Unraveling the Predictive Value of the Novel Global Immune-Nutrition-Inflammation Index (GINI) on Survival Outcomes in Patients with Grade 4 Adult-Type Diffuse Gliomas
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Cutoff Values of the Laboratory Parameters
3.2. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef] [PubMed]
- Fabbro-Peray, P.; Zouaoui, S.; Darlix, A.; Fabbro, M.; Pallud, J.; Rigau, V.; Mathieu-Daude, H.; Bessaoud, F.; Bauchet, F.; Riondel, A.; et al. Association of Patterns of Care, Prognostic Factors, and Use of Radiotherapy–Temozolomide Therapy with Survival in Patients with Newly Diagnosed Glioblastoma: A French National Population-Based Study. J. Neurooncol. 2019, 142, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, G.; Quan, X. Analysis of the Factors Affecting the Prognosis of Glioma Patients. Open Med. 2019, 14, 331–335. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab Alone and in Combination With Irinotecan in Recurrent Glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef]
- Mellinghoff, I.K.; Ellingson, B.M.; Touat, M.; Maher, E.; De La Fuente, M.I.; Holdhoff, M.; Cote, G.M.; Burris, H.; Janku, F.; Young, R.J.; et al. Ivosidenib in Isocitrate Dehydrogenase 1—Mutated Advanced Glioma. J. Clin. Oncol. 2020, 38, 3398–3406. [Google Scholar] [CrossRef]
- Medikonda, R.; Dunn, G.; Rahman, M.; Fecci, P.; Lim, M. A Review of Glioblastoma Immunotherapy. J. Neurooncol. 2021, 151, 41–53. [Google Scholar] [CrossRef]
- Bausart, M.; Préat, V.; Malfanti, A. Immunotherapy for Glioblastoma: The Promise of Combination Strategies. J. Exp. Clin. Cancer Res. 2022, 41, 35. [Google Scholar] [CrossRef]
- Pezone, A.; Olivieri, F.; Napoli, M.V.; Procopio, A.; Avvedimento, E.V.; Gabrielli, A. Inflammation and DNA Damage: Cause, Effect or Both. Nat. Rev. Rheumatol. 2023, 19, 200–211. [Google Scholar] [CrossRef]
- Wen, Y.; Zhu, Y.; Zhang, C.; Yang, X.; Gao, Y.; Li, M.; Yang, H.; Liu, T.; Tang, H. Chronic Inflammation, Cancer Development and Immunotherapy. Front. Pharmacol. 2022, 13, 1040163. [Google Scholar] [CrossRef] [PubMed]
- Hänggi, K.; Ruffell, B. Cell Death, Therapeutics, and the Immune Response in Cancer. Trends Cancer 2023, 9, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Ozga, A.J.; Chow, M.T.; Luster, A.D. Chemokines and the Immune Response to Cancer. Immunity 2021, 54, 859–874. [Google Scholar] [CrossRef]
- Alorfi, N.M.; Ashour, A.M.; Alharbi, A.S.; Alshehri, F.S. Targeting Inflammation in Glioblastoma: An Updated Review from Pathophysiology to Novel Therapeutic Approaches. Medicine 2024, 103, e38245. [Google Scholar] [CrossRef]
- Guo, X.; Jiao, H.; Zhang, T.; Zhang, Y. Pre-Treatment and Preoperative Neutrophil-to-Lymphocyte Ratio Predicts Prognostic Value of Glioblastoma: A Meta-Analysis. Brain Sci. 2022, 12, 675. [Google Scholar] [CrossRef]
- Bispo, R.G.; Bastos Siqueira, I.F.; de Oliveira, B.F.S.; Moreira Fernandes, C.E.; Figueiredo, L.A.; Cintra, L.P.; de Oliveira, A.J.M. Prognostic Value of the Platelet-Lymphocyte Ratio for Glioblastoma: A Systematic Review. World Neurosurg. 2023, 175, 137–141.e1. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, H.; Xu, Y.; Nyalali, A.M.K.; Li, F. The Prognostic Value of the Preoperative Inflammatory Index on the Survival of Glioblastoma Patients. Neurol. Sci. 2022, 43, 5523–5531. [Google Scholar] [CrossRef]
