Differences in Health Care Expenditures by Cancer Patients During Their Last Year of Life: A Registry-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population
2.3. Variables
2.4. Selection Bias and Dropouts
2.5. Study Size
2.6. Statistical Methods and Missing Data
2.7. Ethics
3. Results
3.1. Initial, Broad Comparisons Between Cancer and Non-Cancer
3.2. The Main Study Group: Costs for Persons in Ordinary Accomodation
3.3. Monthly Progression of Costs
3.4. Multivariable Regression Models (Generalized Linear Models) for Costs
3.5. Top 5% High-Cost Users
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Oliveira, C.; Pataky, R.; Bremner, K.E.; Rangrej, J.; Chan, K.K.; Cheung, W.Y.; Hoch, J.S.; Peacock, S.; Krahn, M.D. Phase-specific and lifetime costs of cancer care in Ontario, Canada. BMC Cancer 2016, 16, 809. [Google Scholar] [CrossRef] [PubMed]
- Wodchis, W.P.; Austin, P.C.; Henry, D.A. A 3-year study of high-cost users of health care. Can. Med. Assoc. J. 2016, 188, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Ronksley, P.E.; Kobewka, D.M.; McKay, J.A.; Rothwell, D.M.; Mulpuru, S.; Forster, A.J. Clinical characteristics and preventable acute care spending among a high cost inpatient population. BMC Health Serv. Res. 2016, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Rosella, L.C.; Fitzpatrick, T.; Wodchis, W.P.; Calzavara, A.; Manson, H.; Goel, V. High-cost health care users in Ontario, Canada: Demographic, socio-economic, and health status characteristics. BMC Health Serv. Res. 2014, 14, 532. [Google Scholar] [CrossRef]
- Morishima, T.; Lee, J.; Otsubo, T.; Imanaka, Y. Association of healthcare expenditures with aggressive versus palliative care for cancer patients at the end of life: A cross-sectional study using claims data in Japan. Int. J. Qual. Health Care 2014, 26, 79–86. [Google Scholar] [CrossRef]
- Hung, Y.N.; Liu, T.W.; Wen, F.H.; Chou, W.C.; Tang, S.T. Escalating Health Care Expenditures in Cancer Decedents’ Last Year of Life: A Decade of Evidence from a Retrospective Population-Based Cohort Study in Taiwan. Oncologist 2017, 22, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Bugge, C.; Saether, E.M.; Kristiansen, I.S. Men receive more end-of-life cancer hospital treatment than women: Fact or fiction? Acta Oncol. 2021, 60, 984–991. [Google Scholar] [CrossRef]
- Mori, T.; Hamada, S.; Yoshie, S.; Jeon, B.; Jin, X.; Takahashi, H.; Iijima, K.; Ishizaki, T.; Tamiya, N. The associations of multimorbidity with the sum of annual medical and long-term care expenditures in Japan. BMC Geriatr. 2019, 19, 69. [Google Scholar] [CrossRef]
- Chang, X.; Lu, X.; Guo, J.; Teng, G.J. Interventional therapy combined with immune checkpoint inhibitors: Emerging opportunities for cancer treatment in the era of immunotherapy. Cancer Treat. Rev. 2019, 74, 49–60. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Hoefsmit, E.P.; Smyth, M.J.; Blank, C.U.; Teng, M.W.L. The Promise of Neoadjuvant Immunotherapy and Surgery for Cancer Treatment. Clin. Cancer Res. 2019, 25, 5743–5751. [Google Scholar] [CrossRef]
- Verma, V.; Sprave, T.; Haque, W.; Simone, C.B., 2nd; Chang, J.Y.; Welsh, J.W.; Thomas, C.R., Jr. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J. Immunother. Cancer 2018, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Geyer, T.; Le, N.S.; Groissenberger, I.; Jutz, F.; Tschurlovich, L.; Kreye, G. Systemic Anticancer Treatment Near the End of Life: A Narrative Literature Review. Curr. Treat. Options Oncol. 2023, 24, 1328–1350. [Google Scholar] [CrossRef]
