Impact of PET/CT Imaging with FDG in Locally Advanced Cervical Carcinoma—A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Cervical Cancer Prevalence
4. Staging in Cervical Cancer
4.1. Primary Tumor
4.2. Nodal Staging
4.3. Distant Metastasis
5. Screening and Diagnosis
6. Positron Emission Tomography (PET) and Computerized Tomography (CT)
7. PET-Based Radiopharmaceuticals
8. FDG-PET and Cervical Cancer Diagnosis
9. Diagnostic Strategies at Various Stages of Cervical Cancer
9.1. Primary Tumor Diagnosis
9.2. Metastases of Lymph Node Diagnosis
9.3. Recurrent Lesion Detection
10. Present Status of 18F-FDG PET
11. Therapeutic Strategies to Manage Cervical Cancer
12. Follow-Up of Treatment Response and Disease Recurrence
12.1. Tumor Hypoxia
12.2. Tumor Angiogenesis
13. Discussion
14. Conclusions
15. Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
PET | Positron emission tomography |
CT | Computed tomography |
FDG | 18F-fluoro-d-glucose |
SUV | Standardized uptake value |
MRI | Magnetic resonance imaging |
HPV | Human papillomavirus |
PSMA | Prostate-specific membrane antigen |
SCC | Squamous cell carcinoma |
SUVmax | Maximum standardized uptake value |
HDRs | High dose rates |
[64Cu]-ATSM | 64Cu-diacetyl-bis (N4-methylthiosemicarbrazone) |
[18F]FES | 16α-[18F]-fluoro-17β-estradiol |
CRT | Chemoradiotherapy |
[18F]4FMFES | 4-fluoro-11β-methoxy-16α-18F-fluoroestradiol |
68Ga-FAPI-04 | 68Ga-fibroblast activation protein-specific inhibitor |
[18F]FMISO | 18F-fluoromisonidazole |
[18F]FAZA | 18F-fluoroazomycin arabinoside |
([18F]HX4) | [18F]F-flortanidazole |
[18F]FETNIM | [18F]Fluoroerythronitroimidazole |
CRT | Chemoradiotherapy |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Trivedi, V.; Rani, R.; Singh, U.; Singh, K. Pre-treatment hematological parameters as a cost effective predictive marker for response to concurrent chemo radiation in locally advanced cervical cancer. Cancer Treat. Res. Commun. 2022, 31, 100539. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, T.; Grassi, T.; Di Martino, G.; Negri, S.; Trezzi, G.; Fruscio, R.; Landoni, F. Low-Volume Metastases in Cervical Cancer: Does Size Matter? Cancers 2024, 16, 1107. [Google Scholar] [CrossRef] [PubMed]
- Schilderm, J.M.; Stehman, F.B. Stage Ia-IIa cancer of the cervix. Cancer J. 2003, 9, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Feng, Y.L.; Wan, T.; Zhang, Y.N.; Cao, X.P.; Huang, Y.W.; Xiong, Y.; Huang, X. Effectiveness of Sequential Chemoradiation vs Concurrent Chemoradiation or Radiation Alone in Adjuvant Treatment After Hysterectomy for Cervical Cancer: The STARS Phase 3 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Sironi, S.; Buda, A.; Picchio, M. Lymph node metastasis in patients with clinical early-stage cervical cancer: Detection with integrated FDG PET/CT. Radiology 2006, 238, 272–279. [Google Scholar] [CrossRef]
- Loft, A.; Berthelsen, A.K.; Roed, H. The diagnostic value of PET/CT scanning in patients with cervical cancer: A prospective study. Gynecol. Oncol. 2007, 106, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Vorgias, G.; Katsoulis, M.; Argyrou, K. Preoperative imaging of primary intra-abdominal gynaecological malignancies: Diagnostic accuracy of CT-scan and MRI-A Greek cohort study. Eur. J. Gynaecol. Oncol. 2002, 23, 139–144. [Google Scholar] [PubMed]
- Pete, I.; Godeny, M.; Toth, E. Prediction of cervical infiltration in stage II endometrial cancer by different preoperative evaluation techniques (D&C, US, CT, MRI). Eur. J. Gynaecol. Oncol. 2003, 24, 517–522. [Google Scholar]
- Wagenaar, H.C.; Trimbos, J.B.; Postema, S. Tumor diameter and volume assessed by magnetic resonance imaging in the prediction of outcome for invasive cervical cancer. Gynecol. Oncol. 2001, 82, 474–482. [Google Scholar] [CrossRef]
