High Fracture Risk of Femoral Bone Metastasis Treated with Palliative Radiotherapy in Recent Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Evaluation
2.3. Bone-Modifying Agents
2.4. Statistical Analyses
3. Results
3.1. Clinical Characteristics
3.2. Risk of Pathological Fracture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landis, S.H.; Murray, T.; Bolden, S.; Wingo, P.A. Cancer statistics, 1998. CA Cancer J. Clin. 1998, 48, 6–29. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, E.F.; Yang, J.C.; Mathis, N.J.; Marine, C.B.; White, C.; Zhang, Z.; Barker, C.A.; Kotecha, R.; McIntosh, A.; Vaynrub, M.; et al. Prophylactic radiation therapy versus standard of care for patients with high-risk asymptomatic bone metastases: A multicenter, randomized phase II clinical trial. J. Clin. Oncol. 2024, 42, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Rennert, G.; Pinchev, M.; Gronich, N.; Saliba, W.; Flugelman, A.; Lavi, I.; Goldberg, H.; Fried, G.; Steiner, M.; Bitterman, A.; et al. Oral bisphosphonates and improved survival of breast cancer. Clin. Cancer Res. 2017, 23, 1684–1689. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.E.; De Hoedt, A.M.; Aronson, W.J.; Kane, C.J.; Amling, C.L.; Cooperberg, M.R.; Terris, M.K.; Divers, C.H.; Valderrama, A.; Freedland, S.J. Do skeletal-related events predict overall survival in men with metastatic castration-resistant prostate cancer? Prostate Cancer Prostatic Dis. 2016, 19, 380–384. [Google Scholar] [CrossRef]
- Fidler, M. Incidence of fracture through metastases in long bones. Acta Orthop. Scand. 1981, 52, 623–627. [Google Scholar] [CrossRef]
- Mirels, H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin. Orthop. Relat. Res. 1989, 249, 256–264. [Google Scholar] [CrossRef]
- Rosen, L.S.; Gordon, D.H.; Dugan, W.; Major, P.; Eisenberg, P.D.; Provencher, L.; Kaminski, M.; Simeone, J.; Seaman, J.; Chen, B.L.; et al. Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion. Cancer 2004, 100, 36–43. [Google Scholar] [CrossRef]
- Saad, F.; Gleason, D.M.; Murray, R.; Tchekmedyian, S.; Venner, P.; Lacombe, L.; Chin, J.L.; Vinholes, J.J.; Goas, J.A.; Chen, B.; et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl. Cancer Inst. 2002, 94, 1458–1468. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, D.; Lu, Y.; Curtis, D.; Wen, X.; Yao, Y.; Zhao, H. Systematic literature review and network meta-analysis comparing bone-targeted agents for the prevention of skeletal-related events in cancer patients with bone metastasis. Oncologist 2015, 20, 440–449. [Google Scholar] [CrossRef]
- Harada, H.; Katagiri, H.; Kamata, M.; Yoshioka, Y.; Asakura, H.; Hashimoto, T.; Furutani, K.; Takahashi, M.; Sakahara, H.; Nishimura, T. Radiological response and clinical outcome in patients with femoral bone metastases after radiotherapy. J. Radiat. Res. 2010, 51, 131–136. [Google Scholar] [CrossRef]
