Impact of Bone-Modifying Agents on Post-Bone Metastasis Survival Across Cancer Types
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.-F.; Shen, J.; Li, X.; Rengan, R.; Silvestris, N.; Wang, M.; Derosa, L.; Zheng, X.; Belli, A.; Zhang, X.-L.; et al. Incidence of Patients with Bone Metastases at Diagnosis of Solid Tumors in Adults: A Large Population-Based Study. Ann. Transl. Med. 2020, 8, 482. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.K.; Wade, S.W.; Reich, A.; Pirolli, M.; Liede, A.; Lyman, G.H. Incidence of Bone Metastases in Patients with Solid Tumors: Analysis of Oncology Electronic Medical Records in the United States. BMC Cancer 2018, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, M.; Jensen, A.Ø.; Jacobsen, J.B.; Cetin, K.; Fryzek, J.P.; Sørensen, H.T. Skeletal Related Events, Bone Metastasis and Survival of Prostate Cancer: A Population Based Cohort Study in Denmark (1999 to 2007). J. Urol. 2010, 184, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Sathiakumar, N.; Delzell, E.; Morrisey, M.A.; Falkson, C.; Yong, M.; Chia, V.; Blackburn, J.; Arora, T.; Kilgore, M.L. Mortality Following Bone Metastasis and Skeletal-Related Events among Men with Prostate Cancer: A Population-Based Analysis of US Medicare Beneficiaries, 1999–2006. Prostate Cancer Prostatic Dis. 2011, 14, 177–183. [Google Scholar] [CrossRef]
- Yong, M.; Jensen, A.Ø.; Jacobsen, J.B.; Nørgaard, M.; Fryzek, J.P.; Sørensen, H.T. Survival in Breast Cancer Patients with Bone Metastases and Skeletal-Related Events: A Population-Based Cohort Study in Denmark (1999–2007). Breast Cancer Res. Treat. 2011, 129, 495–503. [Google Scholar] [CrossRef]
- Fujimoto, D.; Ueda, H.; Shimizu, R.; Kato, R.; Otoshi, T.; Kawamura, T.; Tamai, K.; Shibata, Y.; Matsumoto, T.; Nagata, K.; et al. Features and Prognostic Impact of Distant Metastasis in Patients with Stage IV Lung Adenocarcinoma Harboring EGFR Mutations: Importance of Bone Metastasis. Clin. Exp. Metastasis 2014, 31, 543–551. [Google Scholar] [CrossRef]
- Wardley, A.; Davidson, N.; Barrett-Lee, P.; Hong, A.; Mansi, J.; Dodwell, D.; Murphy, R.; Mason, T.; Cameron, D. Zoledronic Acid Significantly Improves Pain Scores and Quality of Life in Breast Cancer Patients with Bone Metastases: A Randomised, Crossover Study of Community vs Hospital Bisphosphonate Administration. Br. J. Cancer 2005, 92, 1869–1876. [Google Scholar] [CrossRef]
- Liu, C.-Q.; Shen, C.-K.; Du, Y.-X.; Li, Z.-M.; Shi, X.; Wang, Y.; Wei, W.-J. Survival Outcome and Optimal Candidates of Primary Tumor Resection for Patients with Metastatic Medullary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2024, 109, 2979–2985. [Google Scholar] [CrossRef]
- Suresh Babu, M.C.; Garg, S.; Lakshmaiah, K.C.; Govind Babu, K.; Kumar, R.; Loknatha, D.; Abraham, L.J.; Rajeev, L.K.; Lokesh, K.N.; Rudresha, A.H.; et al. Colorectal Cancer Presenting as Bone Metastasis. J. Cancer Res. Ther. 2017, 13, 80–83. [Google Scholar]