- Kinahan, P.E.; Townsend, D.W.; Beyer, T.; Sashin, D. Attenuation correction for a combined 3D PET/CT scanner. Med. Phys. 1998, 25, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Oriuchi, N.; Kunio, M.; Tomiyoshi, K.; Tomaru, Y.; Aoyagi, K.; Amano, S.; Suzuki, H.; Aoki, S.T.; Endo, K. Accuracyof standardized uptake value measured by simultaneous emission and transmission scanning in PET oncology. Nucl. Med. Commun. 1999, 20, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Boughanim, M.; Leboulleux, S.; Rey, A.; Pham, C.T.; Zafrani, Y.; Duvillard, P. Histologic results of para-aortic lymphadenectomy in patients treated for stage IB2/II cervical cancer with negative [18F]fluorodeoxyglucose positron emission tomography scans in the para-aortic area. J. Clin. Oncol. 2008, 26, 2558–2561. [Google Scholar] [CrossRef]
- Kuehl, H.; Veit, P.; Rosenbaum, S.J.; Bockisch, A.; Antoch, G. Can PET/CT replace separate diagnostic CT for cancer imaging? Optimizing CT protocols for imaging cancers of the chest and abdomen. J. Nucl. Med. 2007, 48, 45–57. [Google Scholar]
- He, T. PET-CT versus MRI in the diagnosis of lymph node metastasis of cervical cancer: A meta-analysis. Microsc. Res. Tech. 2022, 85, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, Y.; Sehirali, S.; Avci, M.E. Integrated PET/CT for the evaluation of para-aortic nodal metastasis in locally advanced cervical cancer patients with negative conventional CT findings. Gynecol. Oncol. 2008, 108, 154–159. [Google Scholar] [CrossRef]
- Hawnaur, J.M.; Johnson, R.J.; Carrington, B.M. Predictive value of clinical examination, transrectal ultrasound and magnetic resonance imaging prior to radiotherapy in carcinoma of the cervix. Br. J. Radiol. 1998, 71, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hou, X.; Hu, K.; Zhang, F.; Wang, W.; Ren, K. Risk Factors for Nodal Failure in Patients with FIGO IIIC Cervical cancer Receiving Definitive Image-Guided Radiotherapy. Curr. Oncol. 2023, 30, 10385–10395. [Google Scholar] [CrossRef]
- Guani, B. Clinical impact of low-volume lymph node metastases in early-stage cervical cancer: A comprehensive meta-analysis. Gynecol. Oncol. 2022, 164, 446–454. [Google Scholar] [CrossRef]
- Corn, B.W.; Hernandez, E.; Anderson, L. Phase I/II study of concomitant irradiation and carboplatin for locally advanced carcinoma of the uterine cervix: An interim report. Am. J. Clin. Oncol. 1996, 19, 317–321. [Google Scholar] [CrossRef]
- Kang, S.; Wu, J.; Li, J.; Hou, Q.; Tang, B. Prognostic significance of clinicopathological factors influencing overall survival and event-free survival of patients with cervical cancer: A systematic review and meta-analysis. Med. Sci. Monit. 2022, 28, 934588. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.G.; Eifel, P.J. Combined radiation therapy and chemotherapy for carcinoma of the cervix. Cancer J. 2001, 7, 86–94. [Google Scholar] [PubMed]
- Plante, M.; Renaud, M.C.; Francois, H. Vaginal radical trachelectomy: An oncologically safe fertility-preserving surgery-An updated series of 72 cases and review of the literature. Gynecol. Oncol. 2004, 94, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Isaji, Y.; Tsuyoshi, H.; Tsujikawa, T.; Orisaka, M.; Okazawa, H.; Yoshida, Y. Prognostic value of 18F-FDG PET in uterine cervical cancer patients with stage IIICr allocated by imaging. Sci. Rep. 2023, 13, 18864. [Google Scholar] [CrossRef]
- Han, S.; Kim, H.; Kim, Y.J.; Suh, C.H.; Woo, S. Prognostic value of volume-based metabolic parameters of 18F-FDG PET/CT in uterine cervical cancer: A systematic review and meta-analysis. Am. J. Roentgenol. 2018, 211, 1112–1121. [Google Scholar] [CrossRef]
- Trattner, M.; Graf, A.H.; Lax, S.; Forstner, R.; Dandachi, N.; Haas, J.; Pickel, H.; Reich, O.; Staudach, A.; Winter, R. Prognostic factors in surgically treated stage ib-iib cervical carcinomas with special emphasis on the importance of tumor volume. Gynecol. Oncol. 2001, 82, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Kodaira, T.; Fuwa, N.; Toita, T. Comparison of prognostic value of MRI and FIGO stage among patients with cervical carcinoma treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Zreik, T.G.; Chambers, J.T.; Chambers, S.K. Parametrial involvement, regardless of nodal status: A poor prognostic factor for cervical cancer. Obstet. Gynecol. 1996, 87, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Kosary, C.L. FIGO stage, histology, histologic grade, age and race as prognostic factors in determining survival for cancers of the female gynecological system: An analysis of 1973-87 SEER cases of cancers of the endometrium, cervix, ovary, vulva, and vagina. In Seminars in Surgical Oncology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994; pp. 31–46. [Google Scholar]