- Yang, C.; Hu, B.-W.; Tang, F.; Zhang, Q.; Quan, W.; Wang, J.; Wang, Z.-F.; Li, Y.-R.; Li, Z.-Q. Prognostic Value of Systemic Immune-Inflammation Index (SII) in Patients with Glioblastoma: A Comprehensive Study Based on Meta-Analysis and Retrospective Single-Center Analysis. J. Clin. Med. 2022, 11, 7514. [Google Scholar] [CrossRef]
- Duan, X.; Yang, B.; Zhao, C.; Tie, B.; Cao, L.; Gao, Y. Prognostic Value of Preoperative Hematological Markers in Patients with Glioblastoma Multiforme and Construction of Random Survival Forest Model. BMC Cancer 2023, 23, 432. [Google Scholar] [CrossRef]
- Jarmuzek, P.; Kozlowska, K.; Defort, P.; Kot, M.; Zembron-Lacny, A. Prognostic Values of Systemic Inflammatory Immunological Markers in Glioblastoma: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 3339. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Yuan, Y.; Li, T.; Zuo, M.; Liu, Y. Prognostic Significance of Preoperative Systemic Inflammation Response Index in Newly Diagnosed Glioblastoma Patients Underwent Gross Total Resection: A Propensity Score Matching Analysis. World J. Surg. Oncol. 2022, 20, 137. [Google Scholar] [CrossRef]
- Yang, C.; Lan, T.; Wang, Y.; Huang, W.-H.; Li, S.-M.; Li, J.; Li, F.-P.; Li, Y.-R.; Wang, Z.-F.; Li, Z.-Q. Cumulative Scoring Systems and Nomograms for Predicating Survival in Patients With Glioblastomas: A Study Based on Peripheral Inflammatory Markers. Front. Oncol. 2022, 12, 716295. [Google Scholar] [CrossRef]
- Yang, C.; Li, Z.-Q.; Wang, J. Association between Systemic Immune-Inflammation Index (SII) and Survival Outcome in Patients with Primary Glioblastoma. Medicine 2023, 102, e33050. [Google Scholar] [CrossRef]
- Topkan, E.; Kucuk, A.; Selek, U. Pretreatment Pan-Immune-Inflammation Value Efficiently Predicts Survival Outcomes in Glioblastoma Multiforme Patients Receiving Radiotherapy and Temozolomide. J. Immunol. Res. 2022, 2022, 1346094. [Google Scholar] [CrossRef] [PubMed]
- Yalikun, K.; Tuersun, T.; Abudula, M.; Tiheiran, M.; Fu, Q.; Yisireyili, D.; Zhou, Q. Serum Albumin Levels and Serum Albumin-Globulin Ratio Are Associated with Poor Prognosis in Glioblastoma. Transl. Cancer Res. 2020, 9, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, L. Prognostic Significance of Preoperative Serum Albumin, Albumin-to-Globulin Ratio, and Prognostic Nutritional Index for Patients with Glioma. Medicine 2020, 99, e20927. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-K.; Yu, Y.-L.; Lin, Y.-C.; Hsu, Y.-J.; Chern, Y.-J.; Chiang, J.-M.; You, J.-F. Prognostic Value of the C-Reactive Protein to Albumin Ratio in Colorectal Cancer: An Updated Systematic Review and Meta-Analysis. World J. Surg. Oncol. 2021, 19, 139. [Google Scholar] [CrossRef] [PubMed]
- Topkan, E.; Selek, U.; Pehlivan, B.; Kucuk, A.; Ozturk, D.; Ozdemir, B.S.; Besen, A.A.; Mertsoylu, H. The Prognostic Value of the Novel Global Immune-Nutrition-Inflammation Index (GINI) in Stage IIIC Non-Small Cell Lung Cancer Patients Treated with Concurrent Chemoradiotherapy. Cancers 2023, 15, 4512. [Google Scholar] [CrossRef] [PubMed]
Variables | GINI | ||||
---|---|---|---|---|---|