- Van der Linden, Y.M.; Dijkstra, P.D.; Kroon, H.M.; Lok, J.J.; Noordijk, E.M.; Leer, J.W.; Marijnen, C.A. Comparative analysis of risk factors for pathological fracture with femoral metastases. J. Bone Jt. Surg. Br. 2004, 86, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Tatar, Z.; Soubrier, M.; Dillies, A.F.; Verrelle, P.; Boisgard, S.; Lapeyre, M. Assessment of the risk factors for impending fractures following radiotherapy for long bone metastases using CT scan-based virtual simulation: A retrospective study. Radiat. Oncol. 2014, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L.S.; Gordon, D.; Tchekmedyian, S.; Yanagihara, R.; Hirsh, V.; Krzakowski, M.; Pawlicki, M.; de Souza, P.; Zheng, M.; Urbanowitz, G.; et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: A phase III, double-blind, randomized trial--the zoledronic acid Lung Cancer and Other Solid Tumors Study Group. J. Clin. Oncol. 2003, 21, 3150–3157. [Google Scholar] [CrossRef] [PubMed]
- Kohno, N.; Aogi, K.; Minami, H.; Nakamura, S.; Asaga, T.; Iino, Y.; Watanabe, T.; Goessl, C.; Ohashi, Y.; Takashima, S. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: A randomized, placebo-controlled trial. J. Clin. Oncol. 2005, 23, 3314–3321. [Google Scholar] [CrossRef]
- Makita, K.; Hamamoto, Y.; Kanzaki, H.; Kataoka, M.; Yamamoto, S.; Nagasaki, K.; Ishikawa, H.; Takata, N.; Tsuruoka, S.; Uwatsu, K.; et al. Local control of bone metastases treated with external beam radiotherapy in recent years: A multicenter retrospective study. Radiat. Oncol. 2021, 16, 225. [Google Scholar] [CrossRef]
- Makita, K.; Hamamoto, Y.; Kanzaki, H.; Nagasaki, K.; Kozuki, T. Local control of bone metastasis treated with palliative radiotherapy in patients with lung cancer: An observational retrospective cohort study. Oncol. Lett. 2023, 26, 303. [Google Scholar] [CrossRef]
- Makita, K.; Hamamoto, Y.; Kanzaki, H.; Nagasaki, K.; Takata, N.; Tsuruoka, S.; Uwatsu, K.; Kido, T. Factors affecting local control of bone metastases from radioresistant tumors treated with palliative external beam radiotherapy. Discov. Oncol. 2023, 14, 74. [Google Scholar] [CrossRef]
- Groenen, K.H.; Pouw, M.H.; Hannink, G.; Hosman, A.J.F.; van der Linden, Y.M.; Verdonschot, N.; Tanck, E. The effect of radiotherapy, and radiotherapy combined with bisphosphonates or RANK ligand inhibitors on bone quality in bone metastases. A systematic review. Radiother. Oncol. 2016, 119, 194–201. [Google Scholar] [CrossRef]
- Arrington, S.A.; Damron, T.A.; Mann, K.A.; Allen, M.J. Concurrent administration of zoledronic acid and irradiation leads to improved bone density, biomechanical strength, and microarchitecture in a mouse model of tumor-induced osteolysis. J. Surg. Oncol. 2008, 97, 284–290. [Google Scholar] [CrossRef]
- Arrington, S.A.; Fisher, E.R.; Willick, G.E.; Mann, K.A.; Allen, M.J. Anabolic and antiresorptive drugs improve trabecular microarchitecture and reduce fracture risk following radiation therapy. Calcif. Tissue Int. 2010, 87, 263–272. [Google Scholar] [CrossRef]
- Krempien, R.; Huber, P.E.; Harms, W.; Treiber, M.; Wannenmacher, M.; Krempien, B. Combination of early bisphosphonate administration and irradiation leads to improved remineralization and restabilization of osteolytic. Cancer 2003, 98, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, Y.M.; Kroon, H.M.; Dijkstra, S.P.; Lok, J.J.; Noordijk, E.M.; Leer, J.W.; Marijnen, C.A.M. Simple radiographic parameter predicts fracturing in metastatic femoral bone lesions: Results from a randomised trial. Radiother. Oncol. 2003, 69, 21–31. [Google Scholar] [CrossRef] [PubMed]
