CAR-T Cells in Canada; Perspective on How to Ensure We Get Our Value’s Worth
Abstract
:1. Introduction
2. Manufacturing and Delivery of CAR-T Cells
3. Clinical Effectiveness of CAR-T Cells
4. Drug Review Process in Canada
- (1)
- Clinical evidence: The comparative effectiveness of the new, submitted drug is compared to the SOC by a group of clinical experts and methodologists based on available evidence. Although overall survival has been the preferred outcome to inform recommendations, relevant surrogate outcomes, including health-related quality of life (HRQOL), toxicity, and disease-free survival, are commonly relied upon to allow comparison of effectiveness. The comparative effectiveness of the submitted drug compared to the SOC is performed. Standard, evidence-based criteria are used to assess the quality of the evidence in terms of their validity as they apply to the Canadian patient population, uncertainty around estimates, appropriateness of comparators, and clinical relevance of the outcomes being considered, with thorough documentation of this review process in the final, public-facing report.
- (2)
- Economic evaluation: The economic impact of the drug under review is compared to the SOC via a cost-effectiveness analysis (CEA). The CEA relies on a model prepared by the submitter and critically reviewed by CADTH’s economic experts. The assumptions made in the model are reviewed with clinical experts, and sensitivity analyses are performed by the committee’s methodologists to assess the impact of key variables, including drug prices, estimates of clinical benefits used to populate the model, time horizon, and overall uncertainty of the CEA. It is important to point out that the objective of the economic analysis, by virtue of its design, is to provide a good estimate of the economic value of the submitted drug for the specific indication(s) compared to the SOC; the CEA is not designed to inform on the economic value compared to other therapeutic options and/or different indications.
- (3)
- Adoption feasibility: This third axis evaluated by CADTH considers factors that would impact the feasibility and availability of the new treatment option. These include mode of drug administration, availability of appropriate expertise at local, regional, and/or provincial/territorial levels, global budget impacts, and additional investigations for drug initiation, monitoring, and/or related complications in addition to those required with SOC. This consideration is in part to ensure national-level equity in who can access the proposed new treatment as well as planning for resources as appropriate for the provinces.
- (4)
- Patient values: Patient values are assessed through a questionnaire through which patients and/or patient advocacy partners are given an opportunity to provide written feedback on the value of the submitted therapy from their perspective. However, patient values are difficult to quantify, which makes it challenging when wanting to compare different treatments, and this aspect may limit how patient values inform reimbursement decisions.
5. Uncertainty around Clinical Benefit
6. Review Framework to Provide Funding Recommendations
7. Match Reimbursement with Value for Money
8. Reduction in Costs of CAR-T Cells
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, O.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Jose, A.; Bavetta, M.G.; Martinelli, E.; Bronte, F.; Giunta, E.F.; Manu, K.A. Hepatocellular Carcinoma: Current Therapeutic Algorithm for Localized and Advanced Disease. J. Oncol. 2022, 2022, 3817724. [Google Scholar] [CrossRef]