- Lee, C.H.; Kang, M.; Kwak, C.; Ko, Y.H.; Kim, J.K.; Park, J.Y.; Bang, S.; Seo, S., II; Suh, J.; Song, W.; et al. Sites of Metastasis and Survival in Metastatic Renal Cell Carcinoma: Results from the Korean Renal Cancer Study Group Database. J. Korean Med. Sci. 2024, 39, 1–13. [Google Scholar] [CrossRef]
- Dunlop, D.D.; Hughes, S.L.; Manheim, L.M. Disability in Activities of Daily Living: Patterns of Change and a Hierarchy of Disability. Am. J. Public Health 1997, 87, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Neo, J.; Fettes, L.; Gao, W.; Higginson, I.J.; Maddocks, M. Disability in Activities of Daily Living among Adults with Cancer: A Systematic Review and Meta-Analysis. Cancer Treat. Rev. 2017, 61, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Hirahata, M.; Imanishi, J.; Fujinuma, W.; Abe, S.; Inui, T.; Ogata, N.; Iimuro, S.; Fujita, R.; Sato, K.; Tokizaki, T.; et al. Cancer May Accelerate Locomotive Syndrome and Deteriorate Quality of Life: A Single-Centre Cross-Sectional Study of Locomotive Syndrome in Cancer Patients. Int. J. Clin. Oncol. 2023, 28, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Wu, Y.-L.; Ahn, M.-J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; et al. Osimertinib or Platinum–Pemetrexed in EGFR T790M–Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Whitefield, S.; Ilan, M.B.; Lazarovici, T.S.; Friedlander-Barenboim, S.; Kassem, R.; Yarom, N. Medication-Related Osteonecrosis of the Jaw: A Cross-Sectional Study on the Prevalence of Cutaneous Manifestations and the Primary Care Physician’s Role in Its Early Diagnosis. Am. J. Med. 2024, 137, 266–272. [Google Scholar] [CrossRef]
- Coleman, R.; Hadji, P.; Body, J.-J.; Santini, D.; Chow, E.; Terpos, E.; Oudard, S.; Bruland, Ø.; Flamen, P.; Kurth, A.; et al. Bone Health in Cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2020, 31, 1650–1663. [Google Scholar] [CrossRef]
- Ebrahimpour, A.; Sadighi, M.; Hoveidaei, A.H.; Chehrassan, M.; Minaei, R.; Vahedi, H.; Mortazavi, S.M.J. Surgical Treatment for Bisphosphonate-Related Atypical Femoral Fracture: A Systematic Review. Arch. Bone Jt. Surg. 2021, 9, 283–296. [Google Scholar]
- Nisi, M.; Gennai, S.; Graziani, F.; Barone, A.; Izzetti, R. Clinical and Radiologic Treatment Outcomes of Implant Presence Tirggered-MRONJ: Systematic Review of Literature. Oral Dis. 2024, 30, 5255–5267. [Google Scholar] [CrossRef]
- Desautels, D.N.; Harlos, C.H.; Jerzak, K.J. Role of Bone-Modifying Agents in Advanced Cancer. Ann. Cardiothorac. Surg. 2020, 9, 1314–1323. [Google Scholar] [CrossRef]
- Chen, C.; Li, R.; Yang, T.; Ma, L.; Zhou, S.; Li, M.; Zhou, Y.; Cui, Y. Denosumab Versus Zoledronic Acid in the Prevention of Skeletal-Related Events in Vulnerable Cancer Patients: A Meta-Analysis of Randomized, Controlled Trials. Clin. Ther. 2020, 42, 1494–1507.e1. [Google Scholar] [CrossRef] [PubMed]
