Personalized Radiation Therapy for Breast Cancer
Abstract
:1. Introduction
2. Optimal Patient Selection
3. Radiation Therapy Technique
4. Fractionation
5. Genomic Personalization of Radiation Therapy
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022, 95, 20211033. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Breast Cancer. Version 4. 2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf (accessed on 1 July 2023).
- Atkins, H.; Hayward, J.L.; Klugman, D.J.; Wayt, A.B. Treatment of early breast cancer: A report after ten years of a clinical trial. Br. Med. J. 1972, 2, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Montague, E.; Redmond, C.; Barton, B.; Borland, D.; Fisher, E.R.; Deutsch, M.; Schwarz, G.; Margolese, R.; Donegan, W.; et al. Comparison of radical mastectomy with alternative treatments for primary breast cancer: A first report of results from a prospective randomized clinical trial. Cancer 1977, 30, S2827–S2839. [Google Scholar] [CrossRef]
- Fisher, B.; Jeong, J.H.; Anderson, S.; Bryant, J.; Fisher, E.R.; Wolmark, N. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N. Engl. J. Med. 2022, 347, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Anderson, S.; Bryant, J.; Margolese, R.G.; Deutsch, M.; Fisher, E.R.; Jeong, J.H.; Wolmark, N. Twenty-year follow-up for a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 2002, 347, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.K.; Jagsi, R.; Woodward, W.A.; Ho, A. Breast cancer biology: Clinical implications for breast radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Buwenge, M.; Cammelli, S.; Ammendolia, I.; Tolento, G.; Zamagni, A.; Arcelli, A.; Macchia, G.; Deodato, F.; Cilla, S.; Morganti, A.G. Intensity modulated radiation therapy for breast cancer: Current perspectives. Breast Cancer Targets Ther. 2017, 9, 121–126. [Google Scholar] [CrossRef]
- Bergom, C.; Currey, A.; Desai, N.; Tai, A.; Strauss, J.B. Deep inspiration breath hold: Techniques and advantages for cardiac sparing during breast cancer irradiation. Front. Oncol. 2018, 8, 87. [Google Scholar] [CrossRef]
- McLellan, R.; Feig, S.A. Guidelines for mammography. In Breast Carcinoma: Current Diagnosis and Treatment; Feig, S.A., McLelland, R., Eds.; ACR & Mason: New York, NY, USA, 1983; pp. 365–369. [Google Scholar]
- Fisher, B.; Bryant, J.; Dignam, J.J.; Wickerham, D.L.; Mamounas, E.P.; Fisher, E.R.; Margolese, R.G.; Nesbitt, L.; Paik, S.; Pisansky, T.M.; et al. Tamoxifen, radiation therapy, or both for prevention of ipsilateral breast tumor recurrence after lumpectomy in women with invasive breast cancers of one centimeter or less. J. Clin. Oncol. 2002, 20, 4141–4149. [Google Scholar] [CrossRef]
- Hughes, K.S.; Schnaper, L.A.; Bellon, J.R.; Cirrincione, C.T.; Berry, D.A.; McCormick, B.; Muss, H.B.; Smith, B.L.; Hudis, C.A.; Winer, E.P.; et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: Long-term follow-up of CALGB 9343. J. Clin. Oncol. 2013, 31, 2382–2387. [Google Scholar] [CrossRef]
- Kunkler, I.H.; Williams, L.J.; Jack, W.J.; Cameron, D.A.; Dixon, J.M. Breast-conserving surgery with or without irradiation in early breast cancer. N. Engl. J. Med. 2023, 388, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Whelan, T.J.; Smith, S.; Parpia, S.; Fyles, A.W.; Bane, A.; Liu, F.F.; Rakovitch, E.; Chang, L.; Stevens, C.; Bowen, J.; et al. LUMINA: Omitting radiotherapy after breast-conserving surgery in Luminal A breast cancer. N. Engl. J. Med. 2023, 389, 612–619. [Google Scholar] [CrossRef]
- Haque, W.; Yuan, D.M.K.; Verma, V.; Butler, E.B.; Teh, B.S.; Wiederhold, L.; Hatch, S. Radiation therapy utilization and outcomes for older women with breast cancer: Impact of molecular subtype and tumor grade. Breast 2017, 35, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Chlebowki, R.T.; Kim, J.; Haque, R. Adherence to endocrine therapy in breast cancer adjuvant and prevent settings. Cancer Prev. Res. 2014, 7, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Haussmann, J.; Budach, W.; Corradini, S.; Krug, D.; Bölke, E.; Tamaskovics, B.; Jazmati, D.; Haussmann, A.; Matuschek, C. Whole breast irradiation in comparison to endocrine therapy in early stage breast cancer—A direct and network meta-analysis of pubished randomized trials. Cancers 2023, 15, 4343. [Google Scholar] [CrossRef] [PubMed]
