Toxicity Profile of Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapies in Multiple Myeloma: Pathogenesis, Prevention and Management
Abstract
:1. Introduction
2. Mechanism of Action
3. Cytokine Release Syndrome
3.1. Pathogenesis
3.2. Presentation
3.3. CAR T-Cell Therapy
3.4. Bispecific Antibodies
3.5. Prevention & Management
4. Neurotoxicity
4.1. Pathogenesis
4.2. Presentation
4.3. CAR T-Cell Therapy
4.4. Bispecific Antibodies
4.5. Prevention & Management
5. Infections
5.1. Pathogenesis
5.2. CAR T-Cell Therapy
5.3. Bispecific Antibodies
5.4. Screening, Prevention and Management
5.4.1. Viral Infections
5.4.2. Fungal Infections
5.4.3. Bacterial Infections
5.4.4. Vaccinations
6. Hematologic Toxicities
6.1. CAR T-Cell Therapy
6.2. Bispecific Antibodies
6.3. Prevention & Management
7. Other Toxicities
7.1. Hemophagocytic Lymphohistiocytosis
7.2. Skin & Nail-Related Adverse Events
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dima, D.; Jiang, D.; Singh, D.J.; Hasipek, M.; Shah, H.S.; Ullah, F.; Khouri, J.; Maciejewski, J.P.; Jha, B.K. Multiple Myeloma Therapy: Emerging Trends and Challenges. Cancers 2022, 14, 4082. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Ullah, F.; Mazzoni, S.; Williams, L.; Faiman, B.; Kurkowski, A.; Chaulagain, C.; Raza, S.; Samaras, C.; Valent, J.; et al. Management of Relapsed-Refractory Multiple Myeloma in the Era of Advanced Therapies: Evidence-Based Recommendations for Routine Clinical Practice. Cancers 2023, 15, 2160. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.F.; Yeh, T.J.; Anderson, K.C.; Tai, Y.T. Bispecific Antibodies in Multiple Myeloma Treatment: A Journey in Progress. Front. Oncol. 2022, 12, 5797. [Google Scholar] [CrossRef] [PubMed]
- Teoh, P.J.; Chng, W.J. CAR T-Cell Therapy in Multiple Myeloma: More Room for Improvement. Blood Cancer J. 2021, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
- Sengsayadeth, S.; Savani, B.N.; Oluwole, O.; Dholaria, B. Overview of Approved CAR-T Therapies, Ongoing Clinical Trials, and Its Impact on Clinical Practice. EJHaem 2022, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Sievers, S.; Watson, G.; Johncy, S.; Adkins, S. Recognizing and Grading CAR T-Cell Toxicities: An Advanced Practitioner Perspective. Front. Oncol. 2020, 10, 885. [Google Scholar] [CrossRef]
- Zhou, X.; Rasche, L.; Kortüm, K.M.; Danhof, S.; Hudecek, M.; Einsele, H. Toxicities of Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma: An Overview of Experience From Clinical Trials, Pathophysiology, and Management Strategies. Front. Immunol. 2020, 11, 3403. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, C.; Wang, L.; Jia, Y.; Qin, Y. Chimeric Antigen Receptor T-Cell Therapy for Multiple Myeloma. Front. Immunol. 2022, 13, 7809. [Google Scholar] [CrossRef]
- Levine, B.L.; Miskin, J.; Wonnacott, K.; Keir, C. Global Manufacturing of CAR T Cell Therapy. Mol. Ther. Methods Clin. Dev. 2017, 4, 92. [Google Scholar] [CrossRef] [Green Version]
- Chekol Abebe, E.; Yibeltal Shiferaw, M.; Tadele Admasu, F.; Asmamaw Dejenie, T. Ciltacabtagene Autoleucel: The Second Anti-BCMA CAR T-Cell Therapeutic Armamentarium of Relapsed or Refractory Multiple Myeloma. Front. Immunol. 2022, 13, 991092. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-Cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Goebeler, M.E.; Bargou, R.C. T Cell-Engaging Therapies—BiTEs and Beyond. Nat. Rev. Clin. Oncol. 2020, 17, 418–434. [Google Scholar] [CrossRef] [PubMed]
- Ravi, G.; Costa, L.J. Bispecific T-Cell Engagers for Treatment of Multiple Myeloma. Am. J. Hematol. 2023, 98, S13–S21. [Google Scholar] [CrossRef] [PubMed]
- Elmeliegy, M. A Systematic Meta-Analysis of Cytokine Release Syndrome Incidence in B-Cell Maturation Antigen-Targeting Chimeric Antigen Receptor T-Cell Therapy and Bispecific Antibodies for Patients with Relapsed and/or Refractory Multiple Myeloma. Blood 2022, 40, 10036–10038. [Google Scholar]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine Release Syndrome and Associated Neurotoxicity in Cancer Immunotherapy. Nat. Rev. Immunol. 2021, 22, 85–96. [Google Scholar] [CrossRef]
- Siegler, E.L.; Kenderian, S.S. Neurotoxicity and Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy: Insights Into Mechanisms and Novel Therapies. Front Immunol. 2020, 11, 1973. [Google Scholar] [CrossRef]
- Xue, L.; Yi, Y.; Xu, Q.; Wang, L.; Yang, X.; Zhang, Y.; Hua, X.; Chai, X.; Yang, J.; Chen, Y.; et al. Chimeric Antigen Receptor T Cells Self-Neutralizing IL6 Storm in Patients with Hematologic Malignancy. Cell Discov. 2021, 7, 84. [Google Scholar] [CrossRef]
- Murthy, H.; Iqbal, M.; Chavez, J.C.; Kharfan-Dabaja, M.A. Cytokine Release Syndrome: Current Perspectives. Immunotargets Ther. 2019, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Cosenza, M.; Sacchi, S.; Pozzi, S. Cytokine Release Syndrome Associated with T-Cell-Based Therapies for Hematological Malignancies: Pathophysiology, Clinical Presentation, and Treatment. Int J. Mol. Sci. 2021, 22, 7652. [Google Scholar] [CrossRef]
