Impact of Patient Characteristics on the Outcomes of Patients with Gastrointestinal Cancers Treated with Immune Checkpoint Inhibitors
Abstract
:1. Introduction
1.1. Key Immune Cells in Cancer Immunomodulation
1.2. Innate Immune Cells
1.3. Adaptive Immune Cells
2. Demographic Factors and Outcomes of ICIs
2.1. Age
2.2. Sex
2.3. Performance Status
2.4. Geography
3. Body Composition
3.1. Body Mass Index
3.2. Sarcopenia
3.3. Gut Microbiome
4. Biochemical Factors
4.1. Neutrophil to Lymphocyte Ratio
4.2. C-Reactive Protein
4.3. Serum Sodium Level
4.4. Serum LDH
5. Disease Distribution
5.1. Liver Metastasis
5.2. Peritoneal Metastasis
6. Limitations and Future Directions
7. Conclusions
Funding
Conflicts of Interest
References
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349.e15. [Google Scholar] [CrossRef] [PubMed]
- Napier, K.J.; Scheerer, M.; Misra, S. Esophageal Cancer: A Review of Epidemiology, Pathogenesis, Staging Workup and Treatment Modalities. World J. Gastrointest. Oncol. 2014, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Barsouk, A. Epidemiology of Gastric Cancer: Global Trends, Risk Factors and Prevention. Gastroenterol. Rev. Przegląd Gastroenterol. 2019, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Ferrone, C.R.; Brennan, M.; Gonen, M.; Coit, D.G.; Fong, Y.; Chung, S.; Tang, L.; Klimstra, D.; Allen, P.J. Pancreatic Adenocarcinoma: The Actual 5-Year Survivors. J. Gastrointest. Surg. 2007, 12, 701–706. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Davila, J.A. Surveillance for Hepatocellular Carcinoma. In Whom and How? SAGE Publications: London, UK, 2011. [Google Scholar]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy Vs Chemotherapy Alone for Patients with First-Line, Advanced Gastric Cancer: The Keynote-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-Line Nivolumab Plus Chemotherapy Versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (Checkmate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Jablonska, J.; Leschner, S.; Westphal, K.; Lienenklaus, S.; Weiss, S. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Investig. 2010, 120, 1151–1164. [Google Scholar] [CrossRef]
- Gungor, N.; Knaapen, A.M.; Munnia, A.; Peluso, M.; Haenen, G.; Chiu, R.K.; Godschalk, R.W.L.; Van Schooten, F.J. Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis 2009, 25, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Wislez, M.; Rabbe, N.; Marchal, J.; Milleron, B.; Crestani, B.; Mayaud, C.; Antoine, M.; Soler, P.; Cadranel, J. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: Role in tumor progression and death. Cancer Res. 2003, 63, 1405–1412. [Google Scholar]
- Imai, Y.; Shibatani, N.; Takamido, S.; Kubota, Y.; Yamamoto, S.; Tsuji, K.; Shimatani, M.; Matsushita, M.; Okazaki, K. Neutrophils enhance invasion activity of human cholangiocellular carcinoma and hepatocellular carcinoma cells: An in vitro study. J. Gastroenterol. Hepatol. 2005, 20, 287–293. [Google Scholar] [CrossRef]
- Galdiero, M.R.; Bonavita, E.; Barajon, I.; Garlanda, C.; Mantovani, A.; Jaillon, S. Tumor Associated Macrophages and Neutrophils in Cancer. Immunobiology 2013, 218, 1402–1410. [Google Scholar] [CrossRef]
- Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Investig. 2012, 122, 787–795. [Google Scholar] [CrossRef]
