Elevated Microsatellite Alterations at Selected Tetranucleotide Repeats (EMAST) in Penile Squamous Cell Carcinoma—No Evidence for a Role in Carcinogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Microdissection and DNA Isolation
2.3. EMAST Detection
2.4. Immunohistochemical Analysiys of MSH3
2.5. HPV PCR Analysis of Penile Tumors
3. Results
3.1. Detection of HPV in pSCC Cases
3.2. Immunohistochemical Evaluation of MSH3 Expression
3.3. Determination of EMAST Status
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrándiz-Pulido, C.; de Torres, I.; García-Patos, V. [Penile squamous cell carcinoma]. Actas Dermosifiliogr. 2012, 103, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Udager, A.M.; Liu, T.Y.; Skala, S.L.; Magers, M.J.; McDaniel, A.S.; Spratt, D.E.; Feng, F.Y.; Siddiqui, J.; Cao, X.; Fields, K.L.; et al. Frequent PD-L1 expression in primary and metastatic penile squamous cell carcinoma: Potential opportunities for immunotherapeutic approaches. Ann. Oncol. 2016, 27, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- SEER*Explorer. An Interactive Website for SEER Cancer Statistics. Surveillance Research Program, National Cancer Institute. 2023. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html (accessed on 15 July 2024).
- Barski, D.; Georgas, E.; Gerullis, H.; Ecke, T. Metastatic penile carcinoma—An update on the current diagnosis and treatment options. Cent. Eur. J. Urol. 2014, 67, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. Pd-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.C.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef]
- Stoehr, R.; Wendler, O.; Giedl, J.; Gaisa, N.T.; Richter, G.; Campean, V.; Burger, M.; Wullich, B.; Bertz, S.; Hartmann, A. No evidence of microsatellite instability and loss of mismatch-repair-protein expression in squamous cell carcinoma of the penis. Pathobiology 2019, 86, 145–151. [Google Scholar] [CrossRef]
- El Zarif, T.; Nassar, A.H.; Pond, G.R.; Zhuang, T.Z.; Master, V.; Nazha, B.; Niglio, S.; Simon, N.; Hahn, A.W.; Pettaway, C.A.; et al. Safety and efficacy of immune checkpoint inhibitors in advanced penile cancer: Report from the global society of rare genitourinary tumors. J. Natl. Cancer Inst. 2023, 115, 1605–1615. [Google Scholar] [CrossRef]
- Villy, M.C.; Masliah-Planchon, J.; Schnitzler, A.; Delhomelle, H.; Buecher, B.; Filser, M.; Merchadou, K.; Golmard, L.; Melaabi, S.; Vacher, S.; et al. MSH3: A confirmed predisposing gene for adenomatous polyposis. J. Med. Genet. 2023, 60, 1198–1205. [Google Scholar] [CrossRef]
- Goel, A. Colorectal cancer: Sailing with a T-cell EMAST. Dig. Dis. Sci. 2012, 57, 1–3. [Google Scholar] [CrossRef]
- Chen, M.H.; Chang, S.C.; Lin, P.C.; Yang, S.H.; Lin, C.C.; Lan, Y.T.; Lin, H.H.; Lin, C.H.; Lai, J.I.; Liang, W.Y.; et al. Combined microsatellite instability and elevated microsatellite alterations at selected tetranucleotide repeats (emast) might be a more promising immune biomarker in colorectal cancer. Oncologist 2019, 24, 1534–1542. [Google Scholar] [CrossRef]
- Choi, Y.D.; Choi, J.; Kim, J.H.; Lee, J.S.; Lee, J.H.; Choi, C.; Choi, H.S.; Lee, M.C.; Park, C.S.; Juhng, S.W.; et al. Microsatellite instability at a tetranucleotide repeat in type I endometrial carcinoma. J. Exp. Clin. Cancer Res. 2008, 27, 88. [Google Scholar] [CrossRef] [PubMed]
- Ahrendt, S.A.; Decker, P.A.; Doffek, K.; Wang, B.; Xu, L.; Demeure, M.J.; Jen, J.; Sidransky, D. Microsatellite instability at selected tetranucleotide repeats is associated with p53 mutations in non-small cell lung cancer. Cancer Res. 2000, 60, 2488–2491. [Google Scholar] [PubMed]