- Stefanini, B.; Ielasi, L.; Chen, R.; Abbati, C.; Tonnini, M.; Tovoli, F.; Granito, A. TKIs in combination with immunotherapy for hepatocellular carcinoma. Expert Rev. Anticancer Ther. 2023, 23, 279–291. [Google Scholar] [CrossRef]
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Siddiqi, T.; Chavez, J.C.; Hosing, C.M.; Ghobadi, A.; Budde, L.E.; Bot, A.; Rossi, J.M.; et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma. Mol. Ther. 2017, 25, 285–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Grigor, E.J.M.; Fergusson, D.; Kekre, N.; Montroy, J.; Atkins, H.; Seftel, M.D.; Daugaard, M.; Presseau, J.; Thavorn, K.; Hutton, B.; et al. Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfus. Med. Rev. 2019, 33, 98–110. [Google Scholar] [CrossRef]
- Crump, M.; Neelapu, S.S.; Farooq, U.; Van Den Neste, E.; Kuruvilla, J.; Westin, J.; Link, B.K.; Hay, A.; Cerhan, J.R.; Zhu, L.; et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood 2017, 130, 1800–1808. [Google Scholar] [CrossRef]
- Kittai, A.S.; Huang, Y.; Gordon, M.; Denlinger, N.; Mian, A.; Fitzgerald, L.; Bishop, J.; Nagle, S.; Stephens, D.M.; Jaglowski, S.; et al. Comorbidities Predict Inferior Survival in Patients Receiving Chimeric Antigen Receptor T Cell Therapy for Diffuse Large B Cell Lymphoma: A Multicenter Analysis. Transplant. Cell. Ther. 2021, 27, 46–52. [Google Scholar] [CrossRef]
- CADTH. Axicabtagene Ciloleucel for Diffuse Large B-Cell Lymphoma: Economic Review Report; CADTH: Ottawa, ON, Canada, 2019. [Google Scholar]
- CADTH. Tisagenlecleucel (Kymriah) for Pediatric Acute Lymphoblastic Leukemia and Diffuse Large B-Cell Lymphoma; CADTH: Ottawa, ON, Canada, 2018. [Google Scholar]
- Rotte, A.; Frigault, M.J.; Ansari, A.; Gliner, B.; Heery, C.; Shah, B. Dose-response correlation for CAR-T cells: A systematic review of clinical studies. J. Immunother. Cancer 2022, 10, e005678. [Google Scholar] [CrossRef]
- Stefanski, H.E.; Eaton, A.; Baggott, C.; Rossoff, J.; Verneris, M.R.; Prabhu, S.; Pacenta, H.L.; Phillips, C.L.; Talano, J.A.; Moskop, A.; et al. Higher doses of tisagenlecleucel are associated with improved outcomes: A report from the pediatric real-world CAR consortium. Blood Adv. 2023, 7, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, A.; Mai, H.; Penner, N.; Amir, E.; Laupacis, A.; Sabharwal, M.; Chan, K.K. Impact of the pan-Canadian Oncology Drug Review on provincial concordance with respect to cancer drug funding decisions and time to funding. Curr. Oncol. 2017, 24, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Roschewski, M.; Longo, D.L.; Wilson, W.H. CAR T-Cell Therapy for Large B-Cell Lymphoma-Who, When, and How? N. Engl. J. Med. 2022, 386, 692–696. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.A.; Kersten, M.J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Chong, E.A.; Ruella, M.; Schuster, S.J.; Lymphoma Program Investigators at the University of, P. Five-Year Outcomes for Refractory B-Cell Lymphomas with CAR T-Cell Therapy. N. Engl. J. Med. 2021, 384, 673–674. [Google Scholar] [CrossRef]
- Elsawy, M.; Chavez, J.C.; Avivi, I.; Larouche, J.F.; Wannesson, L.; Cwynarski, K.; Osman, K.; Davison, K.; Rudzki, J.D.; Dahiya, S.; et al. Patient-reported outcomes in ZUMA-7, a phase 3 study of axicabtagene ciloleucel in second-line large B-cell lymphoma. Blood 2022, 140, 2248–2260. [Google Scholar] [CrossRef]
- Howell, T.A.; Matza, L.S.; Jun, M.P.; Garcia, J.; Powers, A.; Maloney, D.G. Health State Utilities for Adverse Events Associated with Chimeric Antigen Receptor T-Cell Therapy in Large B-Cell Lymphoma. Pharmacoecon. Open. 2022, 6, 367–376. [Google Scholar] [CrossRef]
