Do Cancer Genetics Impact Treatment Decision Making? Immunotherapy and Beyond in the Management of Advanced and Metastatic Urothelial Carcinoma
Abstract
:1. Introduction
2. Chemotherapy
3. Immune Checkpoint Inhibitor Genomics
4. Immune Checkpoint Inhibitor Approvals and Indications
5. First-Line Immunotherapy
6. ICI Combination Therapy in the First-Line Setting
7. ICI Combinations in the Second-Line Setting
8. Antibody–Drug Conjugates: Enfortumab Vedotin (EV) and Sacituzumab Govitecan (SG)
9. New Targeted Agents
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Cancer Society. Key Statistics for Bladder Cancer. Available online: https://www.cancer.org/cancer/bladder-cancer/about/key-statistics.html (accessed on 1 January 2020).
- Guo, C.C.; Bondaruk, J.; Yao, H.; Wang, Z.; Zhang, L.; Lee, S.; Lee, J.-G.; Cogdell, D.; Zhang, M.; Yang, G.; et al. Assessment of Luminal and Basal Phenotypes in Bladder Cancer. Sci. Rep. 2020, 10, 9743. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2018, 174, 1033. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; Roth, B.; Cheng, T.; Tran, M.; Lee, I.-L.; et al. Identification of Distinct Basal and Luminal Subtypes of Muscle-Invasive Bladder Cancer with Different Sensitivities to Frontline Chemotherapy. Cancer Cell 2014, 25, 152–165. [Google Scholar] [CrossRef]
- Mouw, K.W. DNA Repair Pathway Alterations in Bladder Cancer. Cancers 2017, 9, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacovino, M.L.; Miceli, C.C.; De Felice, M.; Barone, B.; Pompella, L.; Chiancone, F.; Di Zazzo, E.; Tirino, G.; Della Corte, C.M.; Imbimbo, C.; et al. Novel Therapeutic Opportunities in Neoadjuvant Setting in Urothelial Cancers: A New Horizon Opened by Molecular Classification and Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2022, 23, 1133. [Google Scholar] [CrossRef] [PubMed]
- Babaian, R.J.; Johnson, D.E.; Llamas, L.; Ayala, A.G. Metastases from transitional cell carcinoma of urinary bladder. Urology 1980, 16, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N.; Yagoda, A.; Scher, H.I.; Watson, R.C.; Ahmed, T.; Weiselberg, L.R.; Geller, N.; Hollander, P.S.; Herr, H.W.; Sogani, P.C.; et al. Preliminary results of M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for transitional cell carcinoma of the urothelium. J. Urol. 1985, 133, 403–407. [Google Scholar] [CrossRef]
- von der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.; Lippert, C.M.; et al. Gemcitabine and Cisplatin Versus Methotrexate, Vinblastine, Doxorubicin, and Cisplatin in Advanced or Metastatic Bladder Cancer: Results of a Large, Randomized, Multinational, Multicenter, Phase III Study. J. Clin. Oncol. 2000, 17, 3068–3077. [Google Scholar] [CrossRef]
- von der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef]
- Nanoparticle albumin-bound paclitaxel for second-line treatment of metastatic urothelial carcinoma: A single group, multicentre, phase 2 study–PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/23706985/ (accessed on 31 August 2021).
