New Generation of 3D Virtual Models with Perfusional Zones: Perioperative Assistance for the Best Pedicle Management during Robotic Partial Nephrectomy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Autorino, R.; Porpiglia, F.; Dasgupta, P.; Rassweiler, J.; Catto, J.W.; Hampton, L.J.; Lima, E.; Mirone, V.; Derweesh, I.H.; Debruyne, F.M.J. Precision surgery and genitourinary cancers. Eur. J. Surg. Oncol. 2017, 43, 893–908. [Google Scholar] [CrossRef] [PubMed]
- Chernoff, D.M.; Silverman, S.G.; Kikinis, R.; Adams, D.E.; Seltzer, S.E.; Richie, J.E.; Loughlin, K.R. Three-dimensional imaging and displayof renal tumors using spiral CT a potential aid to partial nephrectomy. Urology 1994, 43, 125–129. [Google Scholar] [CrossRef]
- Checcucci, E.; Amparore, D.; Fiori, C.; Manfredi, M.; Ivano, M.; Di Dio, M.; Niculescu, G.; Piramide, F.; Cattaneo, G.; Piazzolla, P.; et al. 3D imaging applications for robotic urologic surgery: An ESUT YAUWP review. World J. Urol. 2020, 38, 869–881. [Google Scholar] [CrossRef]
- Checcucci, E.; Amparore, D.; Pecoraro, A.; Peretti, D.; Aimar, R.; de Cillis, S.; Piramide, F.; Volpi, G.; Piazzolla, P.; Manfrin, D.; et al. 3D mixed reality holograms for preoperative surgical planning of nephron-sparing surgery: Evaluation of surgeons’ perception. Minerva Urol. Nephrol. 2021, 73, 367–375. [Google Scholar] [CrossRef]
- Amparore, D.; Pecoraro, A.; Checcucci, E.; De Cillis, S.; Piramide, F.; Volpi, G.; Piana, A.; Verri, P.; Granato, S.; Sica, M.; et al. 3D imaging technologies in minimally invasive kidney and prostate cancer surgery: Which is the urologists’ perception? Minerva Urol. Nephrol. 2022, 74, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Veccia, A.; Palumbo, C.; Peroni, A.; Mirabella, G.; Cozzoli, A.; Martucci, P.; Ferrari, F.; Simeone, C.; Artibani, W. Holographic Reconstructions for Preoperative Planning before Partial Nephrectomy: A Head-to-Head Comparison with Standard CT Scan. Urol. Int. 2019, 102, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Fiori, C.; Checcucci, E.; Amparore, D.; Bertolo, R. Hyperaccuracy Three-dimensional Reconstruction Is Able to Maximize the Efficacy of Selective Clamping During Robot-assisted Partial Nephrectomy for Complex Renal Masses. Eur. Urol. 2018, 74, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Piramide, F.; Volpi, G.; Granato, S.; Verri, P.; Manfredi, M.; Bellin, A.; Piazzolla, P.; et al. Three-dimensional Augmented Reality Robot-assisted Partial Nephrectomy in Case of Complex Tumours (PADUA ≥ 10): A New Intraoperative Tool Overcoming the Ultrasound Guidance. Eur. Urol. 2020, 78, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Amparore, D.; Pecoraro, A.; Checcucci, E.; Piramide, F.; Verri, P.; De Cillis, S.; Granato, S.; Angusti, T.; Solitro, F.; Veltri, A.; et al. Three-dimensional Virtual Models’ Assistance During Minimally Invasive Partial Nephrectomy Minimizes the Impairment of Kidney Function. Eur. Urol. Oncol. 2022, 5, 104–108. [Google Scholar] [CrossRef]
- Wang, C.; Roth, H.R.; Kitasaka, T.; Oda, M.; Hayashi, Y.; Yoshino, Y.; Yamamoto, T.; Sassa, N.; Goto, M.; Mori, K. Precise estimation of renal vascular dominant regions using spatially aware fully convolutional networks, tensor-cut and Voronoi diagrams. Comput. Med. Imaging Graph. 2019, 77, 101642. [Google Scholar] [CrossRef] [Green Version]
- Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D.A. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 2008, 46, 1097–1112. [Google Scholar] [CrossRef] [Green Version]
- Ukimura, O.; Aron, M.; Nakamoto, M.; Shoji, S.; Abreu, A.L.; Matsugasumi, T.; Berger, A.; Desai, M.; Gill, I.S. Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J. Endourol. 2014, 28, 625–630. [Google Scholar] [CrossRef]
- Porpiglia, F.; Amparore, D.; Checcucci, E.; Autorino, R.; Manfredi, M.; Iannizzi, G.; Fiori, C. Current Use of Three-dimensional Model Technology in Urology: A Road Map for Personalised Surgical Planning. Eur. Urol. Focus 2018, 4, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Wake, N.; Bjurlin, M.A.; Rostami, P.; Chandarana, H.; Huang, W.C. Three-dimensional Printing and Augmented Reality: Enhanced Precision for Robotic Assisted Partial Nephrectomy. Urology 2018, 116, 227–228. [Google Scholar] [CrossRef]
- Porpiglia, F.; Bertolo, R.; Amparore, D.; Checcucci, E.; Artibani, W.; Dasgupta, P.; Montorsi, F.; Tewari, A.; Fiori, C. Augmented reality during robot-assisted radical prostatectomy: Expert robotic surgeons’ on-the-spot insights after live surgery. Minerva Urol. E Nefrol. 2018, 70, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Diana, P.; Buffi, N.M.; Lughezzani, G.; Dell’Oglio, P.; Mazzone, E.; Porter, J.; Mottrie, A. The Role of Intraoperative Indocyanine Green in Robot-assisted Partial Nephrectomy: Results from a Large, Multi-institutional Series. Eur. Urol. 2020, 78, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Harke, N.; Schoen, G.; Schiefelbein, F.; Heinrich, E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: A single-surgeon matched-pair study. World J. Urol. 2014, 32, 1259–1265. [Google Scholar] [CrossRef]
- Nuttall, M.; van der Meulen, J.; Emberton, M. Charlson scores based on ICD-10 administrative data were valid in assessing comorbidity in patients undergoing urological cancer surgery. J. Clin. Epidemiol. 2006, 59, 265–273. [Google Scholar] [CrossRef]
- Ficarra, V.; Novara, G.; Secco, S.; Macchi, V.; Porzionato, A.; De Caro, R.; Artibani, W. Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) Classification of Renal Tumours in Patients who are Candidates for Nephron-Sparing Surgery. Eur. Urol. 2009, 56, 786–793. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Piramide, F.; Kowalewski, K.-F.; Cacciamani, G.; Rivero Belenchon, I.; Taratkin, M.; Carbonara, U.; Marchioni, M.; De Groote, R.; Knipper, S.; Pecoraro, A.; et al. Three-dimensional Model-assisted Minimally Invasive Partial Nephrectomy: A Systematic Review with Meta-analysis of Comparative Studies. Eur. Urol. Oncol. 2022, 5, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Badani, K.K.; Kothari, P.D.; Okhawere, K.E.; Eun, D.; Hemal, A.; Abaza, R.; Porter, J.; Lovallo, G.; Ahmed, M.; Munver, R.; et al. Selective clamping during robot-assisted partial nephrectomy in patients with a solitary kidney: Is it safe and does it help? BJU Int. 2020, 125, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Weld, K.J.; Bhayani, S.B.; Belani, J.; Ames, C.D.; Hruby, G.; Landman, J. Extrarenal vascular anatomy of kidney: Assessment of variations and their relevance to partial nephrectomy. Urology 2005, 66, 985–989. [Google Scholar] [CrossRef]