- Kambhampati, S.; Sheng, Y.; Huang, C.Y.; Bylsma, S.; Lo, M.; Kennedy, V.; Natsuhara, K.; Martin, T.; Wolf, J.; Shah, N.; et al. Infectious Complications in Patients with Relapsed Refractory Multiple Myeloma after BCMA CAR T-Cell Therapy. Blood Adv. 2022, 6, 2045. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rojas, R.M.; Gómez-Centurión, I.; Bailén, R.; Bastos, M.; Diaz-Crespo, F.; Carbonell, D.; Correa-Rocha, R.; Pion, M.; Muñoz, C.; Sancho, M.; et al. Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome (HLH/MAS) Following Treatment with Tisagenlecleucel. Clin. Case Rep. 2022, 10, 5209. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current Concepts in the Diagnosis and Management of Cytokine Release Syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric Antigen Receptor T-Cell Therapy—Assessment and Management of Toxicities. Nat. Rev. Clin. Oncol. 2017, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, G.; Steinhoff, N.; Haegel, H.; De Marco, D.; Bacac, M.; Klein, C. Novel Strategies for the Mitigation of Cytokine Release Syndrome Induced by T Cell Engaging Therapies with a Focus on the Use of Kinase Inhibitors. Oncoimmunology 2022, 11, 2083479. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine Release Syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teachey, D.T.; Lacey, S.F.; Shaw, P.A.; Melenhorst, J.J.; Maude, S.L.; Frey, N.; Pequignot, E.; Gonzalez, V.E.; Chen, F.; Finklestein, J.; et al. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-Cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discov. 2016, 6, 664–679. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, F.; Zhang, P.; Zhang, Y.; Chen, Y.; Fan, X.; Cao, X.; Liu, J.; Yang, Y.; Wang, B.; et al. Management of Cytokine Release Syndrome Related to CAR-T Cell Therapy. Front. Med. 2019, 13, 610–617. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy Bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Hansen, D.K.; Sidana, S.; Peres, L.C.; Colin Leitzinger, C.; Shune, L.; Shrewsbury, A.; Gonzalez, R.; Sborov, D.W.; Wagner, C.; Dima, D.; et al. Idecabtagene Vicleucel for Relapsed/Refractory Multiple Myeloma: Real-World Experience from the Myeloma CAR T Consortium. J. Clin. Oncol. 2023, 41, 2087–2097. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.S.; Shah, N.; Jagannath, S.; Kaufman, J.L.; Siegel, D.S.; Munshi, N.C.; Rosenblatt, J.; Lin, Y.; Jakubowiak, A.; Timm, A.; et al. Updated Clinical and Correlative Results from the Phase I CRB-402 Study of the BCMA-Targeted CAR T Cell Therapy Bb21217 in Patients with Relapsed and Refractory Multiple Myeloma. Blood 2021, 138, 548. [Google Scholar] [CrossRef]
- Mailankody, S.; Jakubowiak, A.J.; Htut, M.; Costa, L.J.; Lee, K.; Ganguly, S.; Kaufman, J.L.; Siegel, D.S.D.; Bensinger, W.; Cota, M.; et al. Orvacabtagene Autoleucel (Orva-Cel), a B-Cell Maturation Antigen (BCMA)-Directed CAR T Cell Therapy for Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Update of the Phase 1/2 EVOLVE Study (NCT03430011). J. Clin. Oncol. 2020, 38, 8504. [Google Scholar] [CrossRef]
- Costa, L.J.; Mailankody, S.; Shaughnessy, P.; Hari, P.; Kaufman, J.L.; Larson, S.M.; Dingli, D.; Lee, K.; Conte, K.; DeVries, T.; et al. Anakinra (AKR) Prophylaxis (Ppx) in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM) Receiving Orvacabtagene Autoleucel (Orva-Cel). J. Clin. Oncol. 2021, 39, 2537. [Google Scholar] [CrossRef]
- Kumar, S.K.; Baz, R.C.; Orlowski, R.Z.; Anderson, L.D.; Ma, H.; Shrewsbury, A.; Croghan, K.A.; Bilgi, M.; Kansagra, A.; Kapoor, P.; et al. Results from Lummicar-2: A Phase 1b/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Patients with Relapsed and/or Refractory Multiple Myeloma. Blood 2020, 136, 28–29. [Google Scholar] [CrossRef]
- Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; et al. GPRC5D-Targeted CAR T Cells for Myeloma. N. Engl. J. Med. 2022, 387, 1196–1206. [Google Scholar] [CrossRef]
- Xia, J.; Li, H.; Yan, Z.; Zhou, D.; Wang, Y.; Qi, Y.; Cao, J.; Li, D.; Cheng, H.; Sang, W.; et al. Anti-G Protein-Coupled Receptor, Class C Group 5 Member D Chimeric Antigen Receptor T Cells in Patients With Relapsed or Refractory Multiple Myeloma: A Single-Arm, Phase II Trial. J. Clin. Oncol. 2023, 41, 2583–2593. [Google Scholar] [CrossRef]
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. ‘Off-the-Shelf’ Allogeneic CAR T Cells: Development and Challenges. Nat. Rev. Drug Discov. 2020, 19, 185–199. [Google Scholar] [CrossRef]
- Mailankody, S.; Matous, J.V.; Chhabra, S.; Liedtke, M.; Sidana, S.; Oluwole, O.O.; Malik, S.; Nath, R.; Anwer, F.; Cruz, J.C.; et al. Allogeneic BCMA-Targeting CAR T Cells in Relapsed/Refractory Multiple Myeloma: Phase 1 UNIVERSAL Trial Interim Results. Nat. Med. 2023, 29, 422–429. [Google Scholar] [CrossRef]