- Prigerson, H.G.; Bao, Y.; Shah, M.A.; Paulk, M.E.; LeBlanc, T.W.; Schneider, B.J.; Garrido, M.M.; Reid, M.C.; Berlin, D.A.; Adelson, K.B.; et al. Chemotherapy Use, Performance Status, and Quality of Life at the End of Life. JAMA Oncol. 2015, 1, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Schnipper, L.E.; Smith, T.J.; Raghavan, D.; Blayney, D.W.; Ganz, P.A.; Mulvey, T.M.; Wollins, D.S. American Society of Clinical Oncology identifies five key opportunities to improve care and reduce costs: The top five list for oncology. J. Clin. Oncol. 2012, 30, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Glisch, C.; Hagiwara, Y.; Gilbertson-White, S.; Gao, Y.; Lyckholm, L. Immune Checkpoint Inhibitor Use Near the End of Life Is Associated With Poor Performance Status, Lower Hospice Enrollment, and Dying in the Hospital. Am. J. Hosp. Palliat. Care 2020, 37, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Crawford, G.B.; Dzierżanowski, T.; Hauser, K.; Larkin, P.; Luque-Blanco, A.I.; Murphy, I.; Puchalski, C.M.; Ripamonti, C.I. Care of the adult cancer patient at the end of life: ESMO Clinical Practice Guidelines. ESMO Open 2021, 6, 100225. [Google Scholar] [CrossRef]
- Garrido, M.M.; Prigerson, H.G.; Bao, Y.; Maciejewski, P.K. Chemotherapy Use in the Months Before Death and Estimated Costs of Care in the Last Week of Life. J. Pain Symptom Manag. 2016, 51, 875–881.e2. [Google Scholar] [CrossRef]
- Davis, M.P.; Panikkar, R. Checkpoint Inhibitors, Palliative Care, or Hospice. Curr. Oncol. Rep. 2018, 20, 2. [Google Scholar] [CrossRef]
- Heung, Y.; Zhukovsky, D.; Hui, D.; Lu, Z.; Andersen, C.; Bruera, E. Quality of End-of-Life Care during the COVID-19 Pandemic at a Comprehensive Cancer Center. Cancers 2023, 15, 2201. [Google Scholar] [CrossRef]
- Bekelman, J.E.; Halpern, S.D.; Blankart, C.R.; Bynum, J.P.; Cohen, J.; Fowler, R.; Kaasa, S.; Kwietniewski, L.; Melberg, H.O.; Onwuteaka-Philipsen, B.; et al. Comparison of Site of Death, Health Care Utilization, and Hospital Expenditures for Patients Dying With Cancer in 7 Developed Countries. JAMA 2016, 315, 272–283. [Google Scholar] [CrossRef]
- Pisu, M.; Henrikson, N.B.; Banegas, M.P.; Yabroff, K.R. Costs of cancer along the care continuum: What we can expect based on recent literature. Cancer 2018, 124, 4181–4191. [Google Scholar] [CrossRef] [PubMed]
- Lamba, N.; Catalano, P.J.; Whitehouse, C.; Martin, K.L.; Mendu, M.L.; Haas-Kogan, D.A.; Wen, P.Y.; Aizer, A.A. Emergency department visits and inpatient hospitalizations among older patients with brain metastases: A dual population- and institution-level analysis. Neuro-Oncol. Pract. 2021, 8, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Strang, P.; Schultz, T. The Impact of Frailty on Palliative Care Receipt, Emergency Room Visits and Hospital Deaths in Cancer Patients: A Registry-Based Study. Curr. Oncol. 2023, 30, 6623–6633. [Google Scholar] [CrossRef]
- Lindskog, M.; Schultz, T.; Strang, P. Acute healthcare utilization in end-of-life among Swedish brain tumor patients—A population based register study. BMC Palliat. Care 2022, 21, 133. [Google Scholar] [CrossRef]
- Bergqvist, J.; Hedman, C.; Schultz, T.; Strang, P. Equal receipt of specialized palliative care in breast and prostate cancer: A register study. Support. Care Cancer 2022, 30, 7721–7730. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gotzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; Initiative, S. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef]
- SKR. Kostnad Per Patient KPP (Appr: Cost per Patient, a National Recommendation). Available online: https://skr.se/skr/halsasjukvard/ekonomiavgifter/kostnadperpatientkpp.1076.html (accessed on 5 November 2023).
- Meenan, R.T.; Goodman, M.J.; Fishman, P.A.; Hornbrook, M.C.; O’Keeffe-Rosetti, M.C.; Bachman, D.J. Pooling multisite administrative data for economic analysis. Expert Rev. Pharmacoecon. Outcomes Res. 2002, 2, 477–483. [Google Scholar] [CrossRef]
- Dahlén, E.; Komen, J.; Jonsson, E.W.; Almqvist, C.; Kull, I.; Wettermark, B. Eliminated patient fee and changes in dispensing patterns of asthma medication in children-An interrupted time series analysis. Basic. Clin. Pharmacol. Toxicol. 2019, 125, 360–369. [Google Scholar] [CrossRef]
- InsightOne. Experia MIS MosaicTM Sweden. 2015. Available online: https://insightone.se/mosaic/ (accessed on 10 February 2024).