- Danaee, H.; Nelson, H.H.; Karagas, M.R.; Schned, A.R.; Ashok, T.D.; Hirao, T.; Perry, A.E.; Kelsey, K.T. Microsatellite instability at tetranucleotide repeats in skin and bladder cancer. Oncogene 2002, 21, 4894–4899. [Google Scholar] [CrossRef]
- Singer, G.; Kallinowski, T.; Hartmann, A.; Dietmaier, W.; Wild, P.J.; Schraml, P.; Sauter, G.; Mihatsch, M.J.; Moch, H. Different types of microsatellite instability in ovarian carcinoma. Int. J. Cancer 2004, 112, 643–646. [Google Scholar] [CrossRef]
- Haugen, A.C.; Goel, A.; Yamada, K.; Marra, G.; Nguyen, T.P.; Nagasaka, T.; Kanazawa, S.; Koike, J.; Kikuchi, Y.; Zhong, X.; et al. Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res. 2008, 68, 8465–8472. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.M.; Lea, D.; Gudlaugsson, E.; Skaland, I.; Hagland, H.R.; Søreide, K. Prevalence of PD-L1 expression is associated with EMAST, density of peritumoral T-cells and recurrence-free survival in operable non-metastatic colorectal cancer. Cancer Immunol. Immunother. 2020, 69, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Moch, H.; Humphrey, P.A.; Ulbright, T.M.; Reuter, V.E. WHO Classification of Tumours of the Urinary System and Male Genital Organs; WHO Press: Lyon, France, 2016. [Google Scholar]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; Wiley Blackwell: West Sussex, UK, 2017. [Google Scholar]
- Weyerer, V.; Schneckenpointner, R.; Filbeck, T.; Burger, M.; Hofstaedter, F.; Wild, P.J.; Fine, S.W.; Humphrey, P.A.; Dehner, L.P.; Amin, M.B.; et al. Immunohistochemical and molecular characterizations in urothelial carcinoma of bladder in patients less than 45 years. J. Cancer 2017, 8, 323–331. [Google Scholar] [CrossRef]
- Venderbosch, S.; van Lent-van Vliet, S.; de Haan, A.F.; Ligtenberg, M.J.; Goossens, M.; Punt, C.J.; Koopman, M.; Nagtegaal, I.D. EMAST is associated with a poor prognosis in microsatellite instable metastatic colorectal cancer. PLoS ONE 2015, 10, e0124538. [Google Scholar] [CrossRef]
- Devaraj, B.; Lee, A.; Cabrera, B.L.; Miyai, K.; Luo, L.; Ramamoorthy, S.; Keku, T.; Sandler, R.S.; McGuire, K.L.; Carethers, J.M. Relationship of EMAST and microsatellite instability among patients with rectal cancer. J. Gastrointest. Surg. 2010, 14, 1521–1528. [Google Scholar] [CrossRef]
- Denzinger, S.; Burger, M.; Hammerschmied, C.G.; Wieland, W.F.; Hartmann, A.; Obermann, E.C.; Stoehr, R. Pax-5 protein expression in bladder cancer: A preliminary study that shows no correlation to grade, stage or clinical outcome. Pathology 2008, 40, 465–469. [Google Scholar] [CrossRef]
- de Roda Husman, A.M.; Walboomers, J.M.; van den Brule, A.J.; Meijer, C.J.; Snijders, P.J. The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J. Gen. Virol. 1995, 76 Pt 4, 1057–1062. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chao, A.; Yang, Y.C.; Chou, H.H.; Ho, C.M.; Lin, R.W.; Chang, T.C.; Chiou, J.Y.; Chao, F.Y.; Wang, K.L.; et al. Human papillomavirus typing with a polymerase chain reaction-based genotyping array compared with type-specific PCR. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2008, 42, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Sahiner, F.; Kubar, A.; Yapar, M.; Sener, K.; Dede, M.; Gumral, R. Detection of major HPVs by a new multiplex real-time PCR assay using type-specific primers. J. Microbiol. Methods 2014, 97, 44–50. [Google Scholar] [CrossRef]