- Kohno, N.; Aogi, K.; Minami, H.; Nakamura, S.; Asaga, T.; Iino, Y.; Watanabe, T.; Goessl, C.; Ohashi, Y.; Takashima, S. Zoledronic Acid Significantly Reduces Skeletal Complications Compared with Placebo in Japanese Women with Bone Metastases from Breast Cancer: A Randomized, Placebo-Controlled Trial. J. Clin. Oncol. 2005, 23, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- O’Carrigan, B.; Wong, M.H.F.; Willson, M.L.; Stockler, M.R.; Pavlakis, N.; Goodwin, A. Bisphosphonates and Other Bone Agents for Breast Cancer. Cochrane Database Syst. Rev. 2017, 2017, CD003474. [Google Scholar] [CrossRef] [PubMed]
- Stopeck, A.T.; Lipton, A.; Body, J.J.; Steger, G.G.; Tonkin, K.; De Boer, R.H.; Lichinitser, M.; Fujiwara, Y.; Yardley, D.A.; Viniegra, M.; et al. Denosumab Compared with Zoledronic Acid for the Treatment of Bone Metastases in Patients with Advanced Breast Cancer: A Randomized, Double-Blind Study. J. Clin. Oncol. 2010, 28, 5132–5139. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software ‘EZR’ for Medical Statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Pan, Y.; Jin, H.; Chen, W.; Yu, Z.; Ye, T.; Zheng, Y.; Weng, Z.; Wang, F. Docetaxel with or without Zoledronic Acid for Castration-Resistant Prostate Cancer. Int. Urol. Nephrol. 2014, 46, 2319–2326. [Google Scholar] [CrossRef]
- Qin, A.; Zhao, S.; Miah, A.; Wei, L.; Patel, S.; Johns, A.; Grogan, M.; Bertino, E.M.; He, K.; Shields, P.G.; et al. Bone Metastases, Skeletal-Related Events, and Survival in Patients with Metastatic Non–Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. J. Natl. Compr. Cancer Netw. 2021, 19, 915–921. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Hirsh, V.; Siena, S.; Henry, D.H.; Woll, P.J.; Manegold, C.; Solal-Celigny, P.; Rodriguez, G.; Krzakowski, M.; Mehta, N.D.; et al. Overall Survival Improvement in Patients with Lung Cancer and Bone Metastases Treated with Denosumab Versus Zoledronic Acid: Subgroup Analysis from a Randomized Phase 3 Study. J. Thorac. Oncol. 2012, 7, 1823–1829. [Google Scholar] [CrossRef]
- Kaku, T.; Oh, Y.; Sato, S.; Koyanagi, H.; Hirai, T.; Yuasa, M.; Yoshii, T.; Nakagawa, T.; Miyake, S.; Okawa, A. Incidence of Atypical Femoral Fractures in the Treatment of Bone Metastasis: An Alert Report. J. Bone Oncol. 2020, 23, 100301. [Google Scholar] [CrossRef]
- Arnold, M.; Rutherford, M.J.; Bardot, A.; Ferlay, J.; Andersson, T.M.L.; Myklebust, T.Å.; Tervonen, H.; Thursfield, V.; Ransom, D.; Shack, L.; et al. Progress in Cancer Survival, Mortality, and Incidence in Seven High-Income Countries 1995–2014 (ICBP SURVMARK-2): A Population-Based Study. Lancet. Oncol. 2019, 20, 1493–1505. [Google Scholar] [CrossRef]
- Hong, S.; Youk, T.; Lee, S.J.; Kim, K.M.; Vajdic, C.M. Bone Metastasis and Skeletal-Related Events in Patients with Solid Cancer: A Korean Nationwide Health Insurance Database Study. PLoS ONE 2020, 15, e0234927. [Google Scholar] [CrossRef] [PubMed]
