30-Min Exposure to Tobacco Smoke Influences Airway Ion Transport—An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
- (1)
- RS—Ringer’s solution—K+ 4.0 mM; Na+ 147.2 mM; Ca2+ 2.2 mM; Mg2+ 2.6 mM; Cl− 160.8 mM; HEPES (4-(2-hydroxyethyl)piperazine-1-ethanosulfonic acid; 10.0 mM; Sigma-Aldrich, Burlington, Massachusetts, USA), adjusted to pH 7.4; a basic solution with iso-osmotic properties. Mineral compounds (KCl, NaCl, CaCl2, MgCl2) were purchased from Avantor Performance Materials Poland.
- (2)
- A—amiloride solution; 266.09 g/mol (Sigma-Aldrich, Burlington, MA, USA); used as an inhibitor of transepithelial transport of sodium ions, dissolved and diluted in RS (0.1 mmol/L).
- (3)
- B—bumetanide solution; 364.42 g/mol (Sigma-Aldrich, Burlington, MA, USA); used as an inhibitor of transepithelial transport of chloride ions dissolved in DMSO and diluted in RS (0.1 mmol/L).
2.2. Experimental Procedure
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hecht, S.S. Cigarette smoking: Cancer risks, carcinogens, and mechanisms. Langenbecks Arch. Surg. 2006, 391, 603–613. [Google Scholar] [CrossRef]
- Heffernan, T. The Impact of Active and Passive Smoking upon Health and Neurocognitive Function. Front. Psychiatry 2016, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, F.; Dobaradaran, S.; De-la-Torre, G.E.; Schmidt, T.C.; Saeedi, R. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. Sci. Total Environ. 2022, 813, 152667. [Google Scholar] [CrossRef] [PubMed]
- Churg, A.; Cosio, M.; Wright, J.L. Mechanism of cigarette smoke-induced COPD: Insights from animal models. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 294, L612–L631. [Google Scholar] [CrossRef]
- Starek, A.; Podolak, I. Carcinogenic effect of tobacco smoke. Rocz. Panstw. Zakl. Hig. 2009, 60, 299–310. [Google Scholar]
- Canha, N.; Almeida, M.; Diapouli, E. Integrated human exposure to air pollution. Int. J. Environ. Res. Public. Health 2021, 18, 2233. [Google Scholar] [CrossRef]
- Kozielski, J. Palenie tytoniu a zakażenia układu oddechowego. Pneumonol. Alergol. Pol. 2008, 76, 271–275. [Google Scholar] [PubMed]
- Cao, X.; Coyle, J.P.; Xiong, R.; Wang, Y.; Heflich, R.H.; Ren, B.; Gwinn, W.M.; Hayden, P.; Rojanasakul, L. Invited review: Human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells—Overview and perspectives. In Vitro Cel. Dev. Biol. Animal 2021, 57, 104–132. [Google Scholar] [CrossRef] [PubMed]
- Greczko, I.; Tyrakowski, T. The effect of serotonin on airway transepithelial sodium ion pathways. Eur. J. Pharmacol. 2001, 412, 113–119. [Google Scholar] [CrossRef]
- Grubb, B.R.; Rogers, T.D.; Boucher, R.C.; Ostrowski, L.E. Ion transport across CF and normal murine olfactory and ciliated epithelium. Am. J. Physiol. Cell Physiol. 2009, 296, C1301–C1309. [Google Scholar] [CrossRef] [Green Version]
- Livraghi-Butrico, A.; Kelly, E.; Wilkinson, K.; Rogers, T.; Gilmore, R.; Harkema, J.; Randell, S.H.; Boucher, R.C.; O’Neal, W.K.; Grubb, B.R. Loss of CFTR function exacerbates the phenotype of Na hyperabsorption in murine airways. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 304, L469–L480. [Google Scholar] [CrossRef] [Green Version]