- Polgár, C.; Fodor, J.; Major, T.; Németh, G.; Lövey, K.; Orosz, Z.; Sulyok, Z.; Takácsi-Nagy, Z.; Kásler, M. Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma-5-year results of a randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Chao, K.K.; Vicini, F.A.; Wallace, M.; Mitchell, C.; Chen, P.; Ghilezan, M.; Gilbert, S.; Kunzman, J.; Benitez, P.; Martinez, A. Analysis of treatment efficacy, cosmesis, and toxicity using the MammoSite breast brachytherapy catheter to deliver accelerated partial-breast irradiation: The William Beaumont hospital experience. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 32–40. [Google Scholar] [CrossRef]
- Baglan, K.L.; Sharpe, M.B.; Jaffray, D.; Frazier, R.C.; Fayad, J.; Kestin, L.L.; Remouchamps, V.; A Martinez, A.; Wong, J.; A Vicini, F. Accelerated partial breast irradiation using 3D conformal radiation therapy (3D-CRT). Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 302–311. [Google Scholar] [CrossRef]
- Meattini, I.; Marrazzo, L.; Saieva, C.; Desideri, I.; Scotti, V.; Simontacchi, G.; Bonomo, P.; Greto, D.; Mangoni, M.; Scoccianti, S.; et al. Accelerated partial-breast irradiation compared with whole-breast irradiation for early breast cancer: Long-term results of the randomized phase III APBI-IMRT-Florence Trial. J. Clin. Oncol. 2020, 38, 41755–41783. [Google Scholar] [CrossRef]
- Coles, C.E.; Griffin, C.L.; Kirby, A.M.; Titley, J.; Agrawal, R.K.; Alhasso, A.; Bhattacharya, I.S.; Brunt, A.M.; Ciurlionis, L.; Chan, C.; et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomized, controlled, phase 3, non-inferiority trial. Lancet 2017, 390, 1048–1060. [Google Scholar] [CrossRef]
- Vicini, F.A.; Cecchini, R.S.; White, J.R.; Arthur, D.W.; Julian, T.B.; Rabinovitch, R.A.; Kuske, R.R.; Ganz, P.A.; Parda, D.S.; Scheier, M.F.; et al. Long-term primary results of accelerated partial breast irradiation after breast-conserving surgery for early-stage breast cancer: A randomised phase 3, equivalence trial. Lancet 2019, 394, 2155–2164. [Google Scholar] [CrossRef] [PubMed]
- Correa, C.; Harris, E.E.; Leonardi, M.C.; Smith, B.D.; Taghian, A.G.; Thompson, A.M.; White, J.; Harris, J.R. Accelerated Partial Breast Irradiation: Executive summary for the update of an ASTRO Evidence-Based Consensus Statement. Pr. Radiat Oncol. 2017, 7, 7309. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Conroy, L.; Quirk, S.; Watt, E.; Ecclestone, G.; Conway, J.L.; Olivotto, I.A.; Phan, T.; Smith, W.L. Deep inspiration breath hold level variability and deformation in locoregional breast irradiation. Pr. Radiat Oncol. 2018, 8, e109–e116. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Kim, S.S.; Ahn, S.D.; Kwak, J.; Jeong, C.; Ahn, S.-H.; Son, B.-H.; Lee, J.W. Cardiac dose reduction during tangential breast irradiation using deep inspiration breath hold: A dose comparison study based on deformable image registration. Radiat. Oncol. 2015, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.M.; Zhong, F.M.; Deng, J.M.; Hu, S.B.; Shen, R.B.; Luo, H.; Luo, Y.B. Prone position versus supine position in postoperative radiotherapy for cancer. Medicine 2021, 100, e26000. [Google Scholar] [CrossRef]
- Thilmann, C.; Sroka-Perez, G.; Krempien, R.; Hoess, A.; Wannenmacher, M.; Debus, J. Inversely planned intensity modulated radiotherapy of the breast including the internal mammary chain: A plan comparison study. Technol. Cancer Res. Treat. 2004, 3, 69–75. [Google Scholar] [CrossRef]