- Noël, W.; Raes, G.; Ghassabeh, G.H.; De Baetselier, P.; Beschin, A. Alternatively Activated Macrophages During Parasite Infections. Trends Parasitol. 2004, 20, 126–133. [Google Scholar] [CrossRef]
- Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Trends Immunol. 2002, 23, 549–555. [Google Scholar] [CrossRef]
- Vivier, E.; Ugolini, S.; Blaise, D.; Chabannon, C.; Brossay, L. Targeting natural killer cells and natural killer T cells in cancer. Nat. Rev. Immunol. 2012, 12, 239–252. [Google Scholar] [CrossRef]
- Exley, M.A.; Hand, L.; O’Shea, D.; Lynch, L. Interplay between the Immune System and Adipose Tissue in Obesity. J. Endocrinol. 2014, 223, R41–R48. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, T.; Onodera, H.; Tsuruyama, T.; Mori, A.; Nagayama, S.; Hiai, H.; Imamura, M. Increased Intratumor Vα24-Positive Natural Killer T Cells: A Prognostic Factor for Primary Colorectal Carcinomas. Clin. Cancer Res. 2005, 11, 7322–7327. [Google Scholar] [CrossRef] [Green Version]
- Lynch, L.; Nowak, M.; Varghese, B.; Clark, J.; Hogan, A.E.; Toxavidis, V.; Balk, S.P.; O’Shea, D.; O’Farrelly, C.; Exley, M.A. Adipose Tissue Invariant Nkt Cells Protect against Diet-Induced Obesity and Metabolic Disorder through Regulatory Cytokine Production. Immunity 2012, 37, 574–587. [Google Scholar] [CrossRef] [Green Version]
- Golstein, P.; Wigzell, H.; Blomgren, H.; Svedmyr, E.A.J. Cells Mediating Specific in Vitro Cytotoxicity: Ii. Probable Autonomy of Thymus-Processed Lymphocytes (T Cells) for the Killing of Allogeneic Target Cells. J. Exp. Med. 1972, 135, 890–906. [Google Scholar] [CrossRef] [Green Version]
- Fridman, W.H.; Sautès-Fridman, C.; Galon, J. The Immune Contexture in Human Tumours: Impact on Clinical Outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Toh, M.-L.; Zrioual, S.; Miossec, P. Il-17a Versus Il-17f Induced Intracellular Signal Transduction Pathways and Modulation by Il-17ra and Il-17rc Rna Interference in Ags Gastric Adenocarcinoma Cells. Cytokine 2007, 38, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Duan, Y.; Cheng, X.; Chen, X.; Xie, W.; Long, H.; Lin, Z.; Zhu, B. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem. Biophys. Res. Commun. 2011, 407, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Bowers, J.S.; Nelson, M.H.; Majchrzak, K.; Bailey, S.; Rohrer, B.; Kaiser, A.D.; Atkinson, C.; Gattinoni, L.; Paulos, C.M. Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion. J. Clin. Investig. 2017, 2, e90772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betts, G.; Jones, E.; Junaid, S.; El-Shanawany, T.; Scurr, M.; Mizen, P.; Kumar, M.; Jones, S.; Rees, B.; Williams, G.; et al. Suppression of tumour-specific CD4+T cells by regulatory T cells is associated with progression of human colorectal cancer. Gut 2012, 61, 1163–1171. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Xu, D.; Liu, Z.; Shi, M.; Zhao, P.; Fu, B.; Zhang, Z.; Yang, H.; Zhang, H.; Zhou, C.; et al. Increased Regulatory T Cells Correlate with CD8 T-Cell Impairment and Poor Survival in Hepatocellular Carcinoma Patients. Gastroenterology 2007, 132, 2328–2339. [Google Scholar] [CrossRef]