- Mall, M.A.; Button, B.; Johannesson, B.; Zhou, Z.; Livraghi, A.; Caldwell, R.A.; Schubert, S.C.; Schultz, C.; O’Neal, W.K.; Pradervand, S.; et al. Airway surface liquid volume regulation determines different airway phenotypes in Liddle compared with β-ENaC-overexpressing mice. J. Biol. Chem. 2010, 285, 26945–26955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarran, R. Regulation of airway surface liquid volume and mucus transport by active ion transport. Physiol. Res. 2014, 63 (Suppl. S4), S629–S642. [Google Scholar] [CrossRef]
- Tyrakowski, T.; Sedlaczek, A.; Greczko, I.; Bartłomowicz, M.; Wojciechowska, M. Ambroxol effect on transepithelial electrical potential difference of isolated tracheal wall. Pol. J. Pharmac. 1997, 49, 53–58. [Google Scholar]
- Blouquit, S.; Regnier, A.; Dannhoffer, L.; Fermanian, C.; Naline, E.; Boucher, R.; Chinet, T. Ion and fluid transport properties of small airways in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 299–305. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, S.M. Oxidative stress, autophagy and airway ion transport. Am. J. Physiol. Cell Physiol. 2019, 316, C16–C32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, W.; Coakley, R.; Button, B.; Henderson, A.; Zeman, K.; Alexis, N.; Peden, D.B.; Lazarowski, E.R.; Davis, C.W.; Bailey, S.; et al. The relationship of mucus concentration (hydration) to mucus osmotic pressure and transport in chronic bronchitis. Am. J. Respir. Crit. Care Med. 2015, 192, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Hołyńska-Iwan, I.; Dziembowska, I.; Olszewska-Słonina, D. The short-term rinsing of airways by N-acetylcysteine helps expectoration: The mechanism of sodium and chloride transport. Postępy Hig. Med. Dośw. 2020, 74, 362–370. [Google Scholar] [CrossRef]
- Åstrand, A.B.M.; Hemmerling, M.; Root, J.; Wingren, C.; Pesic, J.; Johansson, E.; Garland, A.L.; Ghosh, A.; Tarran, R. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 308, L22–L32. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.-H.; Gu, W.; Lim, I.; Bang, H.; Ko, E.A.; Zhou, T. Ion Channel Gene Expression in Lung Adenocarcinoma: Potential Role in Prognosis and Diagnosis. PLoS ONE. 2014, 9, e86569. [Google Scholar] [CrossRef]
- Becskeházi, E.; Korsós, M.M.; Gál, E.; Tiszlavicz, L.; Hoyk, Z.; Deli, M.A.; Köhler, Z.M.; Keller-Pintér, A.; Horváth, A.; Csekõ, K.; et al. Inhibition of NHE-1 Increases Smoke-Induced Proliferative Activity of Barrett’s Esophageal Cell Line. Int. J. Mol. Sci. 2021, 22, 10581. [Google Scholar] [CrossRef] [PubMed]
- Unwalla, H.J.; Ivonnet, P.; Dennis, J.S.; Conner, G.E.; Salathe, M. Transforming Growth Factor-b1 and Cigarette Smoke Inhibit the Ability of b2-Agonists to Enhance Epithelial Permeability. Am. J. Respir. Cell Mol. Biol. 2015, 52, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas Buonfiglio, L.G.; Borcherding, J.A.; Frommelt, M.; Parker, G.J.; Duchman, B.; Vanegas Calderón, O.G.; Fernandez-Ruiz, R.; Noriega, J.E.; Stone, E.A.; Gerke, A.K.; et al. Airway surface liquid from smokers promotes bacterial growth and biofilm formation via iron-lactoferrin imbalance. Respir. Res. 2018, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Hołyńska-Iwan, I.; Sobiesiak, M.; Kowalczyk, W.; Wróblewski, M.; Cwynar, A.; Szewczyk-Golec, K. Nickel ions infuence the transepithelial sodium transport in the trachea, intestine and skin. Sci. Rep. 2023, 13, 6931. [Google Scholar] [CrossRef] [PubMed]
- Sailland, J.; Grosche, A.; Baumlin, N.; Dennis, J.S.; Schmid, A.; Krick, S.; Salathe, M. Role of Smad3 and p38 Signalling in Cigarette Smoke-induced CFTR and BK dysfunction in Primary Human Bronchial Airway Epithelial Cells. Sci. Rep. 2017, 7, 10506. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.; Faulhaber, J.; Srisawang, L.; Stortz, A.; Salomon, J.; Mall, M.; Frings, S.; Möhrlen, F. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium. Physiol. Rep. 2017, 5, e13290. [Google Scholar] [CrossRef]