- Svensson, E.; Christiansen, C.F.; Ulrichsen, S.P.; Rørth, M.R.; Sørensen, H.T. Survival after Bone Metastasis by Primary Cancer Type: A Danish Population-Based Cohort Study. BMJ Open 2017, 7, e016022. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, H.; Yamada, K.; Sugiura, T.; Hida, T.; Mitsudomi, T. Predictors of Survival in Patients with Bone Metastasis of Lung Cancer. Clin. Orthop. Relat. Res. 2008, 466, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Bulfamante, A.M.; Lori, E.; Bellini, M.I.; Bolis, E.; Lozza, P.; Castellani, L.; Saibene, A.M.; Pipolo, C.; Fuccillo, E.; Rosso, C.; et al. Advanced Differentiated Thyroid Cancer: A Complex Condition Needing a Tailored Approach. Front. Oncol. 2022, 12, 954759. [Google Scholar] [CrossRef]
- Kanaoka, K.; Sumikawa, H.; Oyamada, S.; Tamiya, A.; Inagaki, Y.; Taniguchi, Y.; Nakao, K.; Matsuda, Y.; Okishio, K. Osteoblastic Bone Reaction in Non-Small Cell Lung Cancer Harboring Epidermal Growth Factor Receptor Mutation Treated with Osimertinib. BMC Cancer 2023, 23, 834. [Google Scholar] [CrossRef]
- Sun, W.; Li, M.; Gu, Y.; Sun, Z.; Qiu, Z.; Zhou, Y. Diagnostic Value of Whole-Body DWI With Background Body Suppression Plus Calculation of Apparent Diffusion Coefficient at 3 T Versus 18 F-FDG PET/CT for Detection of Bone Metastases. Am. J. Roentgenol. 2020, 214, 446–454. [Google Scholar] [CrossRef]
- Yamamoto, S.; Yoshida, S.; Ishii, C.; Takahara, T.; Arita, Y.; Fukushima, H.; Tanaka, H.; Yokoyama, M.; Matsuoka, Y.; Fujii, Y. Metastatic Diffusion Volume Based on Apparent Diffusion Coefficient as a Prognostic Factor in Castration-Resistant Prostate Cancer. J. Magn. Reson. Imaging 2021, 54, 401–408. [Google Scholar] [CrossRef]
Univariate | Multivariate | ||||||||
---|---|---|---|---|---|---|---|---|---|
Factor | Number | Median Post-Bone Metastasis Survival (Months) | Hazard Ratio | 95% CI | p-Value | Hazard Ratio | 95% CI | p-Value | |
Cancer Type | Thyroid | 11 | 97.2 | 0.22 | 0.07–0.72 | <0.05 | 0.22 | 0.07–0.70 | <0.05 |
Breast | 84 | 51.5 | 0.39 | 0.27–0.57 | <0.001 | 0.45 | 0.30–0.66 | <0.001 | |
Prostate | 48 | 47.2 | 0.34 | 0.21–0.54 | <0.001 | 0.36 | 0.22–0.59 | <0.001 | |
Kidney | 34 | 38.8 | 0.48 | 0.29–0.79 | <0.005 | 0.47 | 0.28–0.78 | <0.005 | |
NSCLC | 106 | 17.6 | Reference | Reference | |||||
Bone and soft tissue | 27 | 11.9 | 1.04 | 0.61–1.76 | 0.89 | 0.93 | 0.54–1.59 | 0.78 | |
Liver | 19 | 10.8 | 1.48 | 0.83–2.62 | 0.18 | 1.42 | 0.80–2.53 | 0.23 | |
Colorectum | 30 | 8.8 | 1.56 | 0.96–2.54 | 0.07 | 1.44 | 0.88–2.35 | 0.15 | |
SCLC | 18 | 8.6 | 1.44 | 0.78–2.65 | 0.25 | 1.23 | 0.66–2.28 | 0.52 | |
Stomach | 18 | 6.9 | 2.26 | 1.29–3.95 | <0.005 | 2.28 | 1.29–4.03 | <0.005 | |
Head and neck | 20 | 6.3 | 2.30 | 1.33–3.97 | <0.005 | 2.23 | 1.29–3.85 | <0.005 | |
Pancreas | 23 | 5.5 | 2.26 | 1.36–3.75 | <0.005 | 2.30 | 1.38–3.84 | <0.005 | |
Skin | 14 | 5.1 | 2.08 | 1.07–4.03 | <0.05 | 1.67 | 0.85–3.28 | 0.13 | |
Biliary tract | 7 | 4.2 | 2.73 | 1.09–6.79 | <0.05 | 2.29 | 0.91–5.75 | 0.07 | |
Uterus | 11 | 3.6 | 1.20 | 0.60–2.41 | 0.61 | 1.41 | 0.69–2.88 | 0.34 | |
Urinary tract | 26 | 3.4 | 2.89 | 1.77–4.72 | <0.001 | 2.76 | 1.67–4.56 | <0.001 | |