- Chraa, D.; Naim, A.; Olive, D.; Badou, A. T lymphocyte subsets in cancer immunity: Friends or foes. J. Leukoc. Biol. 2018, 105, 243–255. [Google Scholar] [CrossRef]
- Khaja, A.S.S.; Toor, S.M.; El Salhat, H.; Ali, B.R.; Elkord, E. Intratumoral FoxP3+Helios+ Regulatory T Cells Upregulating Immunosuppressive Molecules Are Expanded in Human Colorectal Cancer. Front. Immunol. 2017, 8, 619. [Google Scholar] [CrossRef] [Green Version]
- Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal muscle as potential central link between sarcopenia and immune senescence. Ebiomedicine 2019, 49, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Wang, J.; Feng, L.; Yang, X.; Qi, Q.; Li, W.; Zhang, X.; Ge, M.; Qin, H. Association of tumor mutational burden with age in solid tumors. J. Clin. Oncol. 2020, 38, e13590. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab Plus Chemotherapy Versus Chemotherapy Alone for First-Line Treatment of Advanced Oesophageal Cancer (Keynote-590): A Randomised, Placebo-Controlled, Phase 3 Study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Willumsen, N.; Jorgensen, L.N.; Karsdal, M.A. Vastatin (the NC1 domain of human type VIII collagen a1 chain) is linked to stromal reactivity and elevated in serum from patients with colorectal cancer. Cancer Biol. Ther. 2019, 20, 692–699. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O. Atezolizumab Plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Évid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Oh, D.-Y.; He, A.R.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Lee, M.A.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Évid. 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Abdullah, M.; Chai, P.-S.; Chong, P.P.; Tohit, E.R.M.; Ramasamy, R.; Pei, C.P.; Vidyadaran, S. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell. Immunol. 2012, 272, 214–219. [Google Scholar] [CrossRef]
- Hewagama, A.; Patel, D.; Yarlagadda, S.; Strickland, F.M.; Richardson, B.C. Stronger Inflammatory/Cytotoxic T-Cell Response in Women Identified by Microarray Analysis. Genes Immun. 2009, 10, 509–516. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer Immunotherapy Efficacy and Patients’ Sex: A Systematic Review and Meta-Analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.E.; Xiu, J.; Lenz, H.-J.; Atkins, M.B.; Philip, P.A.; Hwang, J.J.; Gatalica, Z.; Xiao, N.; Gibney, G.T.; El-Deiry, W.S.; et al. Characterization of tumor mutation load (TML) in solid tumors. J. Clin. Oncol. 2017, 35, 11517. [Google Scholar] [CrossRef]
- Booka, E.; Kikuchi, H.; Haneda, R.; Soneda, W.; Kawata, S.; Murakami, T.; Matsumoto, T.; Hiramatsu, Y.; Takeuchi, H. Impact of Immune-related Adverse Events on Nivolumab Efficacy in Patients with Upper Gastrointestinal Cancer. In Vivo 2021, 35, 2321–2326. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.; Yau, T.; Cheng, A.-L.; Kaseb, A.; Qin, S.; Zhu, A.; Chan, S.; Sukeepaisarnjaroen, W.; Breder, V.; Verset, G.; et al. VP10-2021: Cabozantinib (C) plus atezolizumab (A) versus sorafenib (S) as first-line systemic treatment for advanced hepatocellular carcinoma (aHCC): Results from the randomized phase III COSMIC-312 trial. Ann. Oncol. 2021, 33, 114–116. [Google Scholar] [CrossRef]