- Chung, C.K.; Nahhas, W.A.; Stryker, J.A. Analysis of factors contributing to treatment failures in stages IB and IIA carcinoma of the cervix. Am. J. Obstet. Gynecol. 1980, 138, 550–556. [Google Scholar] [CrossRef]
- Thelissen, A.A.B. Upstaging by para-aortic lymph node dissection in patients with locally advanced cervical cancer: A systematic review and meta-analysis. Gynecol. Oncol. 2022, 164, 667674. [Google Scholar] [CrossRef]
- Tsai, C.S.; Lai, C.H.; Wang, C.C. The prognostic factors for patients with early cervical cancer treated by radical hysterectomy and postoperative radiotherapy. Gynecol. Oncol. 1999, 75, 328–333. [Google Scholar] [CrossRef]
- Huang, H.J.; Chang, T.C.; Hong, J.H. Prognostic value of age and histologic type in neoadjuvant chemotherapy plus radical surgery for bulky (>/=4 cm) stage IB and IIA cervical carcinoma. Int. J. Gynecol. Cancer 2003, 13, 204–211. [Google Scholar] [PubMed]
- Kim, P.Y.; Monk, B.J.; Chabra, S. Cervical cancer with paraaortic metastases: Significance of residual paraaortic disease after surgical staging. Gynecol. Oncol. 1998, 69, 243–247. [Google Scholar] [CrossRef]
- Schwarz, C.G.; Kremers, W.K.; Therneau, T.M.; Sharp, R.R.; Gunter, J.L.; Vemuri, P.; Arvin, A.; Spychalla, A.J.; Kantarci, K.; Knopman, D.S.; et al. Identification of Anonymous MRI Research Participants with Face-Recognition Software. N. Engl. J. Med. 2019, 381, 1684–1686. [Google Scholar] [CrossRef]
- Narayan, K.; McKenzie, A.F.; Hicks, R.J. Relation between FIGO stage, primary tumor volume, and presence of lymph node metastases in cervical cancer patients referred for radiotherapy. Int. J. Gynecol. Cancer 2003, 13, 657–663. [Google Scholar] [CrossRef]
- Hong, J.; Lai, C.; Tsai, C. Recurrent squamous cell carcinoma of cervix after primary radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 344–345. [Google Scholar] [CrossRef]
- Keys, H.M.; Bundy, B.N.; Stehman, F.B. Radiation therapy with and without extrafascial hysterectomy for bulky stage IB cervical carcinoma: A randomized trial of the Gynecologic Oncology Group. Gynecol. Oncol. 2003, 89, 343–353. [Google Scholar] [CrossRef]
- IARC Working Group. Human Papillomaviruses: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2012; Volume 2. [Google Scholar]
- Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, R. Cancer of the cervix uteri: 2021 update. Figo Cancer Rep. 2021, 155, 28–44. [Google Scholar] [CrossRef]
- Olawaiye, A.B.; Baker, T.P.; Washington, M.K. The new (Version 9) American Joint Committee on Cancer tumour, node, metastasis staging for cervical cancer. CA Cancer J. Clin. 2021, 71, 287–298. [Google Scholar] [CrossRef]
- Wong, T.Z.; Jones, E.L.; Coleman, R.E. Positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol. Imaging Biol. 2004, 6, 55–62. [Google Scholar] [CrossRef]
- Chou, H.H.; Chang, T.C.; Yen, T.C.; Ng, K.K.; Hsueh, S.; Ma, S.Y.; Chang, C.J.; Huang, H.J.; Chao, A.; Wu, T.I. Low value of [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in primary staging of early-stage cervical cancer before radical hysterectomy. J. Clin. Oncol. 2006, 24, 123–128. [Google Scholar] [CrossRef]