- Strang, P.; Furst, P.; Schultz, T. Excess deaths from COVID-19 correlate with age and socio-economic status. A database study in the Stockholm region. Upsala J. Med. Sci. 2020, 125, 297–304. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Gilbert, T.; Neuburger, J.; Kraindler, J.; Keeble, E.; Smith, P.; Ariti, C.; Arora, S.; Street, A.; Parker, S.; Roberts, H.C.; et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: An observational study. Lancet 2018, 391, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Deckert, K.; Walter, J.; Schwarzkopf, L. Factors related to and economic implications of inhospital death in German lung cancer patients—Results of a Nationwide health insurance claims data based study. BMC Health Serv. Res. 2018, 18, 793. [Google Scholar] [CrossRef] [PubMed]
- Blough, D.; Ramsey, S. Using generalized linear models to assess medical care costs. Health Serv. Outcome Res. Meth. 2000, 1, 185–202. [Google Scholar] [CrossRef]
- Jones, A.M.; Lomas, J.; Rice, N. Healthcare Cost Regressions: Going Beyond the Mean to Estimate the Full Distribution. Health Econ. 2015, 24, 1192–1212. [Google Scholar] [CrossRef]
- Hall, P.S.; Hamilton, P.; Hulme, C.T.; Meads, D.M.; Jones, H.; Newsham, A.; Marti, J.; Smith, A.F.; Mason, H.; Velikova, G.; et al. Costs of cancer care for use in economic evaluation: A UK analysis of patient-level routine health system data. Br. J. Cancer 2015, 112, 948–956. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, R.; Yu, J.B.; Ma, X.; Xu, X.; Kim, S.P.; Soulos, P.R.; Saraf, A.; Gross, C.P. Understanding regional variation in Medicare expenditures for initial episodes of prostate cancer care. Med. Care 2014, 52, 680–687. [Google Scholar] [CrossRef]
- Langton, J.M.; Blanch, B.; Drew, A.K.; Haas, M.; Ingham, J.M.; Pearson, S.A. Retrospective studies of end-of-life resource utilization and costs in cancer care using health administrative data: A systematic review. Palliat. Med. 2014, 28, 1167–1196. [Google Scholar] [CrossRef]
Care Setting | Individuals, N | Median Cost In SEK 1000 | Mean Cost, In SEK 1000 | p-Value 2 |
---|---|---|---|---|
Ordinary accommodation | <0.0001 | |||
Advanced cancer 1 | 20,431 | 488 | 580 | |
Non-cancer diagnoses | 45,509 | 195 | 312 | |
Nursing home residents | <0.0001 | |||
Advanced cancer 1 | 2,625 | 348 | 412 | |
Non-cancer diagnoses | 39,822 | 84 | 169 |
Variable | Number (%) | Median Cost (IQR) per Individual In SEK 1000 | Mean Cost (95% CI) per Individual In SEK 1000 | p-Value |
---|---|---|---|---|
Sex, distribution Women Men | 10,021 (49) 10,410 (51) | 498 (312–749) 479 (302–725) | 584 (576–592) 576 (567–584) | 0.0003 2 |
Age groups, distribution 18–69 years 70–79 years 80 years or more | 7387 (36) 7517 (37) 5527 (27) | 599 (384–882) 491 (319–723) 373 (237–554) | 706 (694–719) 4 564 (556–573) 4 431 (423–438) 4 | <0.0001 1 |
Mosaic groups Group 1 Group 2 Group 3 | 5567 (27) 8292 (41) 6572 (32) | 499 (314–747) 484 (306–729) 486 (302–736) | 594 (581–606) 574 (565–583) 575 (565–585) | 0.06 (ns) 1 |
CCI (cancer excluded) 3 0 1 or more | 9368 (46) 11,063 (54) | 493 (306–732) 485 (306–736) | 576 (568–584) 576 (574–591) | 0.85 (ns) 2 |
HFRS Low risk (<5) Intermediate risk (5–15) High risk (>15) | 12,276 7115 1040 | 446 (277–674) 548 (358–832) 626 (409–924) | 517 (510–523) 4 664 (651–676) 4 749 (716–781) 4 | <0.0001 1 |
Type of malignancy Hematologic malignancy Other cancer forms | 1233 (6) 19,198 (94) | 614 (385–1056) 482 (303–724) | 859 (812–906) 4 562 (556–567) 4 | <0.0001 2 |