- Pillarisetti, K.; Powers, G.; Luistro, L.; Babich, A.; Baldwin, E.; Li, Y.; Zhang, X.; Mendonça, M.; Majewski, N.; Nanjunda, R.; et al. Teclistamab Is an Active T Cell-Redirecting Bispecific Antibody against B-Cell Maturation Antigen for Multiple Myeloma. Blood Adv. 2020, 4, 4538–4549. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Rosinol, L.; Chari, A.; Bhutani, M.; Karlin, L.; et al. Teclistamab, a B-Cell Maturation Antigen × CD3 Bispecific Antibody, in Patients with Relapsed or Refractory Multiple Myeloma (MajesTEC-1): A Multicentre, Open-Label, Single-Arm, Phase 1 Study. Lancet 2021, 398, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Pillarisetti, K.; Edavettal, S.; Mendonça, M.; Li, Y.; Tornetta, M.; Babich, A.; Majewski, N.; Husovsky, M.; Reeves, D.; Walsh, E.; et al. A T-Cell-Redirecting Bispecific G-Protein-Coupled Receptor Class 5 Member D x CD3 Antibody to Treat Multiple Myeloma. Blood 2020, 135, 1232–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.V.; Porter, D.L. Cytokine Release Syndrome with Novel Therapeutics for Acute Lymphoblastic Leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Lekakis, L.J.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; Timmerman, J.M.; et al. Preliminary Results of Prophylactic Tocilizumab after Axicabtageneciloleucel (Axi-Cel; KTE-C19) Treatment for Patients with Refractory, Aggressive Non-Hodgkin Lymphoma (NHL). Blood 2017, 130, 1547. [Google Scholar] [CrossRef]
- De Philippis, C.; Mannina, D.; Giordano, L.; Costantini, E.; Marcheselli, S.; Mariotti, J.; Sarina, B.; Taurino, D.; Santoro, A.; Bramanti, S. Impact of Preemptive Use of Tocilizumab on Chimeric Antigen Receptor T Cell Outcomes in Non-Hodgkin Lymphoma. Transpl. Cell Ther. 2023. [Google Scholar] [CrossRef]
- Caimi, P.F.; Pacheco Sanchez, G.; Sharma, A.; Otegbeye, F.; Ahmed, N.; Rojas, P.; Patel, S.; Kleinsorge Block, S.; Schiavone, J.; Zamborsky, K.; et al. Prophylactic Tocilizumab Prior to Anti-CD19 CAR-T Cell Therapy for Non-Hodgkin Lymphoma. Front. Immunol. 2021, 12, 745320. [Google Scholar] [CrossRef]
- Strati, P.; Ahmed, S.; Furqan, F.; Fayad, L.E.; Lee, H.J.; Iyer, S.P.; Nair, R.; Nastoupil, L.J.; Parmar, S.; Rodriguez, M.A.; et al. Prognostic Impact of Corticosteroids on Efficacy of Chimeric Antigen Receptor T-Cell Therapy in Large B-Cell Lymphoma. Blood 2021, 137, 3272–3276. [Google Scholar] [CrossRef]
- Kauer, J.; Hörner, S.; Osburg, L.; Müller, S.; Märklin, M.; Heitmann, J.S.; Zekri, L.; Rammensee, H.G.; Salih, H.R.; Jung, G. Tocilizumab, but Not Dexamethasone, Prevents CRS without Affecting Antitumor Activity of Bispecific Antibodies. J. Immunother. Cancer 2020, 8, e000621. [Google Scholar] [CrossRef]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of Adults and Children Undergoing Chimeric Antigen Receptor T-Cell Therapy: Best Practice Recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020, 105, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Hunter, B.D.; Jacobson, C.A. CAR T-Cell Associated Neurotoxicity: Mechanisms, Clinicopathologic Correlates, and Future Directions. J. Natl. Cancer Inst. 2019, 111, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Castaneda-Puglianini, O.; Chavez, J.C. Assessing and Management of Neurotoxicity after CAR-T Therapy in Diffuse Large B-Cell Lymphoma. J. Blood Med. 2021, 12, 775. [Google Scholar] [CrossRef] [PubMed]
- Neill, L.; Rees, J.; Roddie, C. Neurotoxicity—CAR T-Cell Therapy: What the Neurologist Needs to Know. Pr. Neurol. 2020, 20, 285–293. [Google Scholar] [CrossRef]
- Belin, C.; Devic, P.; Ayrignac, X.; Dos Santos, A.; Paix, A.; Sirven-Villaros, L.; Simard, C.; Lamure, S.; Gastinne, T.; Ursu, R.; et al. Description of Neurotoxicity in a Series of Patients Treated with CAR T-Cell Therapy. Sci. Rep. 2020, 10, 18997. [Google Scholar] [CrossRef]
- Osório, C.; Chacón, P.J.; White, M.; Kisiswa, L.; Wyatt, S.; Rodríguez-Tébar, A.; Davies, A.M. Selective Regulation of Axonal Growth from Developing Hippocampal Neurons by Tumor Necrosis Factor Superfamily Member APRIL. Mol. Cell Neurosci. 2014, 59, 24. [Google Scholar] [CrossRef] [Green Version]
- Mohyuddin, G.R.; Banerjee, R.; Alam, Z.; Berger, K.E.; Chakraborty, R. Rethinking Mechanisms of Neurotoxicity with BCMA Directed Therapy. Crit. Rev. Oncol. Hematol. 2021, 166, 103453. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. Immune Effector Cell Associated Neurotoxicity Syndrome in Chimeric Antigen Receptor-T Cell Therapy. Front. Immunol. 2022, 13, 879608. [Google Scholar] [CrossRef]
- Tallantyre, E.C.; Evans, N.A.; Parry-Jones, J.; Morgan, M.P.G.; Jones, C.H.; Ingram, W. Neurological Updates: Neurological Complications of CAR-T Therapy. J. Neurol. 2021, 268, 1544–1554. [Google Scholar] [CrossRef]
- Van Oekelen, O.; Aleman, A.; Upadhyaya, B.; Schnakenberg, S.; Madduri, D.; Gavane, S.; Teruya-Feldstein, J.; Crary, J.F.; Fowkes, M.E.; Stacy, C.B.; et al. Neurocognitive and Hypokinetic Movement Disorder with Features of Parkinsonism Following BCMA-Targeting CAR-T Cell Therapy. Nat. Med. 2021, 27, 2099. [Google Scholar] [CrossRef]
- FDA. Cber Package Insert—ABECMA; FDA: Silver Spring, ML, USA, 2021. [Google Scholar]
- Bristol Myers Squibb—Long-Term Data from Pivotal KarMMa Study Continue to Demonstrate Deep and Durable Responses and Predictable Safety Profile with Bristol Myers Squibb and Bluebird Bio’s Abecma (Idecabtagene Vicleucel) in Relapsed or Refractory Multiple Myeloma. Available online: https://news.bms.com/news/details/2021/Long-Term-Data-from-Pivotal-KarMMa-Study-Continue-to-Demonstrate-Deep-and-Durable-Responses-and-Predictable-Safety-Profile-with-Bristol-Myers-Squibb-and-bluebird-bios-Abecma-idecabtagene-vicleucel-in-Relapsed-or-Refractory-Multiple-Myeloma/default.aspx (accessed on 10 April 2023).