- Pereira, S.P.; Oldfield, L.; Ney, A.; Hart, P.A.; Keane, M.G.; Pandol, S.J.; Li, D.; Greenhalf, W.; Jeon, C.Y.; Koay, E.J.; et al. Early detection of pancreatic cancer. Lancet Gastroenterol. Hepatol. 2020, 5, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Kidd, E.A.; Siegel, B.A.; Dehdashti, F.; Grigsby, P.W. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer 2007, 110, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Kidd, E.A.; Spencer, C.R.; Huettner, P.C.; Siegel, B.A.; Dehdashti, F.; Rader, J.S. Cervical cancer histology and tumor differentiation affect 18F-fluorodeoxyglucose uptake. Cancer 2009, 115, 3548–3554. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.G.; Adler, L.P.; Rodriguez, M.; Faulhaber, P.F.; Abdul-Karim, F.W.; Miraldi, F. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: A surgicopathologic study. J. Clin. Oncol. 1999, 17, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Fyles, A.; Milosevic, M.; Hedley, D.; Pintilie, M.; Levin, W.; Manchul, L.; Hill, R. Tumor hypoxia has independent predictor impactonly in patients with node-negative cervix cancer. J. Clin. Oncol. 2002, 20, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Lyng, H.; Sundfør, K.; Tropé, C.; Rofstad, E.K. Disease control of uterine cervical cancer: Relationships to tumor oxygen tension, vascular density, cell density, and frequency of mitosis and apoptosis measured before treatment and during radiotherapy. Clin. Cancer Res. 2000, 6, 1104–1112. [Google Scholar]
- Telarovic, I.; Wenger, R.H.; Pruschy, M. Interfering with tumor hypoxia for radiotherapy optimization. J. Exp. Clin. Cancer Res. 2021, 40, 197. [Google Scholar] [CrossRef]
- Hong, J.H.; Jung, U.S.; Min, K.J. Prognostic value of total lesion glycolysis measured by 18F-FDG PET/CT in patients with locally advanced cervical cancer. Nucl. Med. Commun. 2016, 37, 843–848. [Google Scholar] [CrossRef]
- Chung, H.; Ahn, H.S.; Kim, Y.S. The value of cystoscopy and intravenous urography after magnetic resonance imaging or computed tomography in the staging of cervical carcinoma. Yonsei Med. J. 2001, 42, 527–531. [Google Scholar] [CrossRef]
- Follen, M.; Levenback, C.F.; Iyer, R.B. Imaging in cervical cancer. Cancer 2003, 98, 2028–2038. [Google Scholar] [CrossRef] [PubMed]
- Cobby, M.; Browning, J.; Jones, A. Magnetic resonance imaging, computed tomography and endosonography in the local staging of carcinoma of the cervix. Br. J. Radiol. 1990, 63, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Amendola, M.A.; Hricak, H.; Mitchell, D.G. Utilization of diagnostic studies in the pretreatment evaluation of invasive cervical cancer in the United States: Results of intergroup protocol ACRIN 6651/GOG 183. J. Clin. Oncol. 2005, 23, 7454–7459. [Google Scholar] [CrossRef] [PubMed]
- Subak, L.E.; Hricak, H.; Powell, C.B.; Azizi, E.; Stern, J.L. Cervical carcinoma: Computed tomography and magnetic resonance imaging for preoperatives taging. Obstet. Gynecol. 1995, 86, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.H.; Dotters, D.J.; Fowler, W.C. Computed tomography: Does it really improve the treatment of cervical carcinoma? Am. J. Obstet. Gynecol. 1992, 167, 768–821. [Google Scholar] [CrossRef] [PubMed]
- Hricak, H.; Powell, C.B.; Yu, K.K. Invasive cervical carcinoma: Role of MR imaging in pretreatment work-up—Cost minimization and diagnostic efficacy analysis. Radiology 1996, 198, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Sironi, S.; Belloni, C.; Taccagni, G.L. Carcinoma of the cervix: Value of MR imaging in detecting parametrial involvement. Am. J. Roentgenol. 1991, 156, 753–756. [Google Scholar] [CrossRef]
- Sironi, S.; De Cobelli, F.; Scarfone, G. Carcinoma of the cervix: Value of plain and gadolinium-enhanced MR imaging in assessing degree of invasiveness. Radiology 1993, 188, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Scheidler, J.; Heuck, A.F.; Steinborn, M. Parametrial invasion in cervical carcinoma: Evaluation of detection at MR imaging with fat suppression. Radiology 1998, 206, 125–129. [Google Scholar] [CrossRef]
- Hawnaur, J.M.; Johnson, R.J.; Buckley, C.H. Staging, volume estimation and assessment of nodal status in carcinoma of the cervix: Comparison of magnetic resonance imaging with surgical findings. Clin. Radiol. 1994, 49, 443–452. [Google Scholar] [CrossRef]