Esophagus | 22 | 2.9 | 2.94 | 1.76–4.90 | <0.001 | 2.55 | 1.51–4.30 | <0.001 | |
Others | 21 | 8.3 | 1.11 | 0.65–1.89 | 0.70 | 1.06 | 0.62–1.81 | 0.83 | |
BMA | No | 203 | 7.8 | Reference | Reference | ||||
Yes | 336 | 21.9 | 0.64 | 0.51–0.79 | <0.001 | 0.72 | 0.57–0.91 | <0.01 | |
Metastasis other than bone | No | 204 | 23.3 | Reference | Reference | ||||
Yes | 335 | 14.1 | 1.40 | 1.12–1.75 | <0.005 | 1.19 | 0.94–1.51 | 0.15 | |
Sex | Female | 235 | 25.7 | Reference | Reference | ||||
Male | 304 | 11.9 | 1.39 | 1.13–1.72 | <0.005 | 1.15 | 0.89–1.48 | 0.29 | |
Treatment for bone metastasis | No | 103 | 24.1 | Reference | Reference | ||||
Yes | 436 | 13.6 | 1.39 | 1.05–1.84 | <0.05 | 1.33 | 0.99–1.78 | 0.059 |
Metastatic Site | Number | Median Post-Bone Metastasis Survival (Months) | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|---|---|
None | 204 | 23.3 | Reference | ||
Brain | 67 | 21.3 | 1.06 | 0.74–1.50 | 0.76 |
Lung | 75 | 17.4 | 1.26 | 0.89–1.78 | 0.18 |
Liver | 70 | 13.5 | 1.37 | 0.99–1.90 | 0.053 |
More than two sites | 61 | 12.6 | 1.60 | 1.15–2.24 | <0.01 |
Dissemination | 62 | 12.2 | 1.92 | 1.38–2.67 | <0.001 |
Factor | Hazard Ratio | 95% CI | p-Value | |
---|---|---|---|---|
Cancer Type | Colorectum | Reference | ||
Liver | 0.97 | 0.49–1.91 | 0.92 | |
Pancreas | 1.43 | 0.76–2.68 | 0.26 | |
Stomach | 1.46 | 0.75–2.86 | 0.27 | |
Biliary tract | 1.68 | 0.63–4.52 | 0.3 | |
Esophagus | 1.81 | 0.96–3.40 | 0.07 |
Factor | Hazard Ratio | 95% CI | p-Value | |
---|---|---|---|---|
BMA | No | Reference | ||
Yes | 0.56 | 0.34–0.91 | <0.05 | |
EGFR mutation | No | Reference | ||
Yes | 0.55 | 0.34–0.90 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamiya, H.; Nishino, K.; Kato, Y.; Nakahashi-Kato, R.; Kosuga-Tsujimoto, Y.; Kinoshita, S.; Suzuki, R.; Watanabe, M.; Wakamatsu, T.; Kakunaga, S.; et al. Impact of Bone-Modifying Agents on Post-Bone Metastasis Survival Across Cancer Types. Curr. Oncol. 2025, 32, 42. https://doi.org/10.3390/curroncol32010042
Tamiya H, Nishino K, Kato Y, Nakahashi-Kato R, Kosuga-Tsujimoto Y, Kinoshita S, Suzuki R, Watanabe M, Wakamatsu T, Kakunaga S, et al. Impact of Bone-Modifying Agents on Post-Bone Metastasis Survival Across Cancer Types. Current Oncology. 2025; 32(1):42. https://doi.org/10.3390/curroncol32010042
Chicago/Turabian StyleTamiya, Hironari, Kazumi Nishino, Yuji Kato, Reina Nakahashi-Kato, Yurika Kosuga-Tsujimoto, Shota Kinoshita, Rie Suzuki, Makiyo Watanabe, Toru Wakamatsu, Shigeki Kakunaga, and et al. 2025. "Impact of Bone-Modifying Agents on Post-Bone Metastasis Survival Across Cancer Types" Current Oncology 32, no. 1: 42. https://doi.org/10.3390/curroncol32010042
APA StyleTamiya, H., Nishino, K., Kato, Y., Nakahashi-Kato, R., Kosuga-Tsujimoto, Y., Kinoshita, S., Suzuki, R., Watanabe, M., Wakamatsu, T., Kakunaga, S., & Takenaka, S. (2025). Impact of Bone-Modifying Agents on Post-Bone Metastasis Survival Across Cancer Types. Current Oncology, 32(1), 42. https://doi.org/10.3390/curroncol32010042