- FDA. Cber Package Insert—CARVYKTI; FDA: Silver Spring, ML, USA, 2022. [Google Scholar]
- Einsele, H.; Cohen, A.; Delforge, M.; Hillengass, J.; Goldschmidt, H.; Weisel, K.; Raab, M.-S.; Scheid, C.; Schecter, J.; De Braganca, K.; et al. P08: Cartitude-2 Update: Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen–Directed Chimeric Antigen Receptor T-Cell Therapy, in Lenalidomide-Refractory Patients with Progressive Multiple Myeloma after 1-3 Prior Lines of Therapy. Hemasphere 2022, 6, 15. [Google Scholar] [CrossRef]
- Frigault, M.J.; Bishop, M.R.; Rosenblatt, J.; O’Donnell, E.K.; Raje, N.; Cook, D.; Yee, A.J.; Logan, E.; Avigan, D.E.; Jakubowiak, A.; et al. Phase 1 Study of CART-DdBCMA for the Treatment of Subjects with Relapsed and Refractory Multiple Myeloma. Blood Adv. 2023, 7, 768–777. [Google Scholar] [CrossRef] [PubMed]
- FDA. Cder Package Insert—Teclistamab; FDA: Silver Spring, ML, USA, 2022. [Google Scholar]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow. Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancman, G. Infections and Severe Hypogammaglobulinemia in Multiple Myeloma Patients Treated with Anti-BCMA Bispecific Antibodies. Blood 2022, 140 (Suppl. S1), 10073–10074. [Google Scholar] [CrossRef]
- Mohan, M.; Nagavally, S.; Dhakal, B.; Radhakrishnan, S.V.; Chhabra, S.; D’Souza, A.; Hari, P. Risk of Infections with B-Cell Maturation Antigen-Directed Immunotherapy in Multiple Myeloma. Blood Adv. 2022, 6, 2466. [Google Scholar] [CrossRef]
- Busca, A.; Salmanton-Garcıa, J.; Corradini, P.; Marchesi, F.; Cabirta, A.; Blasi, R.D.; Dulery, R.; Lamure, S.; Farina, F.; Weinbergerova, B.; et al. COVID-19 and CAR T Cells: A Report on Current Challenges and Future Directions from the EPICOVIDEHA Survey by EHA-IDWP. Blood Adv. 2022, 6, 2427–2433. [Google Scholar] [CrossRef]
- Logue, J.M.; Peres, L.C.; Hashmi, H.; Colin-Leitzinger, C.M.; Shrewsbury, A.M.; Hosoya, H.; Gonzalez, R.M.; Copponex, C.; Kottra, K.H.; Hovanky, V.; et al. Early Cytopenias and Infections after Standard of Care Idecabtagene Vicleucel in Relapsed or Refractory Multiple Myeloma. Blood Adv. 2022, 6, 6109–6119. [Google Scholar] [CrossRef]
- Hammons, L.R.; Szabo, A.; Janardan, A.; Dhakal, B.; Chhabra, S.; D’Souza, A.; Mohan, M. Kinetics of Humoral Immunodeficiency with Bispecific Antibody Therapy in Relapsed Refractory Multiple Myeloma. JAMA Netw. Open 2022, 5, e2238961. [Google Scholar] [CrossRef]
- Mazahreh, F.; Mazahreh, L.; Schinke, C.; Thanendrarajan, S.; Zangari, M.; Shaughnessy, J.D.; Zhan, F.; Van Rhee, F.; Al Hadidi, S.A. Risk of Infections Associated with the Use of Bispecific Antibodies in Multiple Myeloma: A Pooled Analysis. Blood Adv. 2023. [Google Scholar] [CrossRef]
- Rodríguez-Otero, P.; D’Souza, A.; Reece, D.E.; van de Donk, N.W.C.J.; Chari, A.; Krishnan, A.Y.; Martin, T.G.; Mateos, M.-V.; Morillo, D.; Hurd, D.D.; et al. A Novel, Immunotherapy-Based Approach for the Treatment of Relapsed/Refractory Multiple Myeloma (RRMM): Updated Phase 1b Results for Daratumumab in Combination with Teclistamab (a BCMA × CD3 Bispecific Antibody). J. Clin. Oncol. 2022, 40, 8032. [Google Scholar] [CrossRef]
- Searle, E. Teclistamab in Combination with Subcutaneous Daratumumab and Lenalidomide in Patients with Multiple Myeloma: Results from One Cohort of MajesTEC-2, a Phase1b, Multicohort Study. In Proceedings of the ASH Annual Meeting & Exposition, Virtual, 10–13 December 2022. [Google Scholar]
- Chari, A.; Hari, P.; Bahlis, N.J.; Mateos, M.-V.; van de Donk, N.W.C.J.; Dholaria, B.; Garfall, A.L.; Goldschmidt, H.; Kortuem, K.M.; Krishnan, A.Y.; et al. Phase 1b Results for Subcutaneous Talquetamab Plus Daratumumab in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2021, 138, 161. [Google Scholar] [CrossRef]
- Grosicki, S. Elranatamab in Combination with Daratumumab for Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from the Phase 3 Magnetismm-5 Study Safety Lead-in Cohort. Blood 2022, 140 (Suppl. S1), 4407–4408. [Google Scholar] [CrossRef]
- Bahlis, N. Efficacy and Safety of Elranatamab in Patients with Relapsed/Refractory Multiple Myeloma Naïve to B-Cell Maturation Antigen (BCMA)-Directed Therapies: Results from Cohort a of the Magnetismm-3 Study. Blood 2022, 140 (Suppl. S1), 391–393. [Google Scholar] [CrossRef]