- Deng, X.; Liu, M.; Zhou, Q.; Zhao, X.; Li, M.; Zhang, J.; Shen, H.; Lan, X.; Zhang, X.; Zhang, J. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging. Diagn. Interv. Imaging 2022, 103, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Mayr, N.A.; Yuh, W.T.; Zheng, J. Prediction of tumor control in patients with cervical cancer: Analysis of combined volume and dynamic enhancement pattern by MR imaging. Am. J. Roentgenol. 1998, 170, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Mayr, N.A.; Hawighorst, H.; Yuh, W.T. MR microcirculation assessment in cervical cancer: Correlations with histomorphological tumor markers and clinical outcome. J. MagnReson Imaging 1999, 10, 267–276. [Google Scholar] [CrossRef]
- Mayr, N.A.; Yuh, W.T.; Zheng, J. Tumor size evaluated by pelvic examination compared with 3-D quantitative analysis in the prediction of outcome for cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 1997, 39, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Mayr, N.A.; Wen, B.C.; Benda, J.A. Postoperative radiation therapy in clinical stage I endometrial cancer: Corpus, cervical, and lower uterine segment involvement—Patterns of failure. Radiology 1995, 196, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Ozsarlak, O.; Tjalma, W.; Schepens, E. The correlation of preoperative CT, MR imaging, and clinical staging (FIGO) with histopathology findings in primary cervical carcinoma. Eur. Radiol. 2003, 13, 2338–2345. [Google Scholar] [CrossRef]
- Choi, H.J.; Roh, J.W.; Seo, S.S.; Lee, S.; Kim, J.Y.; Kim, S.K.; Kang, K.W.; Lee, J.S.; Jeong, J.Y.; Park, S.Y. Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervicalcarcinoma: A prospective study. Cancer 2006, 106, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Kim, E.N.; Kim, D.Y.; Suh, D.S.; Kim, J.H.; Kim, Y.M.; Kim, Y.T.; Nam, J.H. Comparison of the validity of magnetic resonance imaging and positron emission tomography/computedtomography in the preoperative evaluation of patients with uterine corpus cancer. Gynecol. Oncol. 2008, 108, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Shida, M.; Murakami, M.; Tsukada, H.; Ishiguro, Y.; Kikuchi, K.; Yamashita, E.; Kajiwara, H.; Yasuda, M.; Ide, M. F-18Fluorodeoxyglucose uptake in leiomyomatous uterus. Int. J. Gynecol. Cancer 2007, 17, 285–290. [Google Scholar] [CrossRef]
- Sakamoto, S.; Murakami, K.; Hiroyuki, K. Application ofPET/CT fused images in the diagnosis of colorectal cancer. Nihon Rinsho 2011, 69, 299–305. [Google Scholar]
- Cuocolo, A.; Petretta, M. PET and SPECT Specialty Grand Challenge. When Knowledge Travels at the Speed of Light, Photons Take to the Field. Front. Nucl. Med. 2021, 1, 671914. [Google Scholar] [CrossRef]
- Van der Meulen, N.P.; Strobel, K.; Lima, T.V.M. New Radionuclides and Technological Advances in SPECT and PET Scanners. Cancers 2021, 13, 6183. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Rousseau, E.; Kwon, D.; Lin, K.S.; Bénard, F.; Chen, X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers 2020, 12, 1312. [Google Scholar] [CrossRef] [PubMed]
- Wahl, R.L. Principles of cancer imaging with fluorodeoxyglucose. In Principles and Practice of Positron Emission Tomography; Wahl, R.L., Buchanan, J.W., Eds.; Williams & Wilkins, Lippincott: Philadelphia, PA, USA, 2002. [Google Scholar]
- Lewis, J.S.; Laforest, R.; Dehdashti, F.; Grigsby, P.W.; Welch, M.J.; Siegel, B.A. An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J. Nucl. Med. 2008, 49, 177–1182. [Google Scholar] [CrossRef]
- Lyng, H.; Malinen, E. Hypoxia in cervical cancer: From biology to imaging. Clin. Transl. Imaging 2017, 5, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Wack, L.J.; Mönnich, D.; Van Elmpt, W.; Zegers, C.M.; Troost, E.G.; Zips, D.; Thorwarth, D. Comparison of [18F]-FMISO,[18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia–a simulation study. Acta Oncol. 2015, 54, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Marth, C.; Landoni, F.; Mahner, S. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, 72–83. [Google Scholar] [CrossRef]
- Chen, Y.; Pang, J.; Wu, L.; Zhao, B.; Hao, J.; Wu, J.; Wei, S. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1820–1832. [Google Scholar] [CrossRef]