- Massarweh, N.N.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control. 2017, 24, 1073274817729245. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. Nash Limits Anti-Tumour Surveillance in Immunotherapy-Treated Hcc. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Kleinewietfeld, M.; Manzel, A.; Titze, J.; Kvakan, H.; Yosef, N.; Linker, R.A.; Muller, D.N.; Hafler, D.A. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013, 496, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Feuerer, M.; Herrero, L.; Cipolletta, D.; Naaz, A.; Wong, J.; Nayer, A.; Lee, J.; Goldfine, A.B.; Benoist, C.; Shoelson, S.; et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009, 15, 930–939. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Ilavská, S.; Horváthová, M.; Szabová, M.; Nemessányi, T.; Jahnová, E.; Tulinská, J.; Líšková, A.; Wsolová, L.; Staruchová, M.; Volkovová, K. Association between the Human Immune Response and Body Mass Index. Hum. Immunol. 2012, 73, 480–485. [Google Scholar] [CrossRef]
- Akce, M.; Liu, Y.; Zakka, K.; Martini, D.J.; Draper, A.; Alese, O.B.; Shaib, W.L.; Wu, C.; Wedd, J.P.; Sellers, M.T. Impact of Sarcopenia, Bmi, and Inflammatory Biomarkers on Survival in Advanced Hepatocellular Carcinoma Treated with Anti-Pd-1 Antibody. Am. J. Clin. Oncol. 2021, 44, 74–81. [Google Scholar] [CrossRef]
- Cortellini, A.; Bersanelli, M.; Buti, S.; Cannita, K.; Santini, D.; Perrone, F.; Giusti, R.; Tiseo, M.; Michiara, M.; Di Marino, P. A Multicenter Study of Body Mass Index in Cancer Patients Treated with Anti-Pd-1/Pd-L1 Immune Checkpoint Inhibitors: When Overweight Becomes Favorable. J. Immunother. Cancer 2019, 7, 1–11. [Google Scholar] [CrossRef]
- Xiao, L.-S.; Li, R.-N.; Cui, H.; Hong, C.; Huang, C.-Y.; Li, Q.-M.; Hu, C.-Y.; Dong, Z.-Y.; Zhu, H.-B.; Liu, L. Use of computed tomography-derived body composition to determine the prognosis of patients with primary liver cancer treated with immune checkpoint inhibitors: A retrospective cohort study. BMC Cancer 2022, 22, 737. [Google Scholar] [CrossRef]
- Lutz, C.T.; Quinn, L.S. Sarcopenia, obesity, and natural killer cell immune senescence in aging: Altered cytokine levels as a common mechanism. Aging 2012, 4, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Girard, D.; Paquet, M.-E.; Paquin, R.; Beaulieu, A.D. Differential Effects of Interleukin-15 (Il-15) and Il-2 on Human Neutrophils: Modulation of Phagocytosis, Cytoskeleton Rearrangement, Gene Expression, and Apoptosis by Il-15. Blood 1996, 88, 3176–3184. [Google Scholar] [CrossRef]
- Haddad, F.; Zaldivar, F.; Cooper, D.M.; Adams, G.R. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol. 2005, 98, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, R.; Oki, E.; Sasaki, S.; Hirose, K.; Jogo, T.; Edahiro, K.; Korehisa, S.; Taniguchi, D.; Kudo, K.; Kurashige, J.; et al. Sarcopenia is an independent predictor of complications after colorectal cancer surgery. Surg. Today 2017, 48, 151–157. [Google Scholar] [CrossRef]
- Cosquéric, G.; Sebag, A.; Ducolombier, C.; Thomas, C.; Piette, F.; Weill-Engerer, S. Sarcopenia Is Predictive of Nosocomial Infection in Care of the Elderly. Br. J. Nutr. 2006, 96, 895–901. [Google Scholar] [CrossRef] [Green Version]