Systemic cancer treatment, last month of life Yes No | 2093 (10) 18,338 (90) | 546 (380–785) 482 (298–730) | 653 (632–675) 4 571 (565–577) 4 | <0.0001 2 |
Place of death: hospital Yes No | 3696 (18) 16,735 (82) | 449 (259–721) 497 (319–736) | 589 (569–608) 578 (572–583) | <0.0001 2 |
Variable | Model A RR (95% CI) | Model B RR (95% CI) | Model C RR (95% CI) | Model D RR (95% CI) | Model E RR (95% CI) | Model F RR (95% CI) |
---|---|---|---|---|---|---|
Women (ref. men) | 1.01 (0.99–1.03) | 1.00 (0.98–1.02) | 1.02 * (1.00–1.02) | 1.02 ** (1.01–1.04) | 1.02 ** (1.01–1.04) | 1.02 * (1.00–1.04) |
Age (ref. ≥ 80 years) | ||||||
18–69 years | 1.64 *** (1.61–1.68) | 1.74 *** (1.70–1.78) | 1.74 *** (1.71–1.79) | 1.75 *** (1.71–1.78) | 1.76 *** (1.72–1.79) | |
70–79 years | 1.31 *** (1.28–1.34) | 1.36 *** (1.33–1.39) | 1.37 *** (1.35–1.40) | 1.37 *** (1.34–1.40) | 1.38 *** (1.35–1.41) | |
HFRS (ref. HFRS < 5) | ||||||
Intermediate risk (5–15) | 1.33 *** (1.31–1.36) | 1.31 *** (1.29–1.34) | 1.31 *** (1.29–1.34) | 1.32 *** (1.30–1.35) | ||
High risk (>15) | 1.66 *** (1.59–1.72) | 1.63 *** (1.57–1.69) | 1.63 *** (1.57–1.70) | 1.65 *** (1.59–1.72) | ||
Hematolology (ref = no) | 1.49 *** (1.44–1.54) | 1.48 *** (1.43–1.53) | 1.51 *** (1.46–1.57) | |||
Systemic tx (ref: no tx) # | 1.01 (0.99–1.04) | 1.03 * (1.00–1.06) | ||||
Hospital death (ref.: not) | 0.90 *** (0.88–0.92) |
Variable | Univariable Analysis | Multivariable Analysis 1 | ||
---|---|---|---|---|
OR (95% CI) | p-Value | aOR (95% CI) | p-Value | |
Sex | ||||
Women | 1.04 (0.92–1.18) | 0.55 | 1.08 (0.95–1.24) | 0.22 |
Men | Ref. | Ref. | ||
Age (ref. ≥ 80 years) | ||||
18–69 years | 7.80 (6.06–10.03) | <0.0001 | 13.26 (10.18–17.27) | <0.0001 |
70–79 years | 3.35 (2.57–4.37) | <0.0001 | 4.60 (3.50–6.04) | <0.0001 |
≥80 years | Ref. | Ref. | ||
Mosaic groups | ||||
Groups 1 + 2 | 1.02 (0.89–1.16) | 0.83 | 1.06 (0.92–1.22) | 0.40 |
Group 3 | Ref. | Ref. | ||
HFRS (ref. HFRS < 5) | ||||
High risk (>15) | 3.97 (3.19–4.93) | <0.0001 | 6.83 (5.39–8.65) | <0.0001 |
Intermediate risk (5–15) | 2.50 (2.18–2.86) | <0.0001 | 2.82 (2.45–3.25) | <0.0001 |
Low risk | Ref. | Ref. | ||
Malignancy (type) | ||||
Hematological | 4.45 (3.77–5.25) | <0.0001 | 5.38 (4.48–6.46) | <0.0001 |
Solid cancer | Ref. | Ref. | ||
Systemic treatment last month of life | ||||
Yes | 1.31 (1.08–1.57) | 0.006 | 0.81 (0.66–0.99) | 0.04 |
No | Ref. | Ref. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strang, P.; Petzold, M.; Björkhem-Bergman, L.; Schultz, T. Differences in Health Care Expenditures by Cancer Patients During Their Last Year of Life: A Registry-Based Study. Curr. Oncol. 2024, 31, 6205-6217. https://doi.org/10.3390/curroncol31100462
Strang P, Petzold M, Björkhem-Bergman L, Schultz T. Differences in Health Care Expenditures by Cancer Patients During Their Last Year of Life: A Registry-Based Study. Current Oncology. 2024; 31(10):6205-6217. https://doi.org/10.3390/curroncol31100462
Chicago/Turabian StyleStrang, Peter, Max Petzold, Linda Björkhem-Bergman, and Torbjörn Schultz. 2024. "Differences in Health Care Expenditures by Cancer Patients During Their Last Year of Life: A Registry-Based Study" Current Oncology 31, no. 10: 6205-6217. https://doi.org/10.3390/curroncol31100462
APA StyleStrang, P., Petzold, M., Björkhem-Bergman, L., & Schultz, T. (2024). Differences in Health Care Expenditures by Cancer Patients During Their Last Year of Life: A Registry-Based Study. Current Oncology, 31(10), 6205-6217. https://doi.org/10.3390/curroncol31100462