- Hou, P.Y.; Hsieh, C.H.; Wu, L.J.; Hsu, C.S.; Kuo, D.Y.; Lu, Y.F.; Wu, Y.W.; Tien, H.J.; Hsu, S.M.; Shueng, P.W. Cardiac function after modern radiation therapy with volumetric or helical tomotherapy for advanced left-breast cancer receiving irradiation. Bioengineering 2022, 9, 213. [Google Scholar] [CrossRef]
- Ares, C.; Khan, S.; MacArtain, A.M.; Heuberger, J.; Goitein, G.; Gruber, G.; Lutters, G.; Hug, E.B.; Bodis, S.; Lomax, A.J. Postoperative proton radiotherapy for localized and locoregional breast cancer: Potential for clinically relevant improvements? Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 685–697. [Google Scholar] [CrossRef]
- Mutter, R.W.; Choi, J.I.; Jimenez, R.B.; Kirova, Y.M.; Fagundes, M.; Haffty, B.G.; Amos, R.A.; Bradley, J.A.; Chen, P.Y.; Ding, X.; et al. Proton Therapy for Breast Cancer: A consensus statement from the Particle Therapy Cooperative Group (PTCOG) breast cancer subcommittee. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 337–359. [Google Scholar] [CrossRef]
- Ritter, M. Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin. Radiat. Oncol. 2008, 18, 249–256. [Google Scholar] [CrossRef]
- Ray, K.J.; Sibson, N.R.; Kiltie, A.E. Treatment of breast and prostate cancer by hypofractionated radiotherapy: Potential risks and benefits. Clin. Oncol. 2015, 27, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Whelan, T.; MacKenzie, R.; Julian, J.; Levine, M.; Shelley, W.; Grimard, L.; Lada, B.; Lukka, H.; Perera, F.; Fyles, A.; et al. Randomized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer. J. Natl. Cancer Inst. 2002, 94, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- START Trialists’ Group. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early stage breast cancer: A Randomized trial. Lancet Oncol. 2008, 9, 331–341. [Google Scholar] [CrossRef] [PubMed]
- START Trialists’ Group. The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: A Randomizsd trial. Lancet 2008, 371, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Brunt, A.M.; Haviland, J.S.; Sydenham, M.; Agrawal, R.K.; Algurafi, H.; Alhasso, A.; Barrett-Lee, P.; Bliss, P.; Bloomfield, D.; Bowen, J.; et al. Ten-Year Results of FAST: A Randomized Controlled Trial of 5-Fraction Whole-Breast Radiotherapy for Early Breast Cancer. J. Clin. Oncol. 2020, 38, 3261–3272. [Google Scholar] [CrossRef] [PubMed]
- Brunt, A.M.; Haviland, J.S.; Wheatley, D.A.; Sydenham, M.A.; Alhasso, A.; Bloomfield, D.J.; Chan, C.; Churn, M.; Cleator, S.; Coles, C.E.; et al. Hypofractioanted breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiorly, randomized, phase 3 trial. Lancet 2020, 395, 1613–1626. [Google Scholar] [CrossRef] [PubMed]
- Van Hulle, H.; Desaunois, E.; Vakaet, V.; Paelinck, L.; Schoepen, M.; Post, G.; Van Greveling, A.; Speleers, B.; Mareel, M.; De Neve, W.; et al. Two-year toxicity of simultaneous integrated boost in hypofractionated prone breast cancer irradiation: Comparision with sequential boost in randomized trial. Radiother. Oncol. 2021, 158, 62–66. [Google Scholar] [CrossRef]
- Wang, S.L.; Fang, H.; Song, Y.W.; Wang, W.H.; Hu, C.; Liu, Y.P.; Jin, J.; Liu, X.F.; Yu, Z.H.; Ren, H.; et al. Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer; a randomized, non-inferiority, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 352–360. [Google Scholar] [CrossRef]
- Poppe, M.M.; Yehia, Z.A.; Baker, C.; Goyal, S.; Toppmeyer, D.; Kirstein, L.; Chen, C.; Moore, D.; Haffty, B.G.; Khan, A.J. 5-year update of a multi-institution, prospective phase 2 hypofractionated postmastectomy radiation therapy trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 694–700. [Google Scholar] [CrossRef]
- Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004, 351, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
- Mamounas, E.P.; Tang, G.; Fisher, B.; Paik, S.; Shak, S.; Costantino, J.P.; Watson, D.; Geyer, C.E., Jr.; Wickerham, D.L.; Wolmark, N. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: Results from NSABP B-14 and NSABP B-20. J. Clin. Oncol. 2010, 28, 1677–1683. [Google Scholar] [CrossRef]