- Altuna-Venegas, S.; Aliaga-Vega, R.; Maguiña, J.L.; Parodi, J.F.; Runzer-Colmenares, F.M. Risk of Community-Acquired Pneumonia in Older Adults with Sarcopenia of a Hospital from Callao, Peru 2010–2015. Arch. Gerontol. Geriatr. 2019, 82, 100–105. [Google Scholar] [CrossRef]
- Fujii, H.; Makiyama, A.; Iihara, H.; Okumura, N.; Yamamoto, S.; Imai, T.; Arakawa, S.; Kobayashi, R.; Tanaka, Y.; Yoshida, K.; et al. Cancer Cachexia Reduces the Efficacy of Nivolumab Treatment in Patients with Advanced Gastric Cancer. Anticancer. Res. 2020, 40, 7067–7075. [Google Scholar] [CrossRef]
- Kano, M.; Hihara, J.; Tokumoto, N.; Kohashi, T.; Hara, T.; Shimbara, K.; Takahashi, S. Association between Skeletal Muscle Loss and the Response to Nivolumab Immunotherapy in Advanced Gastric Cancer Patients. Int. J. Clin. Oncol. 2021, 26, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Deng, Y.; Chu, Q.; Zhang, P. Gut microbiome and cancer immunotherapy. Cancer Lett. 2019, 447, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-X.; Schwabe, R.F. The Gut Microbiome and Liver Cancer: Mechanisms and Clinical Translation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L. Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti–Pd-L1 Efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, J.; Wang, D.; Long, J.; Yang, X.; Lin, J.; Song, Y.; Xie, F.; Xun, Z.; Wang, Y.; Wang, Y. Gut Microbiome Is Associated with the Clinical Response to Anti-Pd-1 Based Immunotherapy in Hepatobiliary Cancers. J. Immunother. Cancer 2021, 9, e003334. [Google Scholar] [CrossRef]
- Greally, M.; Chou, J.F.; Chatila, W.K.; Margolis, M.; Capanu, M.; Hechtman, J.F.; Tuvy, Y.; Kundra, R.; Daian, F.; Ladanyi, M.; et al. Clinical and Molecular Predictors of Response to Immune Checkpoint Inhibitors in Patients with Advanced Esophagogastric Cancer. Clin. Cancer Res. 2019, 25, 6160–6169. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, B.; Hong, S.-M.; Jung, H.-Y.; Kim, D.H.; Choi, K.D.; Ahn, J.Y.; Lee, J.H.; Na, H.K.; Kim, J.H.; et al. Real-World Efficacy Data and Predictive Clinical Parameters for Treatment Outcomes in Advanced Esophageal Squamous Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Cancer Res. Treat. 2022, 54, 505. [Google Scholar] [CrossRef]
- Kim, H.-J.; Cantor, H. CD4 T-cell Subsets and Tumor Immunity: The Helpful and the Not-so-Helpful. Cancer Immunol. Res. 2014, 2, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Namikawa, T.; Yokota, K.; Tanioka, N.; Fukudome, I.; Iwabu, J.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Kobayashi, M.; et al. Systemic inflammatory response and nutritional biomarkers as predictors of nivolumab efficacy for gastric cancer. Surg. Today 2020, 50, 1486–1495. [Google Scholar] [CrossRef]
- Devaraj, S.; Jialal, I. C-Reactive Protein Polarizes Human Macrophages to an M1 Phenotype and Inhibits Transformation to the M2 Phenotype. Arter. Thromb. Vasc. Biol. 2011, 31, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, T.; Saito, K.; Kumagai, J.; Nakajima, Y.; Kijima, T.; Yoshida, S.; Kihara, K.; Fujii, Y. Higher Serum C-reactive Protein Level Represents the Immunosuppressive Tumor Microenvironment in Patients with Clear Cell Renal Cell Carcinoma. Clin. Genitourin. Cancer 2018, 16, e1151–e1158. [Google Scholar] [CrossRef]