- Burger, M.; Denzinger, S.; Hammerschmied, C.G.; Tannapfel, A.; Obermann, E.C.; Wieland, W.F.; Hartmann, A.; Stoehr, R. Elevated microsatellite alterations at selected tetranucleotides (EMAST) and mismatch repair gene expression in prostate cancer. J. Mol. Med. 2006, 84, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.M.; Berg, M.; Søreide, K. Prevalence and implications of elevated microsatellite alterations at selected tetranucleotides in cancer. Br. J. Cancer 2014, 111, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Vukovic Derfi, K.; Salar, A.; Cacev, T.; Kapitanovic, S. Emast type of microsatellite instability-a distinct entity or blurred overlap between stable and msi tumors. Genes 2023, 14, 1474. [Google Scholar] [CrossRef]
- Arai, H.; Okudela, K.; Oshiro, H.; Komitsu, N.; Mitsui, H.; Nishii, T.; Tsuboi, M.; Nozawa, A.; Noishiki, Y.; Ohashi, K.; et al. Elevated microsatellite alterations at selected tetra-nucleotide (EMAST) in non-small cell lung cancers—A potential determinant of susceptibility to multiple malignancies. Int. J. Clin. Exp. Pathol. 2013, 6, 395–410. [Google Scholar]
- Catto, J.W.; Azzouzi, A.R.; Amira, N.; Rehman, I.; Feeley, K.M.; Cross, S.S.; Fromont, G.; Sibony, M.; Hamdy, F.C.; Cussenot, O.; et al. Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene 2003, 22, 8699–8706. [Google Scholar] [CrossRef]
- Ranjbar, R.; Esfahani, A.T.; Nazemalhosseini-Mojarad, E.; Olfatifar, M.; Aghdaei, H.A.; Mohammadpour, S. Emast frequency in colorectal cancer: A meta-analysis and literature review. Biomark. Med. 2020, 14, 1021–1030. [Google Scholar] [CrossRef]
Cases (n = 78) | ||
---|---|---|
Age, years | ||
Median age | 68 | |
Mean age | 67.6 ± 11.6 | |
Range | 39–93 | |
Tumor Stage | n= | |
pTis | 7 | |
pT1a | 30 | |
pT1b | 5 | |
pT2 | 23 | |
pT3 | 11 | |
pT4 | 1 | |
unknown | 1 | |
Tumor Grade | n= | |
1 | 16 | |
2 | 38 | |
3 | 16 | |
Unknown | 1 | |
HPV Status | n= | |
Positive | 28 | |
Negative | 50 | |
Histological subtype | HPV negative (n) | HPV positive (n) |
Usual type | 31 | 3 |
Verrucous | 9 | - |
Basaloid | 3 | 11 |
Warty-basaloid | 1 | 6 |
Pseudohyperplastic | 3 | - |
Warty | 1 | 1 |
Lymphoepithelioma-like | - | 1 |
Clear cell | - | 1 |
Carcinoma cuniculatum | 1 | - |
Unknown: n = 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiegl, A.; Wendler, O.; Giedl, J.; Gaisa, N.T.; Richter, G.; Campean, V.; Burger, M.; Simmer, F.; Nagtegaal, I.; Wullich, B.; et al. Elevated Microsatellite Alterations at Selected Tetranucleotide Repeats (EMAST) in Penile Squamous Cell Carcinoma—No Evidence for a Role in Carcinogenesis. Curr. Oncol. 2024, 31, 5752-5761. https://doi.org/10.3390/curroncol31100427
Fiegl A, Wendler O, Giedl J, Gaisa NT, Richter G, Campean V, Burger M, Simmer F, Nagtegaal I, Wullich B, et al. Elevated Microsatellite Alterations at Selected Tetranucleotide Repeats (EMAST) in Penile Squamous Cell Carcinoma—No Evidence for a Role in Carcinogenesis. Current Oncology. 2024; 31(10):5752-5761. https://doi.org/10.3390/curroncol31100427
Chicago/Turabian StyleFiegl, August, Olaf Wendler, Johannes Giedl, Nadine T. Gaisa, Georg Richter, Valentina Campean, Maximilian Burger, Femke Simmer, Iris Nagtegaal, Bernd Wullich, and et al. 2024. "Elevated Microsatellite Alterations at Selected Tetranucleotide Repeats (EMAST) in Penile Squamous Cell Carcinoma—No Evidence for a Role in Carcinogenesis" Current Oncology 31, no. 10: 5752-5761. https://doi.org/10.3390/curroncol31100427
APA StyleFiegl, A., Wendler, O., Giedl, J., Gaisa, N. T., Richter, G., Campean, V., Burger, M., Simmer, F., Nagtegaal, I., Wullich, B., Bertz, S., Hartmann, A., & Stoehr, R. (2024). Elevated Microsatellite Alterations at Selected Tetranucleotide Repeats (EMAST) in Penile Squamous Cell Carcinoma—No Evidence for a Role in Carcinogenesis. Current Oncology, 31(10), 5752-5761. https://doi.org/10.3390/curroncol31100427