Low (<5815) | High (≥5815) | p | |||
Age (year), n (%) | <60 | 98 (49.5%) | 69 (56.1%) | 29 (38.7%) | 0.013 |
≥60 | 100 (50.5%) | 54 (43.9%) | 46 (61.3%) | ||
Sex, n (%) | Male | 114 (57.6%) | 72 (58.5%) | 42 (56.0%) | 0.419 |
Female | 84 (42.4%) | 51 (41.5%) | 33 (44.0%) | ||
Comorbidity, n (%) | No | 121 (61.1%) | 80 (65.0%) | 41 (54.7%) | 0.097 |
Yes | 77 (38.9%) | 43 (35.0%) | 34 (45.3%) | ||
Smoking status, n (%) | No | 131 (66.2%) | 85 (69.1%) | 46 (61.3%) | 0.167 |
Yes | 67 (33.8%) | 38 (30.9%) | 29 (38.7%) | ||
ECOG PS, n (%) | 0–1 | 156 (78.8%) | 110 (89.4%) | 29 (38.7%) | <0.001 |
2 | 42 (21.2%) | 13 (10.6%) | 46 (61.3%) | ||
Laterality, n (%) | Left | 106 (53.5%) | 69 (56.1%) | 37 (49.3%) | 0.218 |
Right | 92 (46.5%) | 54 (43.9%) | 38 (50.7%) | ||
Localization, n (%) | Temporal | 45 (22.7%) | 28 (22.8%) | 17 (22.6%) | 0.884 |
Frontal | 56 (28.3%) | 36 (29.3%) | 20 (26.7%) | ||
Parietal | 76 (38.4%) | 47 (38.2%) | 29 (38.7%) | ||
Occipital | 21 (10.6%) | 12 (9.8%) | 9 (12.0%) | ||
Tumor focality, n (%) | Unifocal | 153 (77.3%) | 101 (82.1%) | 23 (30.7%) | 0.029 |
Multifocal | 45 (22.7%) | 22 (17.9%) | 52 (69.3%) | ||
The type of surgery, n (%) | Subtotal | 101 (51%) | 70 (56.9%) | 31 (41.3%) | 0.003 |
Gross total | 97 (49%) | 53 (43.1%) | 44 (58.7%) | ||
Adjuvant radiotherapy, n (%) | No | 20 (10.1%) | 1 (0.8%) | 19 (25.3%) | <0.001 |
Yes | 178 (89.9%) | 122 (99.2%) | 56 (74.7%) | ||
Adjuvant chemotherapy, n (%) | No | 39 (19.7%) | 3 (2.4%) | 36 (48.0%) | <0.001 |
Yes | 159 (80.3%) | 120 (97.6%) | 39 (52.0%) | ||
IDH mutation, n (%) | Mutant | 42 (21.2%) | 41 (33.3%) | 1 (1.3%) | <0.001 |
Wild-type | 156 (78.8%) | 82 (66.7%) | 74 (98.7%) | ||
ATRX loss, n (%) | No | 134 (67.7%) | 79 (64.2%) | 55 (73.3%) | 0.120 |
Yes | 64 (32.3%) | 44 (35.8%) | 20 (26.7%) | ||
SII, n (%) | <1038 | 118 (59.6%) | 106 (86.2%) | 12 (16.0%) | <0.001 |
≥1038 | 80 (40.4%) | 17 (13.8%) | 63 (84.0%) | ||
SIRI, n (%) | <1624 | 77 (38.9%) | 72 (58.5%) | 5 (6.7%) | <0.001 |
≥1624 | 121 (61.1%) | 51 (41.5%) | 70 (93.3%) | ||
PIV, n (%) | <625 | 114 (57.6%) | 102 (82.9%) | 12 (16.0%) | <0.001 |
≥625 | 84 (42.4%) | 21 (17.1%) | 63 (84.0%) |
AUC | Std. Error | 95% CI | p | Sensitivity (%) | Specificity (%) | |
---|---|---|---|---|---|---|
GINI | 0.861 | 0.044 | 0.776–0.947 | <0.001 | 100.0 | 62.1 |
SII | 0.738 | 0.055 | 0.636–0.846 | 0.002 | 87.5 | 62.5 |
SIRI | 0.812 | 0.042 | 0.726–0.895 | <0.001 | 100.0 | 57.4 |
PIV | 0.803 | 0.042 | 0.726–0.886 | <0.001 | 87.5 | 59.5 |
Overall Survival | ||||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | |||||||
HR (95% CI for HR) | p | HR (95% CI for HR) | p | |||||
Age | 0.534 | 0.396 | 0.719 | <0.001 | 0.583 | 0.415 | 0.820 | 0.002 |
Sex | 0.997 | 0.743 | 1.338 | 0.983 | - | - | - | - |
Comorbidity | 1.227 | 0.912 | 1.653 | 0.177 | - | - | - | - |
Smoking status | 1.119 | 0.824 | 1.518 | 0.472 | - | - | - | - |
ECOG PS | 2.585 | 1.799 | 3.716 | <0.001 | 0.759 | 0.506 | 1.140 | 0.184 |
Laterality | 1.040 | 0.777 | 1.392 | 0.793 | - | - | - | - |
Localization | 1.060 | 0.904 | 1.242 | 0.476 | - | - | - | - |
Tumor focalit | 1.649 | 1.173 | 2.319 | 0.004 | 1.387 | 0.967 | 1.990 | 0.075 |
The type of surgery | 0.552 | 0.411 | 0.742 | <0.001 | 0.770 | 0.549 | 1.080 | 0.130 |