- van der Wal, C.W.P.G.; Eggermont, F.; Fiocco, M.; Kroon, H.M.; Ayu, O.; Slot, A.; Snyers, A.; Rozema, T.; Verdonschot, N.J.J.; Dijkstra, P.D.S.; et al. Axial cortical involvement of metastatic lesions to identify impending femoral fractures; a clinical validation study. Radiother. Oncol. 2020, 144, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Jacofsky, D.J.; Haidukewych, G.J. Management of pathologic fractures of the proximal femur: State of the art. J. Orthop. Trauma 2004, 18, 459–469. [Google Scholar] [CrossRef]
- Axelrod, D.; Gazendam, A.M.; Ghert, M. The surgical management of proximal femoral metastases: A narrative review. Curr. Oncol. 2021, 28, 3748–3757. [Google Scholar] [CrossRef]
- Stopeck, A.T.; Lipton, A.; Body, J.J.; Steger, G.G.; Tonkin, K.; de Boer, R.H.; Lichinitser, M.; Fujiwara, Y.; Yardley, D.A.; Viniegra, M.; et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: A randomized, doubleblind study. J. Clin. Oncol. 2010, 28, 5132–5139. [Google Scholar] [CrossRef]
- Fizazi, K.; Carducci, M.; Smith, M.; Damião, R.; Brown, J.; Karsh, L.; Milecki, P.; Shore, N.; Rader, M.; Wang, H.; et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet 2011, 377, 813–822. [Google Scholar] [CrossRef]
- Henry, D.H.; Costa, L.; Goldwasser, F.; Hirsh, V.; Hungria, V.; Prausova, J.; Scagliotti, G.V.; Sleeboom, H.; Spencer, A.; Vadhan-Raj, S.; et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 2011, 29, 1125–1132. [Google Scholar] [CrossRef]
- Henry, D.; Vadhan-Raj, S.; Hirsh, V.; von Moos, R.; Hungria, V.; Costa, L.; Woll, P.J.; Scagliotti, G.; Smith, G.; Feng, A.; et al. Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: An analysis of data from patients with solid tumors. Multinatl. Support. Care Cancer 2014, 22, 679–687. [Google Scholar] [CrossRef]
- Imai, H.; Saijo, K.; Yamada, H.; Ohuchi, K.; Okada, Y.; Komine, K.; Takahashi, M.; Takahashi, S.; Takahashi, M.; Shimodaira, H.; et al. Efficacy and safety of denosumab versus zoledronic acid in delaying skeletal-related events in patients with gastrointestinal cancer, pancreas-biliary system cancer, and other rare cancers. J. Bone Oncol. 2017, 6, 37–40. [Google Scholar] [CrossRef]
Characteristic | No. of Lesions | |
---|---|---|
Age (years) | 33–82 (median 64) | |
Sex | Female | 41 (46%) |
Male | 49 (54%) | |
Primary tumor | Lung | 42 (47%) |
Breast | 13 (14%) | |
Esophagus | 10 (11%) | |
Renal | 5 (6%) | |
Pancreatic | 4 (4%) | |
Liver | 3 (3%) | |
Large intestine | 3 (3%) | |
Prostate | 2 (2%) | |
Uterus | 2 (2%) | |
Stomach | 2 (2%) | |
Other | 4 (4%) | |
Mirels’ scores | 8 points | 37 (41%) |
9 points | 53 (59%) | |
Cortical involvement | ≥30 mm | 42 (47%) |
<30 mm | 48 (53%) | |
BMA administration | Yes | 65 (72%) |
No | 25 (28%) | |
Chemotherapy | Yes | 51 (57%) |
No | 39 (43%) | |
Opioid use | Yes | 51 (57%) |
No | 39 (43%) | |
Opioid (daily oral morphine equivalent; mg) | 10 (0–120) | |
Fractionation schema | 8 Gy in 1 fraction | 18 (20%) |
20 Gy in 5 fractions | 27 (30%) | |
30 Gy in 10 fractions | 45 (50%) |
Characteristic | No. of Lesions | |