- Raje, N. Elranatamab, a BCMA Targeted T-Cell Engaging Bispecific Antibody, Induces Durable Clinical and Molecular Responses for Patients with Relapsed or Refractory Multiple Myeloma. Blood 2022, 140 (Suppl. S1), 388–390. [Google Scholar] [CrossRef]
- Bumma, N. Updated Safety and Efficacy of REGN5458, a BCMAxCD3 Bispecific Antibody, Treatment for Relapsed/Refractory Multiple Myeloma: A Phase 1/2 First-in-Human Study. Blood 2022, 140 (Suppl. S1), 10140–10141. [Google Scholar] [CrossRef]
- Voorhees, P.M.; D’Souza, A.; Weisel, K.; Hurd, D.D.; Teipel, R.; Chung, A.; Rodriguez, C.; Tuchman, S.A.; Korde, N.; Safah, H.; et al. A Phase 1 First-in-Human Study of Abbv-383, a BCMA × CD3 Bispecific T-Cell-Redirecting Antibody, As Monotherapy in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2022, 140, 4401–4404. [Google Scholar] [CrossRef]
- Lesokhin, A. Enduring Responses after 1-Year, Fixed-Duration Cevostamab Therapy in Patients with Relapsed/Refractory Multiple Myeloma: Early Experience from a Phase I Study. Blood 2022, 140 (Suppl. S1), 4415–4417. [Google Scholar] [CrossRef]
- Wong, S. Alnuctamab (ALNUC.; BMS-986349; CC-93269), a B-Cell Maturation Antigen (BCMA) × CD3 T-Cell Engager (TCE), in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from a Phase 1 First-in-Human Clinical Study. Blood 2022, 140 (Suppl. S1), 400–402. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti-B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef]
- Harrison, S. A Phase 1 First in Human (FIH) Study of AMG 701, an Anti-B-Cell Maturation Antigen (BCMA) Half-Life Extended (HLE) BiTE®(bispecific T-cell engager) Molecule, in Relapsed/Refractory (RR) Multiple Myeloma (MM). Blood 2020, 136 (Suppl. S1), 28–29. [Google Scholar] [CrossRef]
- Cliff, E.R.S.; Reynolds, G.; Popat, R.; Teh, B.W.; Kesselheim, A.S.; Mohyuddin, G.R. Acknowledging Infection Risk in Bispecific Antibody Trials in the Treatment of Multiple Myeloma. J. Clin. Oncol. 2023, 41, 1949–1951. [Google Scholar] [CrossRef] [PubMed]
- D’souza, A.; Shah, N.; Rodriguez, C.; Voorhees, P.M.; Weisel, K.; Bueno, O.F.; Pothacamury, R.K.; Freise, K.J.; Yue, S.; Ross, J.A.; et al. A Phase I First-in-Human Study of ABBV-383, a B-Cell Maturation Antigen × CD3 Bispecific T-Cell Redirecting Antibody, in Patients With Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2022, 40, 3576–3586. [Google Scholar] [CrossRef] [PubMed]
- Trudel, S. Pretreatment with Tocilizumab Prior to the CD3 Bispecific Cevostamab in Patients with Relapsed/Refractory Multiple Myeloma (RRMM) Showed a Marked Reduction in Cytokine Release Syndrome Incidence and Severity. Blood 2022, 140 (Suppl. S1), 1363–1365. [Google Scholar] [CrossRef]
- Costa, L.J.; Wong, S.W.; Bermúdez, A.; de la Rubia, J.; Mateos, M.-V.; Ocio, E.M.; Rodríguez-Otero, P.; San-Miguel, J.; Li, S.; Sarmiento, R.; et al. Early-Phase Trial Suggests Bispecific Antibody CC-93269 Has Activity in Relapsed/Refractory Multiple Myeloma. ASH Clin. News 2021. [Google Scholar] [CrossRef]
- Trudel, S.; Cohen, A.D.; Krishnan, A.Y.; Fonseca, R.; Spencer, A.; Berdeja, J.G.; Lesokhin, A.; Forsberg, P.A.; Laubach, J.P.; Costa, L.J.; et al. Cevostamab Monotherapy Continues to Show Clinically Meaningful Activity and Manageable Safety in Patients with Heavily Pre-Treated Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from an Ongoing Phase I Study. Blood 2021, 138, 157. [Google Scholar] [CrossRef]
- Costa, L.J.; Wong, S.W.; Bermúdez, A.; de la Rubia, J.; Mateos, M.-V.; Ocio, E.M.; Rodríguez-Otero, P.; San-Miguel, J.; Li, S.; Sarmiento, R.; et al. First Clinical Study of the B-Cell Maturation Antigen (BCMA) 2+1 T Cell Engager (TCE) CC-93269 in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Interim Results of a Phase 1 Multicenter Trial. Blood 2019, 134, 143. [Google Scholar] [CrossRef]
- Wang, D.; Mao, X.; Que, Y.; Xu, M.; Cheng, Y.; Huang, L.; Wang, J.; Xiao, Y.; Wang, W.; Hu, G.; et al. Viral Infection/Reactivation during Long-Term Follow-up in Multiple Myeloma Patients with Anti-BCMA CAR Therapy. Blood Cancer J. 2021, 11, 168. [Google Scholar] [CrossRef]
- Strati, P.; Nastoupil, L.J.; Fayad, L.E.; Samaniego, F.; Adkins, S.; Neelapu, S.S. Safety of CAR T-Cell Therapy in Patients with B-Cell Lymphoma and Chronic Hepatitis B or C Virus Infection. Blood 2019, 133, 2800–2802. [Google Scholar] [CrossRef]