- Mamounas, E.P.; Liu, Q.; Paik, S.; Baehner, F.L.; Tang, G.; Jeong, J.H.; Kim, S.R.; Butler, S.M.; Jamshidian, F.; Cherbavaz, D.B.; et al. 21-gene recurrence score and locoregional recurrence in node-positive/ER-positive breast cancer treated with chemo-endocrine therapy. J. Natl. Caner Inst. 2017, 109, djw259. [Google Scholar] [CrossRef] [PubMed]
- Chevli, N.; Haque, W.; Tran, K.T.; Farach, A.M.; Schwartz, M.R.; Hatch, S.S.; Butler, E.B.; Teh, B.S. Role of 21-gene recurrence score in predicting prognostic benefit of radiation therapy after breast-conserving surgery for T1N0 breast cancer. Pr. Radiat Oncol. 2023, 13, e230–e238. [Google Scholar] [CrossRef] [PubMed]
- Chevli, N.; Haque, W.; Tran, K.T.; Farach, A.M.; Schwartz, M.R.; Hatch, S.S.; Butler, E.B.; Teh, B.S. 21-gene recurrence score predictive for prognostic benefit of radiotherapy in patients age ≥ 70 with T1N0 ER/PR + HER2-breast cancer treated with breast conserving surgery and endocrine therapy. Radiother. Oncol. 2022, 174, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Fitzal, F.; Filipits, M.; Fesl, C.; Rudas, M.; Greil, R.; Balic, M.; Moinfar, F.; Herz, W.; Dubsky, P.; Bartsch, R.; et al. PAM-50 predicts local recurrence after breast cancer surgery in postmenopausal patients with ER+/HER2-disease: Results from 1204 patients in the randomized ABCSG-8 trial. Br. J. Surg. 2021, 108, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, M.; Fyles, A.; Liu, F.-F.; McCready, D.; Shi, W.; Rey-McIntyre, K.; Chang, S.L.; Feng, F.Y.; Speers, C.W.; Pierce, L.J.; et al. Development and validation of a genomic profile for the omission of local adjuvant radiation in breast cancer. J. Clin. Oncol. 2023, 41, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Eschrich, S.A.; Pramana, J.; Zhang, H.; Zhao, H.; Boulware, D.; Lee, J.-H.; Bloom, G.; Rocha-Lima, C.; Kelley, S.; Calvin, D.P.; et al. A gene expression model of intrinsic tumor radiosensitivity: Prediction of response and prognosis after chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 489–496. [Google Scholar] [CrossRef]
- Speers, C.; Zhao, S.; Liu, M.; Bartelink, H.; Pierce, L.J.; Feng, F.Y. Development and validation of a novel radiosensitivity signature in human breast cancer. Clin. Cancer Res. 2015, 21, 3667–3677. [Google Scholar] [CrossRef]
- Speers, C.; Zhao, S.; Liu, M.; Bartelink, H.; Pierce, L.J.; Feng, F.Y. Integrating radiosensitivity and immune gene signatures for predicting benefit of radiotherapy in breast cancer. Clin. Cancer Res. 2018, 24, 4754–4762. [Google Scholar]
- The IDEA Study (Individualized Decisions for Endocrine Therapy Alone); Clinicaltrials.Gov. Published: Washington, DC, USA, 2015. Available online: http://clinicaltrials.gov/show/NCT02400190 (accessed on 29 July 2023).
- PRECISION Trial (Profiling Early Breast Cancer for Radiotherapy Omission): A Phase II Study of Breast-Conserving Surgery without Adjuvant Radiotherapy for Favorable-Risk Breast Cancer; Clinicaltrials.Gov. Published: Washington, DC, USA, 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT02653755 (accessed on 29 July 2023).
- Kirwan, C.; Coles, C.; Bliss, J.; Kilburn, L.; Fox, L.; Cheang, M.; Griffin, C.; Francis, A.; Kirby, A.; Ah-See, M.; et al. It’s PRIMETIME. Postoperative avoidance of radiotherapy: Biomarker selection of women at very low risk of local recurrence. Clin. Oncol. 2016, 28, 594–596. [Google Scholar] [CrossRef]
- De-Escalation of Breast Radiation Trial for Hormone Sensitive: HER-2 Negative, Oncotype Recurrence Score Less than or Equal to 18 Breast Cancer (DEBRA); Clinicialtrials.Gov. Published: Washington, DC, USA, 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04852887 (accessed on 29 July 2023).
- Examining Personalized Radiation Therapy for Low-Risk Early Breast Cancer (EXPERT); Clinicaltrials.Gov. Published: Washington, DC, USA, 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT0-2889874 (accessed on 29 July 2023).