- Macchi, V.; Crestani, A.; Porzionato, A.; Sfriso, M.M.; Morra, A.; Rossanese, M.; Novara, G.; De Caro, R.; Ficarra, V. Anatomical study of renal arterial vasculature and its potential impact on partial nephrectomy. BJU Int. 2017, 120, 83–91. [Google Scholar] [CrossRef]
- Borojeni, S.; Borojeni, A.; Panayotopoulos, P.; Bouvier, A.; Aubé, C.; Azzouzi, A.-R.; Bigot, P. Study of Renal and Kidney Tumor Vascularization Using Data from Preoperative Three-dimensional Arteriography Prior to Partial Nephrectomy. Eur. Urol. Focus 2020, 6, 112–121. [Google Scholar] [CrossRef]
- Anceschi, U.; Brassetti, A.; Bertolo, R.; Tuderti, G.; Ferriero, M.C.; Mastroianni, R.; Flammia, R.S.; Costantini, M.; Kaouk, J.; Leonardo, C.; et al. On-clamp versus purely off-clamp robot-assisted partial nephrectomy in solitary kidneys: Comparison of perioperative outcomes and chronic kidney disease progression at two high-volume centers. Minerva Urol. Nephrol. 2022, 73, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Diana, P.; Muselaers, S.; Kara, O.; Pavan, N.; Pecoraro, A.; Carbonara, U.; Campi, R.; Amparore, D. The impact of ischemic injury in patients with solitary kidneys: New cornerstones for contemporary “precision” robot-assisted partial nephrectomy. Minerva Urol. Nephrol. 2022, 73, 851–853. [Google Scholar] [CrossRef]
- Carbonara, U.; Simone, G.; Capitanio, U.; Minervini, A.; Fiori, C.; Larcher, A.; Checcucci, E.; Amparore, D.; Crocerossa, F.; Veccia, A.; et al. Robot-assisted partial nephrectomy: 7-year outcomes. Minerva Urol. Nephrol. 2021, 73, 540–543. [Google Scholar] [CrossRef]
- Campi, R.; Grosso, A.A.; Lane, B.R.; de Cobelli, O.; Sanguedolce, F.; Hatzichristodoulou, G.; Antonelli, A.; Noyes, S.; Di Maida, F.; Mari, A.; et al. Impact of Trifecta definition on rates and predictors of “successful” robotic partial nephrectomy for localized renal masses: Results from the Surface-Intermediate-Base Margin Score International Consortium. Minerva Urol. Nephrol. 2022, 74, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.T.; Patel, D.N.; Ghali, F.; Patel, S.H.; Sarkar, R.; Yim, K.; Eldefrawy, A.; Cotta, B.H.; Bradshaw, A.W.; Meagher, M.F.; et al. Impact of positive surgical margins on survival after partial nephrectomy in localized kidney cancer: Analysis of the National Cancer Database. Minerva Urol. Nephrol. 2021, 73, 233–244. [Google Scholar] [CrossRef]
Patients’ Characteristics | Perfusion Volumes 3DVM-RAPN n = 80 |
---|---|
Age, yrs median (IQR) | 64 (57–71) |
BMI (kg/m2), median (IQR) | 24.3 (22.8–27.9) |
CCI, median (IQR) | 2 (2–3) |
ASA score, median (IQR) • <2 • >2 | 35 (73) 13 (27) |
CT lesion size (mm) median (IQR) | 35.5 (25.8–48.5) |
Clinical stage, n (%) • cT1a • cT1b | 46 (57.5) 34 (42.5) |
Kidney face location, n (%) • Anterior face • Posterior face | 38 (47.5) 42 (52.5) |
Tumor side, n (%) • Right • Left | 49 (61.25) 31 (38.75) |
Tumor location, n (%) • Upper pole • Mesorenal • Lower pole | 8 (10) 56 (70) 16 (20) |
Tumor growth pattern, n (%) • >50% Exophytic • <50% Exophytic • Endophytic | 41 (51.25) 24 (30.0) 15 (18.75) |
Kidney rim location, n (%) • Lateral margin • Medial margin | 46 (57.5) 34 (42.5) |
PADUA Score, median (IQR) | 8 (7-9) |
PADUA risk category, n (%) • 1 (PADUA < 8) • 2 (PADUA 8–9) • 3 (PADUA > 10) | 33 (41.25) 32 (40.0) 15 (18.75) |
Perioperative Variables | Perfusion Volumes 3DVM-RAPN n = 80 | |
---|---|---|
Augmented reality procedures, n (%) | 31 (38.75) | |