- Chakraborty, R.; Sidana, S.; Shah, G.L.; Scordo, M.; Hamilton, B.K.; Majhail, N.S. Patient-Reported Outcomes with Chimeric Antigen Receptor T Cell Therapy: Challenges and Opportunities. Biol. Blood Marrow Transplant. 2019, 25, e155–e162. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.A.; Krantz, E.M.; Hay, K.A.; Dasgupta, S.; Stevens-Ayers, T.; Bender Ignacio, R.A.; Bar, M.; Maalouf, J.; Cherian, S.; Chen, X.; et al. Durable preservation of antiviral antibodies after CD19-directed chimeric antigen receptor T-cell immunotherapy. Blood Adv. 2019, 3, 3590–3601. [Google Scholar] [CrossRef] [Green Version]
- Laetsch, T.W.; Myers, G.D.; Baruchel, A.; Dietz, A.C.; Pulsipher, M.A.; Bittencourt, H.; Buechner, J.; De Moerloose, B.; Davis, K.L.; Nemecek, E.; et al. Patient-reported quality of life after tisagenlecleucel infusion in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukaemia: A global, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 1710–1718. [Google Scholar] [CrossRef] [PubMed]
- Ruark, J.; Mullane, E.; Cleary, N.; Cordeiro, A.; Bezerra, E.D.; Wu, V.; Voutsinas, J.; Shaw, B.E.; Flynn, K.E.; Lee, S.J.; et al. Patient-Reported Neuropsychiatric Outcomes of Long-Term Survivors after Chimeric Antigen Receptor T Cell Therapy. Biol. Blood Marrow Transplant. 2020, 26, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidana, S.; Dueck, A.C.; Thanarajasingam, G.; Griffin, J.M.; Thompson, C.; Durani, U.; Burtis, M.; Warsame, R.; Paludo, J.; Gertz, M.A.; et al. Longitudinal Patient Reported Outcomes with CAR-T Cell Therapy Versus Autologous and Allogeneic Stem Cell Transplant. Transplant. Cell. Ther. 2022, 28, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.; Hanna, E.; Kefalas, P. Outcomes-based reimbursement for gene therapies in practice: The experience of recently launched CAR-T cell therapies in major European countries. J. Mark. Access Health Policy 2020, 8, 1715536. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Cibrian, N.; Espanol-Rego, M.; Pascal, M.; Delgado, J.; Ortiz-Maldonado, V. Practical aspects of chimeric antigen receptor T-cell administration: From commercial to point-of-care manufacturing. Front. Immunol. 2022, 13, 1005457. [Google Scholar] [CrossRef]
- Ortiz-Maldonado, V.; Rives, S.; Castella, M.; Alonso-Saladrigues, A.; Benitez-Ribas, D.; Caballero-Banos, M.; Baumann, T.; Cid, J.; Garcia-Rey, E.; Llanos, C.; et al. CART19-BE-01: A Multicenter Trial of ARI-0001 Cell Therapy in Patients with CD19(+) Relapsed/Refractory Malignancies. Mol. Ther. 2021, 29, 636–644. [Google Scholar] [CrossRef]
- Kekre, N.; Hay, K.A.; Webb, J.R.; Mallick, R.; Balasundaram, M.; Sigrist, M.K.; Clement, A.M.; Nielsen, J.S.; Quizi, J.; Yung, E.; et al. CLIC-01: Manufacture and distribution of non-cryopreserved CAR-T cells for patients with CD19 positive hematologic malignancies. Front. Immunol. 2022, 13, 1074740. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villeneuve, P.J.A.; Bredeson, C. CAR-T Cells in Canada; Perspective on How to Ensure We Get Our Value’s Worth. Curr. Oncol. 2023, 30, 4033-4040. https://doi.org/10.3390/curroncol30040305
Villeneuve PJA, Bredeson C. CAR-T Cells in Canada; Perspective on How to Ensure We Get Our Value’s Worth. Current Oncology. 2023; 30(4):4033-4040. https://doi.org/10.3390/curroncol30040305
Chicago/Turabian StyleVilleneuve, Pierre J. A., and Christopher Bredeson. 2023. "CAR-T Cells in Canada; Perspective on How to Ensure We Get Our Value’s Worth" Current Oncology 30, no. 4: 4033-4040. https://doi.org/10.3390/curroncol30040305
APA StyleVilleneuve, P. J. A., & Bredeson, C. (2023). CAR-T Cells in Canada; Perspective on How to Ensure We Get Our Value’s Worth. Current Oncology, 30(4), 4033-4040. https://doi.org/10.3390/curroncol30040305