- Secchiero, P.; Rimondi, E.; Di Iasio, M.G.; Agnoletto, C.; Melloni, E.; Volpi, I.; Zauli, G. C-Reactive Protein Downregulates Trail Expression in Human Peripheral Monocytes Via an Egr-1–Dependent Pathwaydownregulation of Trail by Crp. Clin. Cancer Res. 2013, 19, 1949–1959. [Google Scholar] [CrossRef] [Green Version]
- Sakai, D.; Omori, T.; Fumita, S.; Fujita, J.; Kawabata, R.; Matsuyama, J.; Yasui, H.; Hirao, M.; Kawase, T.; Kishi, K. Real-World Effectiveness of Third-or Later-Line Treatment in Japanese Patients with Her2-Positive, Unresectable, Recurrent or Metastatic Gastric Cancer: A Retrospective Observational Study. Int. J. Clin. Oncol. 2022, 27, 1154–1163. [Google Scholar] [CrossRef]
- Tokuyama, N.; Takegawa, N.; Nishikawa, M.; Sakai, A.; Mimura, T.; Kushida, S.; Tsumura, H.; Yamamoto, Y.; Miki, I.; Tsuda, M. Pretreatment Glasgow prognostic score as a predictor of outcomes in nivolumab-treated patients with advanced gastric cancer. PLoS ONE 2021, 16, e0247645. [Google Scholar] [CrossRef]
- Scheiner, B.; Pomej, K.; Kirstein, M.M.; Hucke, F.; Finkelmeier, F.; Waidmann, O.; Himmelsbach, V.; Schulze, K.; von Felden, J.; Fründt, T.W. Prognosis of Patients with Hepatocellular Carcinoma Treated with Immunotherapy–Development and Validation of the Crafity Score. J. Hepatol. 2022, 76, 353–363. [Google Scholar] [CrossRef]
- Jantsch, J.; Schatz, V.; Friedrich, D.; Schröder, A.; Kopp, C.; Siegert, I.; Maronna, A.; Wendelborn, D.; Linz, P.; Binger, K.J.; et al. Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense. Cell Metab. 2015, 21, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Byles, V.; Covarrubias, A.J.; Ben-Sahra, I.; Lamming, D.W.; Sabatini, D.M.; Manning, B.D.; Horng, T. The Tsc-Mtor Pathway Regulates Macrophage Polarization. Nat. Commun. 2013, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.L.; Kitz, A.; Wu, C.; Lowther, D.E.; Rodriguez, D.M.; Vudattu, N.; Deng, S.; Herold, K.C.; Kuchroo, V.K.; Kleinewietfeld, M.; et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J. Clin. Investig. 2015, 125, 4212–4222. [Google Scholar] [CrossRef] [Green Version]
- Wilck, N.; Balogh, A.; Markó, L.; Bartolomaeus, H.; Müller, D.N. The role of sodium in modulating immune cell function. Nat. Rev. Nephrol. 2019, 15, 546–558. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Morita, S.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Exploration of predictors of benefit from nivolumab monotherapy for patients with pretreated advanced gastric and gastroesophageal junction cancer: Post hoc subanalysis from the ATTRACTION-2 study. Gastric Cancer 2021, 25, 207–217. [Google Scholar] [CrossRef]
- Claps, G.; Faouzi, S.; Quidville, V.; Chehade, F.; Shen, S.; Vagner, S.; Robert, C. The Multiple Roles of Ldh in Cancer. Nat. Rev. Clin. Oncol. 2022, 19, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Morrot, A.; Da Fonseca, L.M.; Salustiano, E.J.; Gentile, L.B.; Conde, L.; Filardy, A.A.; Franklim, T.N.; da Costa, K.M.; Freire-De-Lima, C.G.; Freire-De-Lima, L. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses. Front. Oncol. 2018, 8, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, A.; Singer, K.; Koehl, G.E.; Kolitzus, M.; Schoenhammer, G.; Thiel, A.; Matos, C.; Bruss, C.; Klobuch, S.; Peter, K. Ldha-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and Nk Cells. Cell Metab. 2016, 24, 657–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, R.; Smith, J.; Rocher-Ros, V.; Nadkarni, S.; Montero-Melendez, T.; D’Acquisto, F.; Bland, E.J.; Bombardieri, M.; Pitzalis, C.; Perretti, M.; et al. Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol. 2015, 13, e1002202. [Google Scholar] [CrossRef]