- Mallet, V.; van Bömmel, F.; Doerig, C.; Pischke, S.; Hermine, O.; Locasciulli, A.; Cordonnier, C.; Berg, T.; Moradpour, D.; Wedemeyer, H.; et al. Management of Viral Hepatitis in Patients with Haematological Malignancy and in Patients Undergoing Haemopoietic Stem Cell Transplantation: Recommendations of the 5th European Conference on Infections in Leukaemia (ECIL-5). Lancet Infect. Dis. 2016, 16, 606–617. [Google Scholar] [CrossRef]
- Zignego, A.L.; Giannini, C.; Gragnani, L.; Piluso, A.; Fognani, E. Hepatitis C Virus Infection in the Immunocompromised Host: A Complex Scenario with Variable Clinical Impact. J. Transl. Med. 2012, 10. [Google Scholar] [CrossRef]
- Abramson, J.S.; Irwin, K.E.; Frigault, M.J.; Dietrich, J.; McGree, B.; Jordan, J.T.; Yee, A.J.; Chen, Y.B.; Raje, N.S.; Barnes, J.A.; et al. Successful Anti-CD19 CAR T-Cell Therapy in HIV-Infected Patients with Refractory High-Grade B-Cell Lymphoma. Cancer 2019, 125, 3692–3698. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Peeke, S.; Shah, N.; Mustafa, J.; Khatun, F.; Lombardo, A.; Abreu, M.; Elkind, R.; Fehn, K.; De Castro, A.; et al. Axicabtagene Ciloleucel CD19 CAR-T Cell Therapy Results in High Rates of Systemic and Neurologic Remissions in Ten Patients with Refractory Large B Cell Lymphoma Including Two with HIV and Viral Hepatitis. J. Hematol. Oncol. 2020, 13, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, J.A.; Seo, S.K. How I Prevent Infections in Patients Receiving CD19-Targeted Chimeric Antigen Receptor T Cells for B-Cell Malignancies. Blood 2020, 136, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.H.; Lonial, S. Chimeric Antigen Receptor T-Cell Therapy in Multiple Myeloma: A Comprehensive Review of Current Data and Implications for Clinical Practice. CA Cancer J. Clin. 2023, 73, 275–285. [Google Scholar] [CrossRef]
- Los-Arcos, I.; Iacoboni, G.; Aguilar-Guisado, M.; Alsina-Manrique, L.; Díaz de Heredia, C.; Fortuny-Guasch, C.; García-Cadenas, I.; García-Vidal, C.; González-Vicent, M.; Hernani, R.; et al. Recommendations for Screening, Monitoring, Prevention, and Prophylaxis of Infections in Adult and Pediatric Patients Receiving CAR T-Cell Therapy: A Position Paper. Infection 2021, 49, 215–231. [Google Scholar] [CrossRef]
- Raje, N.S.; Anaissie, E.; Kumar, S.K.; Lonial, S.; Martin, T.; Gertz, M.A.; Krishnan, A.; Hari, P.; Ludwig, H.; O’Donnell, E.; et al. Consensus Guidelines and Recommendations for Infection Prevention in Multiple Myeloma: A Report from the International Myeloma Working Group. Lancet Haematol. 2022, 9, e143–e161. [Google Scholar] [CrossRef]
- Nagle, S.J.; Murphree, C.; Raess, P.W.; Schachter, L.; Chen, A.; Hayes-Lattin, B.; Nemecek, E.; Maziarz, R.T. Prolonged Hematologic Toxicity Following Treatment with Chimeric Antigen Receptor T Cells in Patients with Hematologic Malignancies. Am. J. Hematol. 2021, 96, 455–461. [Google Scholar] [CrossRef]
- Gill, S.; Brudno, J.N. CAR T-Cell Therapy in Hematologic Malignancies: Clinical Role, Toxicity, and Unanswered Questions. Am. Soc. Clin. Oncol. Educ. Book 2021, e246–e265. [Google Scholar] [CrossRef]
- Luo, W.; Li, C.; Zhang, Y.; Du, M.; Kou, H.; Lu, C.; Mei, H.; Hu, Y. Adverse Effects in Hematologic Malignancies Treated with Chimeric Antigen Receptor (CAR) T Cell Therapy: A Systematic Review and Meta-Analysis. BMC Cancer 2022, 22, 98. [Google Scholar] [CrossRef]
- Thibaud, S.; Mia, M.B.; Van Oekelen, O.; Mouhieddine, T.H.; Schaniel, C.; Ghodke-Puranik, Y.; Aleman, A.; Upadhyaya, B.; Lancman, G.; Lagana, A.; et al. Comprehensive Characterization of Prolonged Unexplained Cytopenias in Relapsed/Refractory Multiple Myeloma Patients Following BCMA-Directed CAR-T Cell Therapy. Blood 2022, 140, 614–616. [Google Scholar] [CrossRef]
- Rejeski, K.; Hansen, D.K.; Bansal, R.; Sesques, P.; Ailawadhi, S.; Logue, J.M.; Freeman, C.L.; Alsina, M.; Theurich, S.; Locke, F.L.; et al. The CAR-Hematotox Score As a Prognostic Model of Toxicity and Response in Patients Receiving BCMA-Directed CAR-T for Relapsed/Refractory Multiple Myeloma. Blood 2022, 140, 7506–7508. [Google Scholar] [CrossRef]
- KarMMa Trial ORR|ABECMA® (Idecabtagene Vicleucel). Available online: https://www.abecmahcp.com/efficacy (accessed on 11 April 2023).