ATRX loss | 0.614 | 0.446 | 0.846 | 0.003 | 1.093 | 0.753 | 1.587 | 0.639 |
IDH mutation | 0.193 | 0.123 | 0.301 | <0.001 | 0.313 | 0.183 | 0.534 | <0.001 |
Adjuvant radioterapy | 0.132 | 0.079 | 0.221 | <0.001 | 0.353 | 0.202 | 0.618 | <0.001 |
Adjuvant chemotherapy | 0.124 | 0.083 | 0.185 | <0.001 | 0.448 | 0.269 | 0.746 | 0.002 |
GINI | 14.110 | 8.963 | 22.213 | <0.001 | 8.132 | 4.690 | 14.100 | <0.001 |
SII | 4.404 | 3.197 | 6.067 | <0.001 | 1.184 | 0.721 | 1.943 | 0.504 |
SIRI | 3.501 | 2.527 | 4.850 | <0.001 | 1.668 | 1.060 | 2.627 | 0.027 |
PIV | 4.532 | 3.301 | 6.222 | <0.001 | 1.258 | 0.741 | 2.133 | 0.396 |
Progression-Free Survival | ||||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | |||||||
HR (95% CI for HR) | p | HR (95% CI for HR) | p | |||||
Age | 0.578 | 0.429 | 0.778 | <0.001 | 1.527 | 1.088 | 2.143 | 0.014 |
Sex | 1.038 | 0.773 | 1.394 | 0.802 | - | - | - | - |
Comorbidity | 1.252 | 0.929 | 1.688 | 0.140 | - | - | - | - |
Smoking status | 0.977 | 0.719 | 1.329 | 0.884 | - | - | - | - |
ECOG PS | 2.615 | 1.823 | 3.751 | <0.001 | 0.769 | 0.506 | 1.170 | 0.220 |
Laterality | 1.006 | 0.752 | 1.347 | 0.968 | - | - | - | - |
Localization | 1.006 | 0.858 | 1.180 | 0.939 | - | - | - | - |
Tumor focality | 1.438 | 1.023 | 2.022 | 0.036 | 1.272 | 0.885 | 1.829 | 0.193 |
The type of surgery | 0.454 | 0.333 | 0.618 | <0.001 | 0.663 | 0.471 | 0.934 | 0.019 |
ATRX loss | 0.602 | 0.435 | 0.833 | 0.002 | 1.088 | 0.747 | 1.585 | 0.659 |
IDH mutation | 0.305 | 0.205 | 0.456 | <0.001 | 0.517 | 0.320 | 0.835 | 0.007 |
Adjuvant radiotherapy | 0.152 | 0.092 | 0.252 | <0.001 | 0.372 | 0.214 | 0.647 | <0.001 |
Adjuvant chemotherapy | 0.157 | 0.107 | 0.232 | <0.001 | 0.449 | 0.265 | 0.764 | 0.003 |
GINI | 9.110 | 6.152 | 13.492 | <0.001 | 5.827 | 3.524 | 9.633 | <0.001 |
SII | 3.866 | 2.816 | 5.307 | <0.001 | 0.969 | 0.566 | 1.658 | 0.908 |
SIRI | 2.877 | 2.095 | 3.953 | <0.001 | 1.465 | 0.950 | 2.259 | 0.084 |
PIV | 4.074 | 2.971 | 5.587 | <0.001 | 1.204 | 0.683 | 2.123 | 0.521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydin, A.A.; Yuceer, R.O. Unraveling the Predictive Value of the Novel Global Immune-Nutrition-Inflammation Index (GINI) on Survival Outcomes in Patients with Grade 4 Adult-Type Diffuse Gliomas. Curr. Oncol. 2024, 31, 5027-5039. https://doi.org/10.3390/curroncol31090372
Aydin AA, Yuceer RO. Unraveling the Predictive Value of the Novel Global Immune-Nutrition-Inflammation Index (GINI) on Survival Outcomes in Patients with Grade 4 Adult-Type Diffuse Gliomas. Current Oncology. 2024; 31(9):5027-5039. https://doi.org/10.3390/curroncol31090372
Chicago/Turabian StyleAydin, Asim Armagan, and Ramazan Oguz Yuceer. 2024. "Unraveling the Predictive Value of the Novel Global Immune-Nutrition-Inflammation Index (GINI) on Survival Outcomes in Patients with Grade 4 Adult-Type Diffuse Gliomas" Current Oncology 31, no. 9: 5027-5039. https://doi.org/10.3390/curroncol31090372
APA StyleAydin, A. A., & Yuceer, R. O. (2024). Unraveling the Predictive Value of the Novel Global Immune-Nutrition-Inflammation Index (GINI) on Survival Outcomes in Patients with Grade 4 Adult-Type Diffuse Gliomas. Current Oncology, 31(9), 5027-5039. https://doi.org/10.3390/curroncol31090372