- Sridhar, S.S.; Blais, N.; Tran, B.; Reaume, M.N.; North, S.A.; Stockler, M.R.; Chi, K.N.; Fleshner, N.E.; Liu, G.; Robinson, J.W.; et al. Efficacy and Safety of nab-Paclitaxel vs Paclitaxel on Survival in Patients with Platinum-Refractory Metastatic Urothelial Cancer: The Canadian Cancer Trials Group BL.12 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1751–1758. [Google Scholar] [CrossRef]
- Sweeney, C.J.; Roth, B.J.; Kabbinavar, F.F.; Vaughn, D.J.; Arning, M.; Curiel, R.E.; Obasaju, C.K.; Wang, Y.; Nicol, S.J.; Kaufman, D.S. Phase II study of pemetrexed for second-line treatment of transitional cell cancer of the urothelium. J. Clin. Oncol. 2006, 24, 3451–3457. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barone, B.; Calogero, A.; Scafuri, L.; Ferro, M.; Lucarelli, G.; Di Zazzo, E.; Sicignano, E.; Falcone, A.; Romano, L.; De Luca, L.; et al. Immune Checkpoint Inhibitors as a Neoadjuvant/Adjuvant Treatment of Muscle-Invasive Bladder Cancer: A Systematic Review. Cancers 2022, 14, 2545. [Google Scholar] [CrossRef]
- Powles, T.; Walker, J.; Andrew Williams, J.; Bellmunt, J. The evolving role of PD-L1 testing in patients with metastatic urothelial carcinoma. Cancer Treat. Rev. 2020, 82, 101925. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Teng, X. Expression of PD-L1 for predicting response to immune checkpoint inhibitors in metastatic urothelial carcinoma: A systematic review and meta-analysis. Curr. Oncol. 2020, 27, e656–e663. [Google Scholar] [CrossRef]
- Cheng, W.; Fu, D.; Xu, F.; Zhang, Z. Unwrapping the genomic characteristics of urothelial bladder cancer and successes with immune checkpoint blockade therapy. Oncogenesis 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Akbani, R.; Creighton, C.J.; Lerner, S.P.; Weinstein, J.N.; Getz, G.; Kwiatkowski, D.J. Invasive Bladder Cancer: Genomic Insights and Therapeutic Promise. Clin. Cancer Res. 2015, 21, 4514–4524. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Wang, Y.; Qiu, L.; Chang, Y.; Lu, H.; Liu, C.; Zhang, B.; Zhou, Y.; Bai, H.; Xiong, L.; et al. mTOR pathway gene mutations predict response to immune checkpoint inhibitors in multiple cancers. J. Transl. Med. 2022, 20, 247. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Kon, N.; Liu, Y.; Xu, W.; Wen, J.; Yao, H.; Zhang, M.; Wu, Z.; Yan, X.; Zhu, W.-G.; et al. An unexpected role for p53 in regulating cancer cell-intrinsic PD-1 by acetylation. Sci. Adv. 2021, 7, eabf4148. [Google Scholar] [CrossRef]
- Lee, C.H.; Yelensky, R.; Jooss, K.; Chan, T.A. Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different. Trends Immunol. 2018, 39, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellmunt, J.; Théodore, C.; Demkov, T.; Komyakov, B.; Sengelov, L.; Daugaard, G.; Caty, A.; Carles, J.; Jagiello-Gruszfeld, A.; Karyakin, O.; et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J. Clin. Oncol. 2009, 27, 4454–4461. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Ellerton, J.; Infante, J.R.; Agrawal, M.; Gordon, M.; Aljumaily, R.; Britten, C.D.; Dirix, L.; Lee, K.-W.; Taylor, M.; et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): Pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018, 19, 51–64. [Google Scholar] [CrossRef]
- Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma|NEJM. Available online: https://www.nejm.org/doi/10.1056/NEJMoa1613683?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dwww.ncbi.nlm.nih.go (accessed on 31 August 2021).
- Research C for DE and Pembrolizumab (Keytruda): Advanced or Metastatic Urothelial Carcinoma. FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/pembrolizumab-keytruda-advanced-or-metastatic-urothelial-carcinoma (accessed on 31 August 2021).
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Research C for DE and Nivolumab for Treatment of Urothelial Carcinoma. FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/nivolumab-treatment-urothelial-carcinoma (accessed on 31 August 2021).
- Research C for DE and Durvalumab (Imfinzi). FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/durvalumab-imfinzi (accessed on 31 August 2021).