- Brudno, J.N.; Kochenderfer, J.N. Recent Advances in CAR T-Cell Toxicity: Mechanisms, Manifestations and Management. Blood Rev. 2019, 34, 45. [Google Scholar] [CrossRef] [PubMed]
- Borogovac, A.; Keruakous, A.; Bycko, M.; Holter Chakrabarty, J.; Ibrahimi, S.; Khawandanah, M.; Selby, G.B.; Yuen, C.; Schmidt, S.; Autry, M.T.; et al. Safety and Feasibility of Outpatient Chimeric Antigen Receptor (CAR) T-Cell Therapy: Experience from a Tertiary Care Center. Bone Marrow Transpl. 2022, 57, 1025–1027. [Google Scholar] [CrossRef]
- Ghilardi, G.; Chong, E.A.; Svoboda, J.; Wohlfarth, P.; Nasta, S.D.; Williamson, S.; Landsburg, J.D.; Gerson, J.N.; Barta, S.K.; Pajarillo, R.; et al. Bendamustine Is Safe and Effective for Lymphodepletion before Tisagenlecleucel in Patients with Refractory or Relapsed Large B-Cell Lymphomas. Ann. Oncol. 2022, 33, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Y.; Shan, M.; Zong, X.; Geng, H.; Li, J.; Chen, G.; Yu, L.; Xu, Y.; Li, C.; et al. Cytopenia after Chimeric Antigen Receptor T Cell Immunotherapy in Relapsed or Refractory Lymphoma. Front. Immunol. 2022, 13, 5073. [Google Scholar] [CrossRef] [PubMed]
- Beyar-Katz, O.; Perry, C.; On, Y.B.; Amit, O.; Gutwein, O.; Wolach, O.; Kedar, R.; Pikovsky, O.; Avivi, I.; Gold, R.; et al. Thrombopoietin Receptor Agonist for Treating Bone Marrow Aplasia Following Anti-CD19 CAR-T Cells-Single-Center Experience. Ann. Hematol. 2022, 101, 1769–1776. [Google Scholar] [CrossRef]
- McGann, M.; Velayati, A.; Roubal, K.; Granger, K.; Hashmi, H. Early Cytopenias and Infections Following Chimeric Antigen Receptor T-Cell Therapy: A Single Center Experience. Blood 2022, 140, 12764–12765. [Google Scholar] [CrossRef]
- Kennedy, V.E.; Wong, C.; Huang, C.Y.; Kambhampati, S.; Wolf, J.; Martin, T.G.; Shah, N.; Wong, S.W. Macrophage Activation Syndrome-like (MAS-L) Manifestations Following BCMA-Directed CAR T Cells in Multiple Myeloma. Blood Adv. 2021, 5, 5344–5348. [Google Scholar] [CrossRef]
- Narayan, N.; Williams, B.; Lipe, B.; De Benedetto, A. Onychomadesis and Palmoplantar Keratoderma Associated with Talquetamab Therapy for Relapsed and Refractory Multiple Myeloma. JAAD Case Rep. 2023, 31, 66. [Google Scholar] [CrossRef]
Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | |
---|---|---|---|---|---|
DEFINITION | |||||
Fever, Temp ≥ 38 °C | YES | YES | YES | YES | Death |
Plus | |||||
Hypotension | NO | YES, but not requiring vasopressors | YES, 1 vasopressor, with or without vasopressin | YES, ≥1 vasopressors, excluding vasopressin | |
And/or | |||||
Hypoxia | NO | YES, low-flow nasal canula or blow by | YES, HFNC, facemask, non-rebreather or Venturi mask | YES, positive pressure (CPAP, BiPAP, intubation with mechanical ventilation | |
MANAGEMENT | |||||
Supportive care IV fluids Infectious work-up Consider Abx Consider 1 dose Toci 8 mg/kg IV (can repeat every 8 h as needed if CRS persists, max 3 doses in 24-h, max 4 doses overall) For TEC:
| Supportive care IV fluids Infectious work up Consider Abx Toci 8 mg/kg IV (can repeat every 8 h as needed if CRS persists, max 3 doses in 24-h, max 4 doses overall) Consider dexa 10 mg IV every 12–24 h For TEC:
| Supportive care IV fluids Infectious work up Consider Abx ICU/Pressors if needed Toci (per grade 2)
Dexa 10 mg IV q6–12 h.
For TEC:
| Supportive care IV fluids Infectious work up Consider Abx ICU/Pressors if needed Individualized management Toci (per grade 2)
Dexa 20 mg IV q6 h.