- Paquette, M.; Lavall ée, É.; Phoenix, S.; Ouellet, R.; Senta, H.; Van Lier, J.E.; Guérin, B.; Lecomte, R.; Turcotte, É.E. Improved estrogen receptor assessment by PET using the novel radiotracer 18 F-4FMFES in estrogen receptor–positive breast cancer patients: An ongoing phase II clinical trial. J. Nucl. Med. 2018, 59, 197–203. [Google Scholar] [CrossRef]
- Franquet, E.; Park, H. Molecular imaging in oncology: Common PET/CT radiopharmaceuticals. Eur. J. Radiol. 2022, 9, 100455. [Google Scholar] [CrossRef]
- Carbo, R.; Rodrigue, E. Relevance of Sugar Transport across the Cell Membrane. Int. J. Mol. Sci. 2023, 24, 6085. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, K.; Graulus, G.; Mesotten, L.; Thomeer, M.; Derveaux, E. The Metabolic Landscape of Lung Cancer: New Insights in a Disturbed Glucose Metabolism. Front. Oncol. 2019, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, W.; Ma, Y. 18F-FDG PET/CT can correct the clinical stages and predict pathological parameters before operation in cervical cancer. Eur. J. Radiol. 2016, 85, 877–884. [Google Scholar] [CrossRef]
- Kitchener, H.; Swart, A.M.; Qian, Q.; Amos, C.; Parmar, M.K. Efficacy of systematic pelvic lymphadenectomy in endometrialcancer (MRC ASTEC trial): A randomised study. Lancet 2009, 373, 125–136. [Google Scholar] [PubMed]
- Kitajima, K.; Murakami, K.; Yamasaki, E.; Kaji, Y.; Fukasawa, I.; Inaba, N.; Sugimura, K. Diagnostic accuracy of integrated FDGPET/contrast-enhanced CT in staging ovarian cancer: Comparison with enhanced CT. Eur. J. Nucl. Med. Mol. Imaging 2010, 35, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Metser, U.; Golan, O.; Levine, C.D.; Even-Sapir, E. Tumor lesion detection: When is integrated positron emission tomography/computed tomography more accurate than side-by-side interpretation of positron emission tomography and computed tomography? J. Comput. Assist. Tomogr. 2005, 29, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Belhocine, T.Z.; Urbain, J.L.; Yen, T.C.; Grigsby, P.W. Cervical cancer and nuclear medicine: From bench to bedside. Curr. Res. Cancer 2007, 1, 123–144. [Google Scholar]
- Lucignani, G. PET imaging with hypoxia tracers: A must in radiation therapy. Eur. J. Pediatr. 2008, 35, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Barbera, L.; Thomas, G. Management of Early and Locally Advanced Cervical Cancer. In Seminars in Oncology; WB Saunders: Philadelphia, PA, USA, 2009; Volume 36, pp. 155–169. [Google Scholar]
- Higashiyama, S.; Kawabe, J.; Hayashi, T.; Kurooka, H.; Oe, A.; Kotani, J.; Kawamura, E.; Shiomi, S. A case of cavernous hemangiomain which malignancy was preoperatively excluded by FDG-PET. Ann. Nucl. Med. 2008, 22, 327–330. [Google Scholar] [CrossRef]
- Ohno, Y.; Nishio, M.; Koyama, H.; Fujisawa, Y.; Yoshikawa, T.; Matsumoto, S.; Sugimura, K. Comparison of quantitativelyanalyzed dynamic area-detector CT using various mathematic methods with FDG PET/CT in management of solitary pulmonary nodules. Am. J. Roentgenol. 2013, 200, 593–602. [Google Scholar] [CrossRef]
- Yasuda, S.; Ide, M. PET and cancer screening. Nihon Hoshasen Gijutsu Gakkai Zasshi 2005, 61, 759–765. [Google Scholar] [CrossRef]
- Kitajima, K.; Murakami, K.; Kaji, Y.; Sugimura, K. Spectrum of FDG PET ICT findings of uterine tumors. Am. J. Roentgenol. 2010, 195, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Ho, K.C.; Wang, C.C. Positron emission tomographyin evaluating the feasibility of curative intent in cervical cancer patients with limited distant lymph node metastases. Gynecol. Oncol. 2008, 110, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Mittra, E.; El-Maghraby, T.; Rodriguez, C.A. Efficacy of 18F-FDG PET/CT in the evaluation of patients with recurrent cervicalcarcinoma. Eur. J. Nucl. Med. Mol. lmaging 2009, 36, 1952–1959. [Google Scholar] [CrossRef] [PubMed]
- Cancer Research UK. 2012. Available online: www.cancerresearchuk.org/cancer-info/cancerstats/types/cervix/ (accessed on 27 October 2013).