- Powles, T.; van der Heijden, M.S.; Castellano, D.; Galsky, M.D.; Loriot, Y.; Petrylak, D.P.; Ogawa, O.; Park, S.H.; Lee, J.-L.; De Giorgi, U.; et al. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2020, 21, 1574–1588. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- van der Heijden, M.S.; Loriot, Y.; Durán, I.; Ravaud, A.; Retz, M.; Vogelzang, N.J.; Nelson, B.; Wang, J.; Shen, X.; Powles, T. Atezolizumab Versus Chemotherapy in Patients with Platinum-treated Locally Advanced or Metastatic Urothelial Carcinoma: A Long-term Overall Survival and Safety Update from the Phase 3 IMvigor211 Clinical Trial. Eur. Urol. 2021, 80, 7–11. [Google Scholar] [CrossRef]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powles, T.; Csőszi, T.; Özgüroğlu, M.; Matsubara, N.; Géczi, L.; Cheng, S.Y.-S.; Fradet, Y.; Oudard, S.; Vulsteke, C.; Barrera, R.M.; et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 931–945. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Arija, J.Á.A.; Bamias, A.; Davis, I.D.; De Santis, M.; Kikuchi, E.; Garcia-Del-Muro, X.; De Giorgi, U.; Mencinger, M.; Izumi, K.; et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): A multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2020, 395, 1547–1557. [Google Scholar] [CrossRef]
- Sharma, P.; Siefker-Radtke, A.; De Braud, F.; Basso, U.; Calvo, E.; Bono, P.; Morse, M.A.; Ascierto, P.A.; Lopez-Martin, J.; Brossart, P.; et al. Nivolumab Alone and With Ipilimumab in Previously Treated Metastatic Urothelial Carcinoma: CheckMate 032 Nivolumab 1 mg/kg Plus Ipilimumab 3 mg/kg Expansion Cohort Results. J. Clin. Oncol. 2019, 37, 1608–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drakaki, A.; Kalebasty, A.R.; Lee, J.-L.; Martin-Liberal, J.; Kim, M.; Shin, S.J.; Shi, J.; Mariathasan, S.; Ci, B.; Degaonkar, V.; et al. Phase Ib/II umbrella trial to evaluate the safety and efficacy of multiple 2L cancer immunotherapy (CIT) combinations in advanced/metastatic urothelial carcinoma (mUC): MORPHEUS-mUC. JCO 2020, 38 (Suppl. 6), TPS591. [Google Scholar] [CrossRef]
- Faltas, B.; Goldenberg, D.M.; Ocean, A.J.; Govindan, S.V.; Wilhelm, F.; Sharkey, R.M.; Hajdenberg, J.; Hodes, G.; Nanus, D.M.; Tagawa, S.T. Sacituzumab Govitecan, a Novel Antibody--Drug Conjugate, in Patients with Metastatic Platinum-Resistant Urothelial Carcinoma. Clin. Genitourin. Cancer 2016, 14, e75–e79. [Google Scholar] [CrossRef] [Green Version]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Siefker-Radtke, A.; Necchi, A.; Park, S.H.; García-Donas, J.; A Huddart, R.; Burgess, E.F.; Fleming, M.T.; Kalebasty, A.R.; Mellado, B.; Varlamov, S.; et al. Efficacy and safety of erdafitinib in patients with locally advanced or metastatic urothelial carcinoma: Long-term follow-up of a phase 2 study. Lancet Oncol. 2022, 23, 248–258. [Google Scholar] [CrossRef]
Clinical Trial | Phase | Chemotherapy Type | Treatment Arms | Number of Patients | Disease Severity | Median Overall Survival Time (Hazard Ratio, 95% Confidence Interval, p-Value) | Median Progression Free Survival Time (Hazard Ratio, 95% Confidence Interval, p-Value) | Outcome | Status |
---|---|---|---|---|---|---|---|---|---|
IMvigor 211 | 3 | First-line | Atezolizumab + chemotherapy vs. chemotherapy | 931 | Locally advanced or metastatic urothelial cancer | 11.1 vs. 10.6 months (HR 0.87, 95% CI 0.63–1.21, p = 0.41) | N/A; not an outcome | Not significant | Active, not recruiting |
IMvigor 130 | 3 | First-line | Atezolizumab + chemotherapy vs. chemotherapy + placebo | 1200 | Locally advanced or metastatic urothelial cancer | 16.0 months vs. 13.4 months (HR 0.83, 95% CI 0.69–1.00, p = 0.027, α = 0.007) | 8.2 months vs. 6.3 months (HR 0.82, 95% CI 0.70–0.96, p = 0.007) | Significant for improved PFS | Active, not recruiting |
MK-3475-361/KEYNOTE-361 | 3 | First-line | Pembrolizumab + standard chemotherapy vs. pembrolizumab vs. standard chemotherapy | 1010 | Locally advanced or metastatic urothelial cancer | 17.0 vs. 14.3 months (HR 0.86, 95% CI 0.72–1.02, p = 0.0407, α = 0.0142) | 8.3 months vs. 7.1 months (HR 0.78, 95% CI 0.65–0.93, p = 0.0033, α = 0.0019) | Not significant | Active, not recruiting |
NCT02603432 | 3 | Maintenance | Avelumab + supportive care vs. supportive care | 700 | Locally advanced or metastatic urothelial cancer who did not have disease progression with first-line chemotherapy | 21.4 vs. 14.3 months (HR 0.69, 95% CI 0.56–0.86, p = 0.001) | 3.7 months vs. 2.0 months (HR 0.62, 95% CI 0.52–0.75) | Significant for improved OS and improved PFS | Active, not recruiting |