- Kumagai, S.; Koyama, S.; Itahashi, K.; Tanegashima, T.; Lin, Y.-T.; Togashi, Y.; Kamada, T.; Irie, T.; Okumura, G.; Kono, H.; et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 2022, 40, 201–218.e9. [Google Scholar] [CrossRef]
- Petrelli, F.; Cabiddu, M.; Coinu, A.; Borgonovo, K.; Ghilardi, M.; Lonati, V.; Barni, S. Prognostic role of lactate dehydrogenase in solid tumors: A systematic review and meta-analysis of 76 studies. Acta Oncol. 2015, 54, 961–970. [Google Scholar] [CrossRef]
- Nakazawa, N.; Sohda, M.; Yamaguchi, A.; Watanabe, T.; Saito, H.; Ubukata, Y.; Kuriyama, K.; Sano, A.; Sakai, M.; Yokobori, T.; et al. An Elevated Serum Lactate Dehydrogenase-to-albumin Ratio Is a Useful Poor Prognostic Predictor of Nivolumab in Patients with Gastric Cancer. Anticancer Res. 2021, 41, 3925–3931. [Google Scholar] [CrossRef]
- Crispe, I.N. Hepatic T cells and liver tolerance. Nat. Rev. Immunol. 2003, 3, 51–62. [Google Scholar] [CrossRef]
- Yu, J.; Green, M.D.; Li, S.; Sun, Y.; Journey, S.N.; Choi, J.E.; Rizvi, S.M.; Qin, A.; Waninger, J.J.; Lang, X. Liver Metastasis Restrains Immunotherapy Efficacy Via Macrophage-Mediated T Cell Elimination. Nat. Med. 2021, 27, 152–164. [Google Scholar] [CrossRef]
- Zhou, S.-N.; Pan, W.-T.; Pan, M.-X.; Luo, Q.-Y.; Zhang, L.; Lin, J.-Z.; Zhao, Y.-J.; Yan, X.-L.; Yuan, L.-P.; Zhang, Y.-X.; et al. Comparison of Immune Microenvironment Between Colon and Liver Metastatic Tissue in Colon Cancer Patients with Liver Metastasis. Am. J. Dig. Dis. 2020, 66, 474–482. [Google Scholar] [CrossRef]
- Chen, X.-J.; Ren, A.; Zheng, L.; Zheng, E.-D.; Jiang, T. Pan-Cancer Analysis Identifies Liver Metastases as Negative Predictive Factor for Immune Checkpoint Inhibitors Treatment Outcome. Front. Immunol. 2021, 12, 651086. [Google Scholar] [CrossRef]
- Bullock, A.; Grossman, J.; Fakih, M.; Lenz, H.; Gordon, M.; Margolin, K.; Wilky, B.; Mahadevan, D.; Trent, J.; Bockorny, B.; et al. LBA O-9 Botensilimab, a novel innate/adaptive immune activator, plus balstilimab (anti-PD-1) for metastatic heavily pretreated microsatellite stable colorectal cancer. Ann. Oncol. 2022, 33, S376. [Google Scholar] [CrossRef]
- Demuytere, J.; Ernst, S.; van Ovost, J.; Cosyns, S.; Ceelen, W. Chapter Four—The Tumor Immune Microenvironment in Peritoneal Carcinomatosis. In International Review of Cell and Molecular Biology; Aranda, F., Berraondo, P., Galluzzi, L., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 63–95. [Google Scholar]
- Fujimori, D.; Kinoshita, J.; Yamaguchi, T.; Nakamura, Y.; Gunjigake, K.; Ohama, T.; Sato, K.; Yamamoto, M.; Tsukamoto, T.; Nomura, S. Established Fibrous Peritoneal Metastasis in an Immunocompetent Mouse Model Similar to Clinical Immune Microenvironment of Gastric Cancer. BMC Cancer 2020, 20, 1014. [Google Scholar] [CrossRef]