---|---|---|
Age (years) | 33–82 (median 64) | |
Sex | Female | 12 (46%) |
Male | 14 (54%) | |
Primary tumor | Lung | 12 (46%) |
Breast | 3 (12%) | |
Esophagus | 1 (4%) | |
Renal | 3 (12%) | |
Pancreatic | 1 (4%) | |
Liver | 2 (8%) | |
Large intestine | 1 (4%) | |
Prostate | 1 (4%) | |
Uterus | 1 (4%) | |
Stomach | 0 (0%) | |
Other | 0 (0%) | |
Mirels’ scores | 8 points | 7 (27%) |
9 points | 19 (73%) | |
Cortical involvement | ≥30 mm | 17 (65%) |
<30 mm | 9 (35%) | |
BMA administration | Yes | 17 (65%) |
No | 9 (35%) | |
Opioid use | Yes | 14 (54%) |
No | 12 (46%) | |
Opioid (daily oral morphine equivalent; mg) | 15 (0–30) | |
Fractionation schema | 8 Gy in 1 fraction | 3 (12%) |
20 Gy in 5 fractions | 9 (35%) | |
30 Gy in 10 fractions | 14 (54%) |
Total (n = 90) | Fracture (n = 26) | No Fracture (n = 64) | p-Value | |
---|---|---|---|---|
Age (years) | 33–82 (median 64) | 37–82 (median 64) | 33–82 (median 65) | 0.39 |
≥65 | 44 (49%) | 12 (46%) | 32 (50%) | 0.82 |
<65 | 46 (51%) | 14 (54%) | 32 (50%) | |
Sex | ||||
Female | 41 (46%) | 12 (46%) | 29 (45%) | >0.99 |
Male | 49 (54%) | 14 (54%) | 35 (55%) | |
Primary tumor | ||||
Lung or breast | 55 (%) | 15 (58%) | 40 (63%) | 0.81 |
Others | 35 | 11 (42%) | 24 (37%) | |
Mirels’ scores | ||||
8 points | 37 (41%) | 7 (27%) | 30 (47%) | 0.10 |
9 points | 53 (59%) | 19 (73%) | 34 (53%) | |
Cortical involvement | ||||
≥30 mm | 42 (47%) | 17 (65%) | 25 (39%) | 0.02 |
<30 mm | 48 (53%) | 9 (35%) | 39 (61%) | |
BMA administration | ||||
Yes | 65 (72%) | 17 (65%) | 48 (75%) | 0.44 |
No | 25 (28%) | 9 (35%) | 16 (25%) | |
Opioid administration | ||||
Yes | 51 (57%) | 14 (54%) | 37 (58%) | 0.82 |
No | 39 (43%) | 12 (46%) | 27 (42%) | |
Radiotherapy schedule | ||||
8 Gy/1 fr | 18 (20%) | 3 (12%) | 15 (23%) | 0.25 |
20 Gy/5 fr or 30 Gy/10 fr | 72 (80%) | 23 (88%) | 49 (77%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makita, K.; Hojo, H.; Oyoshi, H.; Fujisawa, T.; Nakamura, M.; Uchida, G.; Koike, Y.; Zhou, Y.; Tomizawa, K.; Fukushi, K.; et al. High Fracture Risk of Femoral Bone Metastasis Treated with Palliative Radiotherapy in Recent Years. Curr. Oncol. 2024, 31, 7437-7444. https://doi.org/10.3390/curroncol31120549
Makita K, Hojo H, Oyoshi H, Fujisawa T, Nakamura M, Uchida G, Koike Y, Zhou Y, Tomizawa K, Fukushi K, et al. High Fracture Risk of Femoral Bone Metastasis Treated with Palliative Radiotherapy in Recent Years. Current Oncology. 2024; 31(12):7437-7444. https://doi.org/10.3390/curroncol31120549
Chicago/Turabian StyleMakita, Kenji, Hidehiro Hojo, Hidekazu Oyoshi, Takeshi Fujisawa, Masaki Nakamura, Gyo Uchida, Yume Koike, Yuzheng Zhou, Kento Tomizawa, Keiko Fukushi, and et al. 2024. "High Fracture Risk of Femoral Bone Metastasis Treated with Palliative Radiotherapy in Recent Years" Current Oncology 31, no. 12: 7437-7444. https://doi.org/10.3390/curroncol31120549
APA StyleMakita, K., Hojo, H., Oyoshi, H., Fujisawa, T., Nakamura, M., Uchida, G., Koike, Y., Zhou, Y., Tomizawa, K., Fukushi, K., & Zenda, S. (2024). High Fracture Risk of Femoral Bone Metastasis Treated with Palliative Radiotherapy in Recent Years. Current Oncology, 31(12), 7437-7444. https://doi.org/10.3390/curroncol31120549