DANUBE | 3 | First-line | Durvalumab vs. durvalumab + tremelimumab vs. chemotherapy | 1032 | Locally advanced or metastatic urothelial cancer | 14.4 months (durvalumab alone) vs. 12.1 months (chemotherapy alone) (HR 0.89, 95% CI 0.71–1.11, p = 0.30) | 2.3 months vs. 3.7 months vs. 6.7 months (statistics not reported) | Not significant | Active, not recruiting |
NILE | 3 | First-Line | Durvalumab + Chemotherapy and Durvalumab + Tremelimumab Chemotherapy vs. Chemotherapy alone | 1292 | Unresectable Locally Advanced or Metastatic Urothelial Cancer | No results posted yet | No results posted yet | No results posted yet | Recruiting |
PEMBRO/EV | 3 | First-line | Enfortumab Vedotin and Pembrolizumab vs. Chemotherapy | 860 | Untreated Locally Advanced or Metastatic Urothelial Cancer | Not reached | 12.3 months (95% CI: 8.0) | No results posted yet | Recruiting |
CheckMate-032 | 1/2 | Second line with Urothelial | Nivolumab vs Nivolumab + Ipilimumab | 1131 (78 with UC) | Advanced or Metastatic Solid Tumors: 6 tumor types—triple-negative breast cancer, gastric cancer, pancreatic adenocarcinoma, small cell lung cancer, bladder cancer, and ovarian cancer | Urothelial: 9.9 months (95% CI, 7.3 to 21.1 months) in the NIVO3 arm, 7.4 months (95% CI, 5.6 to 11.0 months) in the NIVO3 + IPI1 arm, and 15.3 months (95% CI, 10.1 to 27.6 months) in the NIVO1 + IPI3 arm | Urothelial: 2.8 months (95% CI, 1.5 to 5.3 months) in NIVO3, 2.6 months (95% CI, 1.4 to 3.9 months) in NIVO3 + IPI1, and 4.9 months (95% CI, 2.7 to 6.6 months) in NIVO3 + IPI1 | N/A | Active, not recruiting |
MORPHEUS | 1b/2 | Different lines of treatment | Multiple Immunotherapy-Based Treatments and Combinations (Atezolizumab, Enfortumab Vedotin, Niraparib, Hu5F9-G4, Tiragolumab, Sacituzumab Govitecan, Tocilizumab, Cisplatin, Gemcitabine) | 645 | GI Cancer, Urothelial Carcinoma, Melanoma | No results posted yet | No results posted yet | No results posted yet | Recruiting |
EV-201 | 2 | Second-line | Enfortumab Vedotin | 219 | Locally advanced or metastatic urothelial carcinoma patients who were previously treated with ICIs | 14.7 months (95% CI 10.51–18.2) | 5.8 months (95% CI 5.03–8.28) | N/A | Active, not recruiting |
TROPHY-U-01 | 2 | Third-Line | Sacituzumab Govitecan | 321 | Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors | 5.4 months (95% CI, 3.5 to 7.2 months) | 10.9 months (95% CI, 9.0 to 13.8 months) | Preliminary Data | Recruiting |
CHECKMATE 901 | 3 | First-Line | Nivolumab + Ipilimumab or Chemotherapy vs. Chemotherapy Alone | 1307 | Untreated Inoperable or Metastatic Urothelial Cancer | No results posted yet | No results posted yet | No results posted yet | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, G.; Stefanoudakis, D.; Zektser, Y.; Isaacs, D.J.; Hannigan, C.; Pantuck, A.J.; Drakaki, A. Do Cancer Genetics Impact Treatment Decision Making? Immunotherapy and Beyond in the Management of Advanced and Metastatic Urothelial Carcinoma. Curr. Oncol. 2023, 30, 7398-7411. https://doi.org/10.3390/curroncol30080536
Hui G, Stefanoudakis D, Zektser Y, Isaacs DJ, Hannigan C, Pantuck AJ, Drakaki A. Do Cancer Genetics Impact Treatment Decision Making? Immunotherapy and Beyond in the Management of Advanced and Metastatic Urothelial Carcinoma. Current Oncology. 2023; 30(8):7398-7411. https://doi.org/10.3390/curroncol30080536
Chicago/Turabian StyleHui, Gavin, Dimitrios Stefanoudakis, Yuliya Zektser, Dayna Jill Isaacs, Christopher Hannigan, Allan J. Pantuck, and Alexandra Drakaki. 2023. "Do Cancer Genetics Impact Treatment Decision Making? Immunotherapy and Beyond in the Management of Advanced and Metastatic Urothelial Carcinoma" Current Oncology 30, no. 8: 7398-7411. https://doi.org/10.3390/curroncol30080536
APA StyleHui, G., Stefanoudakis, D., Zektser, Y., Isaacs, D. J., Hannigan, C., Pantuck, A. J., & Drakaki, A. (2023). Do Cancer Genetics Impact Treatment Decision Making? Immunotherapy and Beyond in the Management of Advanced and Metastatic Urothelial Carcinoma. Current Oncology, 30(8), 7398-7411. https://doi.org/10.3390/curroncol30080536