Operative time (min), median (IQR) | 95 min (80–130) | |
Hilar clamping, n (%) • Global clamping • Selective clamping • clampless | 12 (15) 61 (76.25) 7 (8.75) | |
Ischemia time (min), median (IQR) • Global ischemia • Partial ischemia | 17 (15–25) 16 (12–20) | |
EBL (cc), median (IQR) | 265 mL (150–300) | |
Extirpative technique, n (%) • Pure enucleation • Enucleoresection | 28 (35) 52 (65) | |
Opened collecting system, n (%) • Yes • No | 15 (18.75) 65 (81.25) | |
Intraoperative complications, n (%) | 1 (1.25) | |
Postoperative complications, n (%) | 9 (11.25) | |
Postoperative complications according to Clavien–Dindo, n (%) | >2 | 2 (2.5) |
Length of stay (days), median (IQR) | 5 (4–6) | |
Pathological stage. n. % • Benign • pT1a • pT1b • pT2 • pT3a | 19 (23.75) 36 (45.0) 17 (21.25) 3 (3.75) 5 (6.25) | |
Pathological size (mm). median (IQR) | 34 (25–48) | |
Positive surgical margin rate. n. % | 2 (2.5) | |
Histopathological findings. n. % • Clear-cell carcinoma • Papillary • Chromophobe • Angiomyolipoma • Oncocytoma | 41 (51.25) 15 (18.75) 5 (6.25) 4 (5.0) 15 (18.75) | |
ISUP grade. n. % • 1 • 2 • 3 • Not applicable | 17 (21.25) 32 (40.0) 7 (8.75) 24 (32) |
Variables | Perfusion-Volumes-3DVM RAPN, n = 80 |
---|---|
Kidney’s perfusion regions, median (IQR) | 8 (7–10) |
Tumor’s perfusion regions, median (IQR) | 3 (2–3) |
Tumor’s perfusion regions, n (%) • 1 • 2 • 3 • 4 • 5 | 11 (13.75) 28 (35) 26 (32.5) 11 (13.75) 4 (5) |
Volume of kidney’s perfusion regions, cm3, median (IQR) | 113.8 (94.9–137.1) |
Volume of perfusion regions in contact with the tumor, cm3, median (IQR) | 48.2 (33.4–74.1) |
Volume of perfusion regions non in contact with the tumor, cm3, median (IQR) | 65.6 (39.8–81.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amparore, D.; Piramide, F.; Verri, P.; Checcucci, E.; De Cillis, S.; Piana, A.; Volpi, G.; Burgio, M.; Busacca, G.; Colombo, M.; et al. New Generation of 3D Virtual Models with Perfusional Zones: Perioperative Assistance for the Best Pedicle Management during Robotic Partial Nephrectomy. Curr. Oncol. 2023, 30, 4021-4032. https://doi.org/10.3390/curroncol30040304
Amparore D, Piramide F, Verri P, Checcucci E, De Cillis S, Piana A, Volpi G, Burgio M, Busacca G, Colombo M, et al. New Generation of 3D Virtual Models with Perfusional Zones: Perioperative Assistance for the Best Pedicle Management during Robotic Partial Nephrectomy. Current Oncology. 2023; 30(4):4021-4032. https://doi.org/10.3390/curroncol30040304
Chicago/Turabian StyleAmparore, Daniele, Federico Piramide, Paolo Verri, Enrico Checcucci, Sabrina De Cillis, Alberto Piana, Gabriele Volpi, Mariano Burgio, Giovanni Busacca, Marco Colombo, and et al. 2023. "New Generation of 3D Virtual Models with Perfusional Zones: Perioperative Assistance for the Best Pedicle Management during Robotic Partial Nephrectomy" Current Oncology 30, no. 4: 4021-4032. https://doi.org/10.3390/curroncol30040304
APA StyleAmparore, D., Piramide, F., Verri, P., Checcucci, E., De Cillis, S., Piana, A., Volpi, G., Burgio, M., Busacca, G., Colombo, M., Fiori, C., & Porpiglia, F. (2023). New Generation of 3D Virtual Models with Perfusional Zones: Perioperative Assistance for the Best Pedicle Management during Robotic Partial Nephrectomy. Current Oncology, 30(4), 4021-4032. https://doi.org/10.3390/curroncol30040304