- Lin, V.Y.; Fain, M.D.; Jackson, P.L.; Berryhill, T.F.; Wilson, L.S.; Mazur, M.; Barnes, S.J.; Blalock, J.E.; Raju, S.V.; Rowe, S.M. Vaporized E-cigarette liquids induce ion transport dysfunction in airway epithelia. Am. J. Respir. Cell Mol. Biol. 2019, 61, 162–173. [Google Scholar] [CrossRef]
- Rasmussen, J.E.; Sheridan, J.T.; Polk, W.; Davies, C.M.; Tarran, R. Cigarette Smoke-induced Ca2 Release Leads to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Dysfunction. J. Biol. Chem. 2014, 289, 7671–7681. [Google Scholar] [CrossRef] [Green Version]
- Raju, S.V.; Lin, V.Y.; Liu, L.; McNicholas, C.M.; Karki, S.; Sloane, P.A.; Tang, L.; Jackson, P.L.; Wang, W.; Wilson, L.; et al. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Am. J. Respir. Cell Mol. Biol. 2017, 56, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Raju, S.V.; Rasmussen, L.; Sloane, P.A.; Tang, L.P.; Falk Libby, E.; Rowe, S.M. Roflumilast reverses CFTR-mediated ion transport dysfunction in cigarette smoke-exposed mice. Respir. Res. 2017, 18, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Clews, J.; Ciutaa, A.D.; Martin, E.R.; Ford, R.C. CFTR structure, stability, function and regulation. Biol. Chem. 2019, 400, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Balsiger, R.; Tyrrell, J.; Boyaka, P.N.; Tarran, R.; Cormet-Boyaka, E. Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR. Bachelor Bus. Adm. 2015, 1850, 1224–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, P.J.; Reidel, B.; Ghosh, A.; Sesma, J.; Kesimer, M.; Tarran, R. Cigarette smoke modifies and inactivates SPLUNC1, leading to airway dehydration. FASEB J. 2018, 32, fj201800345R. [Google Scholar] [CrossRef] [PubMed]
- Andrè, E.; Campi, B.; Materazzi, S.; Trevisani, M.; Amadesi, S.; Massi, D.; Creminon, C.; Vaksman, N.; Nassini, R.; Civelli, M.; et al. Cigarette smoke–induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents. J. Clin. Invest. 2008, 118, 2574–2582. [Google Scholar] [CrossRef]
- Wu, M.; Lai, Y.; Du Jing, D.; Yang, S.; Wu, Y.; Li, Z.; Wu, Y.; Zhao, Y.; Zhou, L.; Chen, H.; et al. Epithelium-derived IL17A Promotes Cigarette Smoke–induced Inflammation and Mucus Hyperproduction. Am. J. Respir. Cell Mol. Biol. 2021, 65, 581–592. [Google Scholar] [CrossRef]
Chemical Compound | IARC 1 Group | Chemical Compound | IARC Group |
---|---|---|---|
4-Aminobiphenyl | 1 2 | Dibenzo[a,j]acridine | 2B |
2-Naphthylamine | 1 | Dibenzo[c,g]carbazole | 2B |
Benzene | 1 | Furan | 2B |
Chloroethylene | 1 | N-Nitrosoethylmethylamine | 2B |
Ethylene oxide | 1 | N-Nitroso-di-n-butylamine | 2B |
Arsenic | 1 | N-Nitrosopyrrolidine | 2B |
Beryllium | 1 | N-Nitrozonornicotine | 2B |
Nickel | 1 | 2-Toluidine | 2B |
Chromium(VI) | 1 | 2,6-Dimethylaniline | 2B |
Cadmium | 1 | Acetaldehyde | 2B |
Polonium-210 | 1 | 1,3-Butadiene | 2B |
Benz[a]anthracene | 2A 3 | Isoprene | 2B |
Benzo[a]pyrene | 2A | Styrene | 2B |
Dibenz[a,h]anthracene | 2A | Acetamide | 2B |
N-Nitrosodimethylamine | 2A | DDT | 2B |
N-Nitrosodiethylamine | 2A | DDE | 2B |
Formaldehyde | 2A | Pyrocatechol | 2B |
Acrylonitrile | 2A | Nitromethane | 2B |
Benzo[b]fluoranthene | 2B 4 | 2-Nitropropane | 2B |
Benzo[j]fluoranthene | 2B | Nitrobenzene | 2B |