- Schefter, T.E.; Winter, K.; Kwon, J.S.; Stuhr, K.; Balaraj, K.; Yaremko, B.P.; Small, W., Jr.; Gaffney, D.K. A phase II study of bevacizumab in combination with definitive radiotherapy and cisplatin chemotherapy in untreated patients with locally advanced cervical carcinoma: Preliminary results of RTOG 0417. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Chander, S.; Mohanti, B.K.; Pathy, S.; Kumar, S.; Bhatla, N.; Thulkar, S.; Vishnubhatla, S.; Kumar, L. Neo-adjuvant chemotherapy with weekly paclitaxel and carboplatin followed by chemo radiation in locally advanced cervical carcinoma: A pilot study. Gynecol. Oncol. 2013, 129, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Katja, R.; Worth, K.R.; Papandreou, I.; Hammond, E.M. How the histological structure of some lung cancers shaped almost 70 years of radiobiology. Br. J. Cancer 2023, 128, 407–412. [Google Scholar]
- Lee, C.P.; Payne, G.S.; Oregioni, A.; Ruddle, R.; Tan, S.; Raynaud, F.I. A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy. Br. J. Cancer 2009, 101, 1860–1868. [Google Scholar] [CrossRef] [PubMed]
- Nordsmark, M.; Loncaster, J.; Aquino-Parsons, C.; Chou, S.C.; Ladekarl, M.; Havsteen, H.; Lindegaard, J.C.; Davidson, S.; Varia, M.; West, C. Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervixcarcinomas. Radiother. Oncol. 2003, 67, 35–44. [Google Scholar] [CrossRef]
- Pinker, K.; Andrzejewski, P.; Baltzer, P.; Polanec, S.; Sturdza, A.; Georg, D.; Helbich, T.H.; Karanikas, G.; Grimm, C.; Polterauer, S. Multi parametric [18F]Fluorodeoxyglucose/[18F]Fluoromisonidazole positron emission tomography/magnetic resonance imaging of locally advanced cervical cancer for the non-invasive detection of tumor heterogeneity: A pilot study. PLoS ONE 2016, 11, 0155333. [Google Scholar] [CrossRef]
- Thureau, S.; Piton, N.; Gouel, P.; Modzelewski, R.; Dujon, A.; Baste, J.M.; Melki, J.; Rinieri, P.; Peillon, C.; Rastelli, O.; et al. Firstcomparison between [18F]-FMISO and [18F]-Faza for preoperative pet imaging of hypoxia in lung cancer. Cancers 2021, 13, 4101. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhao, W.; Huang, Y.; Yu, Q.; Zhu, S.; Wang, S.; Zhao, S.; Hu, X.; Yu, J.; Yuan, S. A comparative study of noninvasivehypoxia imaging with 18F-fluoroerythronitroimidazole and 18F-fluoromisonidazole PET/CT in patients with lung cancer. PLoS ONE 2016, 11, e0157606. [Google Scholar] [CrossRef] [PubMed]
- Peeters, S.G.; Zegers, C.M.; Lieuwes, N.G.; van Elmpt, W.; Eriksson, J.; van Dongen, G.A.; Dubois, L.; Lambin, P. A ComparativeStudy of the Hypoxia PET Tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a preclinical tumor model. Int. J. Radiat. Oncol. 2015, 91, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Sanduleanu, S.; Van Der Wiel, A.M.A.; Lieverse, R.I.Y.; Marcus, D.; Ibrahim, A.; Primakov, S.; Wu, G.; Theys, J.; Yaromina, A.; Dubois, L.J.; et al. Hypoxia PET Imaging with [18F]-HX4-A promising next-generation tracer. Cancers 2020, 12, 1322–1338. [Google Scholar] [CrossRef] [PubMed]
- Gruber, G.; Hess, J.; Stiefel, C.; Aebersold, D.M.; Zimmer, Y.; Greiner, R.H.; Studer, U.; Altermatt, H.J.; Hlushchuk, R.; Djonov, V. Correlation between the tumoral expression of beta3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. Br. J. Cancer 2005, 92, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Hazelbag, S.; Kenter, G.G.; Gorter, A.; Dreef, E.J.; Koopman, L.A.; Violette, S.M.; Weinreb, P.H.; Fleuren, G.J. Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J. Pathol. 2007, 212, 316–324. [Google Scholar] [CrossRef]
- Maurer, G.D.; Tritschler, I.; Adams, B.; Tabatabai, G.; Wick, W.; Stupp, R. Cilengitide modulates attachment and viability of human glioma cells, but not sensitivity to irradiation or temozolomide in vitro. Neuro Oncol. 2009, 11, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Neyns, B.; Goldbrunner, R.; Schlegel, U.; Clement, P.M. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 2010, 28, 2712–2718. [Google Scholar] [CrossRef] [PubMed]
- Alva, A.; Slovin, S.; Daignault, S.; Carducci, M.; Dipaola, R.; Pienta, K. Phase II study of cilengitide (EMD 121974, NSC 707544) in patients with non-metastatic castration resistant prostate cancer, NCI-6735. A study by the DOD/PCF prostate cancer clinical trials consortium. Investig. New Drugs 2012, 30, 749–757. [Google Scholar] [CrossRef]
- Parkin, D.M.; Pisani, P.; Ferlay, J. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int. J. Cancer 1993, 54, 594–606. [Google Scholar] [CrossRef]
