 | 13 | 33.3 | 26 | 66.7 | 3 | 7.7 | 36 | 92.3 | 2 | 5.1 | 37 | 94.9 | 2 | 5.1 | 37 | 94.9 | 5 | 12.8 | 34 | 87.2 |
Cohort 4 * | 203 | 63.2 | 118 | 36.8 | 31 | 9.7 | 290 | 90.3 | 10 | 3.1 | 311 | 96.9 | 5 | 1.6 | 316 | 98.4 | 31 | 9.7 | 290 | 90.3 |
Total | 321 | 53.5 | 279 | 46.5 | 63 | 10.5 | 537 | 89.5 | 19 | 3.2 | 581 | 96.8 | 14 | 2.3 | 586 | 97.7 | 64 | 10.7 | 536 | 89.3 |
Normal–Abnormal | Abnormal–Normal | Normal–Normal | Abnormal–Abnormal | ||||||
---|---|---|---|---|---|---|---|---|---|
n. | % | n. | % | n. | % | n. | % | ||
Cohort 1 | 3dCRT | 29 | 54.7 | 0 | 0 | 8 | 15.1 | 16 | 30.2 |
IMRT | 43 | 44.8 | 2 | 2.1 | 13 | 13.5 | 38 | 39.6 | |
Cohort 2 | 3dCRT | 7 | 17.5 | 2 | 5.0 | 8 | 20.0 | 23 | 57.5 |
IMRT | 12 | 23.5 | 1 | 2.0 | 15 | 29.4 | 23 | 45.1 | |
Cohort 3 | 3dCRT | 3 | 37.5 | 0 | 0 | 1 | 12.5 | 4 | 50.0 |
IMRT | 6 | 19.4 | 1 | 3.2 | 16 | 51.6 | 8 | 25.8 | |
Cohort 4 * | 3dCRT | 5 | 7.1 | 1 | 1.4 | 29 | 41.4 | 35 | 50 |
IMRT | 28 | 11.2 | 7 | 2.8 | 56 | 22.3 | 160 | 63.7 |
HGB (<140 g/L) | PLT (<150 × 109/L) | LYMPH (<1.2 × 109/L) | WBC (<4 × 109/L) | NEUT (<1.8 × 109/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N. | % | N. | % | N. | % | N. | % | N. | % | |
Cohort 1 | 54 | 36.2 | 14 | 9.4 | 13 | 8.7 | 2 | 1.3 | 3 | 2 |
Cohort 2 | 46 | 50.2 | 9 | 9.9 | 10 | 11 | 2 | 2.2 | 1 | 1.1 |
Cohort 3 | 12 | 30.8 | 2 | 5.1 | 5 | 12.8 | 2 | 5.1 | 2 | 5.1 |
Cohort 4 | 195 | 60.7 | 26 | 8.1 | 27 | 8.4 | 9 | 2.8 | 3 | 0.9 |
Cohort | OR (95% Confidence Interval) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HGB | WBT | PLT | LYMPH | |||||||||||||
mRT | pRT | 1m-pRT | 1y-pRT | mRT | pRT | 1m-pRT | 1y-pRT | mRT | pRT | 1m-pRT | 1y-pRT | mRT | pRT | 1m-pRT | 1y-pRT | |
Cohort 2 | 6.71 (2.84–15.83) | 8.80 (3.36–23.03) | 4.08 (1.87–8.91) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | |
Cohort 3 | 5.11 (1.94–13.44) | 5.15 (1.8–13.67) | 6.7 (2.6–17.2) | N/A | 4.02 (1.20–13.41) | N/A | N/A | 6.83 (1.02–45.82), | N/A | N/A | N/A | N/A | 8.37 (2.76–25.46) | 3.52 (1.24–9.97) | 3.03 (1.34–6.8) | N/A |
Cohort 4 | 9.52 (4.7–19.04) | 12.20 (5.95–25.01) | 9.1 (4.8–17.1) | 2.84 (1.14–7.08) | 3.91 (1.62–9.43) | 2.39 (1.16–4.93). | 2.42 (1.18–99) | N/A | 2.57 (1.42–4.66). | N/A | N/A | N/A | 8.24 (4.91–13.82 | 6.42 (3.73–11.05) | 5.12 (3.25–8.06) | 3.54 (1.79–7.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katib, Y.; Tisseverasinghe, S.; Gerard, I.J.; Royal-Preyra, B.; Chaddad, A.; Sasson, T.; Bahoric, B.; Roncarolo, F.; Niazi, T. Evaluating the Effects of Prostate Radiotherapy Intensified with Pelvic Nodal Radiotherapy and Androgen Deprivation Therapy on Myelosuppression: Single-Institution Experience. Curr. Oncol. 2024, 31, 5439-5451. https://doi.org/10.3390/curroncol31090402
Katib Y, Tisseverasinghe S, Gerard IJ, Royal-Preyra B, Chaddad A, Sasson T, Bahoric B, Roncarolo F, Niazi T. Evaluating the Effects of Prostate Radiotherapy Intensified with Pelvic Nodal Radiotherapy and Androgen Deprivation Therapy on Myelosuppression: Single-Institution Experience. Current Oncology. 2024; 31(9):5439-5451. https://doi.org/10.3390/curroncol31090402
Chicago/Turabian StyleKatib, Yousef, Steven Tisseverasinghe, Ian J. Gerard, Benjamin Royal-Preyra, Ahmad Chaddad, Tania Sasson, Boris Bahoric, Federico Roncarolo, and Tamim Niazi. 2024. "Evaluating the Effects of Prostate Radiotherapy Intensified with Pelvic Nodal Radiotherapy and Androgen Deprivation Therapy on Myelosuppression: Single-Institution Experience" Current Oncology 31, no. 9: 5439-5451. https://doi.org/10.3390/curroncol31090402
APA StyleKatib, Y., Tisseverasinghe, S., Gerard, I. J., Royal-Preyra, B., Chaddad, A., Sasson, T., Bahoric, B., Roncarolo, F., & Niazi, T. (2024). Evaluating the Effects of Prostate Radiotherapy Intensified with Pelvic Nodal Radiotherapy and Androgen Deprivation Therapy on Myelosuppression: Single-Institution Experience. Current Oncology, 31(9), 5439-5451. https://doi.org/10.3390/curroncol31090402