Benzo[k]fluoranthene | 2B | Ethyl carbamate | 2B |
Dibenzo[a,l]pyrene | 2B | Propylene oxide | 2B |
Indeno [1,2,3-cd]pyrene | 2B | Hydrazine | 2B |
5-Methylchrysene | 2B | Cobalt | 2B |
Dibenzo[a,h]acridine | 2B | Lead | 2B |
Incubation | Stationary Conditions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ctr (n) | Smoke (n) | Ctr | Smoke | Ctr | Smoke | ||||||
R Initial | R Final | R Initial | R Final | PD Initial | PD Final | PD Initial | PD Final | ||||
RS | 22 | 18 | median | 185 | 136 | 110 | 108 | −3.92 | −1.48 | −2.53 | −2.32 |
upper quartile | 239 | 152 | 152 | 151 | −2.43 | −0.7 | −1.08 | −0.96 | |||
lower quartile | 144 | 108 | 91 | 88 | −5.10 | −1.74 | −3.61 | −4.23 | |||
A | 52 | 16 | median | 135 | 123 | 139 | 128 | −3.41 | −2.15 | −2.07 | −1.89 |
upper quartile | 153 | 139 | 192 | 164 | −2.72 | −1.4 | −1.5 | −1.37 | |||
lower quartile | 102 | 110 | 108 | 110 | −4.50 | −2.63 | −3.24 | −2.76 | |||
B | 40 | 15 | median | 147 | 155 | 79 | 80 | −1.77 | −1.63 | −0.64 | −0.53 |
upper quartile | 168 | 169 | 87 | 87 | −1.19 | −1.37 | −0.32 | −0.26 | |||
lower quartile | 122 | 135 | 73 | 73 | −2.60 | −2.52 | −1.42 | −1.34 |
Stimulation Conditions | |||||
---|---|---|---|---|---|
Incubation | Ctr (n) | Smoke (n) | Ctr | Smoke | |
PDmin | PDmin | ||||
RS | 22 | 18 | median | −0.39 | −2.74 |
upper quartile | −0.21 | −1.28 | |||
lower quartile | −0.61 | −4.73 | |||
A | 52 | 16 | median | −3.41 | −2.17 |
upper quartile | −2.72 | −1.47 | |||
lower quartile | −4.85 | −3.36 | |||
B | 40 | 15 | median | −1.8 | −0.95 |
upper quartile | −1.43 | −0.37 | |||
lower quartile | −2.83 | −1.53 |
Control | Smoke | |||||
---|---|---|---|---|---|---|
R Initial vs. R Final | PD Initial vs. PD Final | PD vs. PDmin | R Initial vs. R Final | PD Initial vs. PD Final | PD vs. PDmin | |
RS | 0.0096 | 0.0731 | <0.001 | 0.1240 | 0.0535 | <0.001 |
A | 0.4029 | <0.001 | <0.001 | 0.8445 | <0.001 | <0.001 |
B | 0.0788 | 0.2304 | 0.0018 | 0.2209 | 0.1094 | <0.001 |
Control vs. Smoke | |||
---|---|---|---|
RS | A | B | |
R | <0.001 | 0.9905 | <0.001 |
PD | 0.0278 | <0.001 | <0.001 |
PDmin | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henke, K.; Balcerzak, I.; Czepil, E.; Bem, A.; Piskorska, E.; Olszewska-Słonina, D.; Woźniak, A.; Szewczyk-Golec, K.; Hołyńska-Iwan, I. 30-Min Exposure to Tobacco Smoke Influences Airway Ion Transport—An In Vitro Study. Curr. Oncol. 2023, 30, 7007-7018. https://doi.org/10.3390/curroncol30070508
Henke K, Balcerzak I, Czepil E, Bem A, Piskorska E, Olszewska-Słonina D, Woźniak A, Szewczyk-Golec K, Hołyńska-Iwan I. 30-Min Exposure to Tobacco Smoke Influences Airway Ion Transport—An In Vitro Study. Current Oncology. 2023; 30(7):7007-7018. https://doi.org/10.3390/curroncol30070508
Chicago/Turabian StyleHenke, Katarzyna, Irena Balcerzak, Ewa Czepil, Alicja Bem, Elżbieta Piskorska, Dorota Olszewska-Słonina, Alina Woźniak, Karolina Szewczyk-Golec, and Iga Hołyńska-Iwan. 2023. "30-Min Exposure to Tobacco Smoke Influences Airway Ion Transport—An In Vitro Study" Current Oncology 30, no. 7: 7007-7018. https://doi.org/10.3390/curroncol30070508
APA StyleHenke, K., Balcerzak, I., Czepil, E., Bem, A., Piskorska, E., Olszewska-Słonina, D., Woźniak, A., Szewczyk-Golec, K., & Hołyńska-Iwan, I. (2023). 30-Min Exposure to Tobacco Smoke Influences Airway Ion Transport—An In Vitro Study. Current Oncology, 30(7), 7007-7018. https://doi.org/10.3390/curroncol30070508