- Overgaard, M.; Nielsen, H.M.; Tramm, T.; Højris, I.; Grantzau, T.L.; Alsner, J.; Offersen, B.V.; Overgaard, J. Postmastectomy radiotherapy in high-risk breast cancer patients given adjuvant systemic therapy. A 30-year long-term report from the Danish breast cancer cooperative group DBCG 82bc trial. Radiother. Oncol. 2022, 170, 4–13. [Google Scholar] [CrossRef]
- Ragaz, J.; Olivotto, I.A.; Spinelli, J.J.; Phillips, N.; Jackson, S.M.; Wilson, K.S.; Knowling, M.A.; Coppin, C.M.; Weir, L.; Gelmon, K.; et al. Locoregional radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy 20-year results of the British Columbia randomized trial. J. Natl. Cancer Inst. 2005, 97, 116–126. [Google Scholar] [CrossRef]
- Regional radiotherapy in Biomarker Low-Risk Positive and T3N0 Breast Cancer (TAILOR RT); Clinicaltrials.Gov. Published: Washington, DC, USA, 2018. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT0-03488693 (accessed on 26 August 2023).
- Mougalian, S.S.; Soulos, P.R.; Killelea, B.K.; Lannin, D.R.; Abu-Khalaf, M.M.; DiGiovanna, M.P.; Sanft, T.B.; Pusztai, L.; Gross, C.P.; Chagpar, A.B. Use of neoadjuvant chemotherapy for patients with Stage I to III breast cancer in the United States. Cancer 2015, 121, 2544–2552. [Google Scholar] [CrossRef]
- Haque, W.; Singh, A.; Verma, V.; Schwartz, M.R.; Chevli, N.; Hatch, S.; Desai, M.; Butler, E.B.; Arentz, C.; Farach, A.; et al. Postmastectomy radiation therapy following pathologic complete nodal response to neoadjuvant chemotherapy: A prelude to NSABP B-51. Radiother. Oncol. 2021, 162, 52–59. [Google Scholar] [CrossRef]
- Standard of Comprehensive Radiation Therapy in Treating Patients with Early-Stage Breast Cancer Previously Treated with Chemotherapy and Surgery; Clinicaltrials.Gov. Published: Washington, DC, USA, 2018. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT01872975 (accessed on 27 August 2023).
- Testing Radiation and HER2-Targeted Therapy versus HER2-Targeted Therapy Alone for Low-Risk HER2-Positive Breast Cancer (HERO); Clinicaltrials.Gov. Published: Washington, DC, USA, 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05705401 (accessed on 3 September 2023).
- Hypofractionated Radiation Therapy after Mastectomy in Preventing Recurrence in Patients with Stage IIa-IIIa Breast Cancer; Clinicaltrials.Gov. Published: Washington, DC, USA, 2018. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03414970 (accessed on 3 September 2023).
IDEA | PRECISION | PRIMETIME | DEBRA/NRG BR007 | EXPERT | HERO/NRG BR 008 | |
---|---|---|---|---|---|---|
Target patient accrual | 202 | 672 | 2400 | 1670 | 1167 | 1300 |
Estimated date of completion | 2026 | 2026 | 2027 | 2026 | 2024 | 2034 |
Age of patients | 50–69 | 50–75 | ≥60 | 50–70 | ≥50 | ≥40 |
Inclusion | ER+HER2-, RS ≤ 18, T1N0 | ER+HER2-, T1N0, PAM 50 | ER+HER2-, T1N0, IHC4+C | ER+HER2-, T1N0, RS ≤ 18 | ER+HER2-, T1N0, PAM 50 | HER2+, T1N0 or (if neoadjuvant) T2N0 (<3 cm), HER2-directed therapy |
Treatment arms | Single-arm, prospective, omission | Omission if low PAM 50; radiation if intermediate or high PAM 50 | Omission if very low IHC4+C; radiation if low, intermediate, or high IHC4+C | Observation or radiation | Observation or radiation | Observation or radiation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, W.; Butler, E.B.; Teh, B.S. Personalized Radiation Therapy for Breast Cancer. Curr. Oncol. 2024, 31, 1588-1599. https://doi.org/10.3390/curroncol31030121
Haque W, Butler EB, Teh BS. Personalized Radiation Therapy for Breast Cancer. Current Oncology. 2024; 31(3):1588-1599. https://doi.org/10.3390/curroncol31030121
Chicago/Turabian StyleHaque, Waqar, Edward Brian Butler, and Bin S. Teh. 2024. "Personalized Radiation Therapy for Breast Cancer" Current Oncology 31, no. 3: 1588-1599. https://doi.org/10.3390/curroncol31030121
APA StyleHaque, W., Butler, E. B., & Teh, B. S. (2024). Personalized Radiation Therapy for Breast Cancer. Current Oncology, 31(3), 1588-1599. https://doi.org/10.3390/curroncol31030121