- Ferlay, J.; Shin, H.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. GLOBOCAN. Cancer Incidence and Mortality Worldwide: I ARC Cancer Base No10; International Agency for Research on Cancer: Lyon, France, 2008. [Google Scholar]
- Yu, J.Q.; Cristofanilli, M. Circulating tumor cells and PET. J. Nucl. Med. 2011, 52, 1501–1504. [Google Scholar] [CrossRef]
- Stokkel, M.P.M.; Draisma, A.; Pauwels, E.K.J. Positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose in oncology. J. Cancer Res. Clin. Oncol. 2001, 127, 278–285. [Google Scholar] [CrossRef]
Imaging Modality | Procedure | Advantages | Drawbacks | References |
---|---|---|---|---|
CT | CT uses X-rays from different angles after taking a shot of dye before the X-rays and computer-based images | Short time required for scan Accessible at almost all radiotherapy centers Variety of materials can be employed Clear visibility of image | Uterine and cervical borders may be delineated | [6,7,8,9,10,11,12] |
CT/PET | Injection of a small amount of [18F]FDG. Cancer cells take it and PET scan shows location of radioactive tracer in body | Cervical cancer staging Detection of recurrent cervical cancer Advantage related to biochemical changes associated with disease/cancer | False negatives with lesions less than 0.5 cm False-positive results can be observed with chronic inflammation | [13,14,15,16] |
MRI | In MRI scans, contrast material is injected through intravenous administration. Scan lasts from 15 min to more than an hour | Perfect for resolution of soft tissues Good for delineation of tumor tissue Can differentiate the tumor boundaries | High cost and long time Presence of metals in the patient’s body makes MRI unsuitable MRI machines are not available everywhere | [8,9,15] |
Ultrasound | Transvaginal ultrasound takes into consideration high-energy sound waves that bounce off various tissues and organs, leading to diagnosis | Can diagnose pelvic masses or cervical problems Low cost and availability everywhere Tumor visibility clear | Unable to diagnose tumor volume precisely Lack of treatment prediction Poor clinical evidence | [2,5,17] |
PET Radiopharmaceutical | General Remarks | Purpose | References |
---|---|---|---|
[18F]FDG | Gold standard of PET used in oncology, neurology, and cardiology | Imaging | [76] |
[64Cu]-ATSM | Predictive predictor of tumor response to treatment | Indicator of tumor response to therapeutics in cervical cancer | [77] |
[18F]FDG | This modality is feasible in hypoxic lesions of cervical cancer | Cervical cancer | [78] |
[18F] FMISO | Gold standard for hypoxic tumor volume detection | Hypoxia imaging | [79] |
[11-C]Acetate | Originally employed in cardiology, it is now often used in prostate cancer imaging | Imaging | [80] |
[18F]-HX4 | The reliability of [18F]-HX4 PET has been assessed. A strong relationship between first and second HX4 PET | Cervical cancer imaging | [81] |
[18F]HX4-cervix | Assessing tumor hypoxia to investigate optimal [18F]-HX4 uptake time | Cervix imaging | [81] |
18F-FDG | 2-floro-2-deoxyglucose-based assessment of increasedglucose metabolism by overexpression of GLUT-1 | Oncology | [42] |
[18F]FES | Observation of binding ability to ER | Imaging by estrogen receptor expression in gynecologic cancers | [82] |
[18F]4FMFES | Estrogen receptor (ER) binding | Imaging of gynecologic malignancies | [82] |
68Ga-FAPI-04 | Comparison the SUVmax of 18F-FDG and 68Ga-FAPI-04 PET/CT for primary lesions in cervical cancer was made | Cervical cancer | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnar, O.; Straciuc, O.M.; Mihuțiu, S.; Lazăr, L. Impact of PET/CT Imaging with FDG in Locally Advanced Cervical Carcinoma—A Literature Review. Curr. Oncol. 2024, 31, 2508-2526. https://doi.org/10.3390/curroncol31050188
Molnar O, Straciuc OM, Mihuțiu S, Lazăr L. Impact of PET/CT Imaging with FDG in Locally Advanced Cervical Carcinoma—A Literature Review. Current Oncology. 2024; 31(5):2508-2526. https://doi.org/10.3390/curroncol31050188
Chicago/Turabian StyleMolnar, Ottó, Oreste Mihai Straciuc, Simona Mihuțiu, and Liviu Lazăr. 2024. "Impact of PET/CT Imaging with FDG in Locally Advanced Cervical Carcinoma—A Literature Review" Current Oncology 31, no. 5: 2508-2526. https://doi.org/10.3390/curroncol31050188
APA StyleMolnar, O., Straciuc, O. M., Mihuțiu, S., & Lazăr, L. (2024). Impact of PET/CT Imaging with FDG in Locally Advanced Cervical Carcinoma—A Literature Review. Current Oncology, 31(5), 2508-2526. https://doi.org/10.3390/curroncol31050188