For TEC:
|
Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | |
---|---|---|---|---|---|
Presentation | ICE score 7–9 | ICE score 3–6 | ICE score 0–2 (If ICE 0 but pt arousable and able to perform assessment) | ICE score 0 (pt arousable and unable to perform assessment) | Death |
or | or | or | |||
depressed level of consciousness but awakens spontaneously | depressed level of consciousness but awakens to voice | depressed level of consciousness: only awakens to tactile stimulus or seizures (focal, generalized, non-convulsive seizures on EEG) or raised ICP with focal/local on imaging | depressed level of consciousness: unarousable or arousable only with vigorous or repetitive tactile stimuli; stupor, coma Seizure: prolonged (>5 min) or repetitive clinical or subclinical seizures with no return to baseline in between Motor dysfunction: such as hemiparesis or paraparesis Diffuse CE on imaging and/or sxs of raised ICP: decerebrate or decorticate posturing, cranial nerve palsy, papilledema, Cushing’s triad and other | ||
Management | Consider dexa 10 mg PO/IV q12–24 h, de-escalated as quicky as tolerated AEDs for seizure prophylaxis For TEC: Hold until ICANS resolves | Dexa 10 mg IV every 12 h for 2–3 days, or longer if needed (taper as clinically indicated)
Consider non-sedating AEDs for seizure prophylaxis For TEC:
| Dexa 10–20 mg IV q6–12 h.
If CE seen or suspected: neurologic evaluation, hyperventilation, hyperosmolar therapies (hypertonic saline, mannitol), HD-MP 1–2 g, repeat q24 h if needed (then taper) and maybe lymphotoxic agents (CY). Start non-sedating AEDs For TEC:
| Dexa 20 mg IV q6 h.
If CE seen or suspected: (per grade 3) Start non-sedating AEDs ICU level of care with mechanical ventilation if needed For TEC:
| N/A |
BsAb-Regimen | Target | Trial Phase | N | CRS, % (G ≥ 3, %) | NT, % (G ≥ 3, %) | Infections, % (G ≥ 3, %) | Neutropenia, % (G ≥ 3, %) | Thrombocytopenia, % (G ≥ 3, %) | Anemia % (G ≥ 3, %) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Teclistamab NCT03145181 NCT04557098 | BCMA | I/II | 165 | 72 (0.6) | 14.5 (1.2) | 76 (45) | 71 (64) | 40 (21) | 52 (37) | [5,42] |
TEC-dara NCT04108195 | BCMA | I | 46 | 61 (0) | 2.1 (0) | 63 (28) | 54 (50) | 33 (28) | 46 (28) | [74] |
TEC-DRd NCT04722146 | BCMA | I | 32 | 81 (0) | 0% | 75 (28) | 75 (69) | NR | NR | [75] |
Talquetamab NCT03399799 | GPRC5D | II | 232 | D1: 77 (3) D2: 80 (0) | D1: 10 (0) D2: 5 (0) | D1: 47 (7) D2: 34 (7) | D1: 67 (60) D2: 36 (32) | D1: 37 (23) D2: 23 (11) | D1: 60 (30) D2: 43 (23) | [44] |
TALQ-dara NCT04108195 | GPRC5D | I | 23 | 35 (0) | 9 (4.5) | 35 (17) | 39 (30) | 39 (22) | 35 (22) | [76] |
Elranatamab NCT04649359 | BCMA | II | 123 | 58 (0) | PN: 17 (1) ICANS: 3 (0) | 62 (32) | 43. (43) | 27 (20) | 45.5 (33) | [78] |
Elranatamab-dara NCT05020236 | BCMA | III | 28 | 50 (0) | 0 (0) | NR | 29 (28) | NR | NR | [77] |
Linvoseltamab (REGN5458) NCT03761108 | BCMA | I | 167 | 48 (0.6) | NR | 54 (29) | 29 (27.5) | 21 (16) | 36.5 (30) | [80,86] |
ABBV-383 NCT03933735 | BCMA | I | 124 | 69 (4) | 11 (0) | 41 (25) | 37 (34) | 23 (12) | 29 (16) | [81,87] |
Cevostamab NCT03275103 | FcRH5 | I | 160 | 80 (1) | 41 (4) | 42.5 (19) | 18 (16) | NR | 32 (22) | [90] |
Alnuctamab NCT03486067 | BCMA | I | 47 | 53 (0) | NR | 57 (30) | 34 (30) | NR | 34 (17) | [83,89,91] |
Pacanalotamab NCT02514239 | BCMA | I | 42 | 38 (2) | 5 (5) | 33 (24) | NR | NR | NR | [84] |
Pavurutamab NCT03287908 | BCMA | I | 75 | 61 (8) | 8 (0) | NR (17) | 23 (NR) | 20 (1) | 43 (NR) | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markouli, M.; Ullah, F.; Unlu, S.; Omar, N.; Lopetegui-Lia, N.; Duco, M.; Anwer, F.; Raza, S.; Dima, D. Toxicity Profile of Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapies in Multiple Myeloma: Pathogenesis, Prevention and Management. Curr. Oncol. 2023, 30, 6330-6352. https://doi.org/10.3390/curroncol30070467
Markouli M, Ullah F, Unlu S, Omar N, Lopetegui-Lia N, Duco M, Anwer F, Raza S, Dima D. Toxicity Profile of Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapies in Multiple Myeloma: Pathogenesis, Prevention and Management. Current Oncology. 2023; 30(7):6330-6352. https://doi.org/10.3390/curroncol30070467
Chicago/Turabian StyleMarkouli, Mariam, Fauzia Ullah, Serhan Unlu, Najiullah Omar, Nerea Lopetegui-Lia, Marissa Duco, Faiz Anwer, Shahzad Raza, and Danai Dima. 2023. "Toxicity Profile of Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapies in Multiple Myeloma: Pathogenesis, Prevention and Management" Current Oncology 30, no. 7: 6330-6352. https://doi.org/10.3390/curroncol30070467
APA StyleMarkouli, M., Ullah, F., Unlu, S., Omar, N., Lopetegui-Lia, N., Duco, M., Anwer, F., Raza, S., & Dima, D. (2023). Toxicity Profile of Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapies in Multiple Myeloma: Pathogenesis, Prevention and Management. Current Oncology, 30(7), 6330-6352. https://doi.org/10.3390/curroncol30070467