- Song, H.; Wang, T.; Tian, L.; Bai, S.; Chen, L.; Zuo, Y.; Xue, Y. Macrophages on the Peritoneum Are Involved in Gastric Cancer Peritoneal Metastasis. J. Cancer 2019, 10, 5377. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Tanabe, H.; Sato, H.; Ishikawa, C.; Goto, M.; Yanagida, N.; Akabane, H.; Yokohama, S.; Hasegawa, K.; Kitano, Y.; et al. Prognostic factors to predict the survival in patients with advanced gastric cancer who receive later-line nivolumab monotherapy—The Asahikawa Gastric Cancer Cohort Study (AGCC). Cancer Med. 2021, 11, 406–416. [Google Scholar] [CrossRef]
- Fucà, G.; Cohen, R.; Lonardi, S.; Shitara, K.; Elez, M.E.; Fakih, M.; Chao, J.; Klempner, S.J.; Emmett, M.; Jayachandran, P. Ascites and Resistance to Immune Checkpoint Inhibition in Dmmr/Msi-H Metastatic Colorectal and Gastric Cancers. J. Immunother. Cancer 2022, 10, e004001. [Google Scholar] [CrossRef]
- Chu, D.; Zhao, Z.; Zhou, Y.; Li, Y.; Li, J.; Zheng, J.; Zhao, Q.; Wang, W. Matrix Metalloproteinase-9 Is Associated with Relapse and Prognosis of Patients with Colorectal Cancer. Ann. Surg. Oncol. 2011, 19, 318–325. [Google Scholar] [CrossRef]
Cancer Type | Study Name | Authors/Year | Age | Hazard Ratio | Confidence Interval |
---|---|---|---|---|---|
Esophageal | KEYNOTE-590 | Sun et al., 2021 [34] | <65 | 0.76 | 0.61–0.95 |
≥65 | 0.69 | 0.53–0.89 | |||
Checkmate-577 | Kelly et al., 2021 [33] | <65 | 0.65 | 0.51–0.84 | |
≥65 | 0.80 | 0.57–1.12 | |||
Checkmate-648 | Doki et al., 2022 [35] | <65 | 0.68 | 0.47–0.97 | |
≥65 | 0.40 | 0.27–0.61 | |||
Gastric | Checkmate-649 | Janjigian et al., 2021 [8] | <65 | 0.69 | 0.56–0.84 |
≥65 | 0.72 | 0.57–0.91 | |||
Hepatocellular | IMbrave150 | Finn et al., 2020 [36] | All patients | 0.60 | 0.44–0.82 |
≥65 | 0.58 | 0.36–0.92 | |||
HIMALAYA | Abou-Alfa et al., 2022 [37] | <65 | 0.82 | 0.65–1.04 | |
≥65 | 0.73 | 0.58–0.93 | |||
Colorectal | KEYNOTE-177 | André et al., 2020 [6] | <70 | 0.52 | 0.37–0.75 |
≥70 | 0.77 | 0.46–1.27 | |||
Biliary Tract | TOPAZ-1 | Oh et al., 2022 [38] | <65 | 0.80 | 0.61–1.04 |
≥65 | 0.79 | 0.61–1.04 |
Cancer Type | Study Name | Authors/Year | Sex | Hazard Ratio | Confidence Interval |
---|---|---|---|---|---|
Esophageal | KEYNOTE-590 | Sun et al., 2021 [34] | Female | 0.89 | 0.59–1.35 |
Male | 0.70 | 0.58–0.84 | |||
Checkmate-577 | Kelly et al., 2021 [33] | Female | 0.59 | 0.35–1.00 | |
Male | 0.73 | 0.59–0.91 | |||
Checkmate-648 | Doki et al., 2022 [35] | Female | 0.49 | 0.25–0.97 | |
Male | 0.55 | 0.41–0.74 | |||
Gastric | Checkmate-649 | Janjigian et al., 2021 [8] | Female | 0.78 | 0.59–1.03 |
Male | 0.67 | 0.56–0.80 | |||
Hepatocellular | IMbrave150 | Finn et al., 2020 [36] | Female | 0.35 | 0.15–0.81 |
Male | 0.66 | 0.47–0.92 | |||
HIMALAYA | Abou-Alfa et al., 2022 [37] | Female | 1.02 | 0.67–1.56 | |
Male | 0.73 | 0.61–0.88 | |||
Colorectal | KEYNOTE-177 | André et al., 2020 [6] | Female | 0.58 | 0.39–0.87 |
Male | 0.59 | 0.38–0.90 | |||
Biliary Tract | TOPAZ-1 | Oh et al., 2022 [38] | Female | 0.82 | 0.62–1.08 |
Male | 0.78 | 0.60–1.01 |
Cancer Type | Study Name | Authors/Year | ECOG | Hazard Ratio | Confidence Interval |
---|---|---|---|---|---|
Esophageal | KEYNOTE-590 | Sun et al., 2021 [34] | 0 | 0.72 | 0.55–0.94 |
1 | 0.73 | 0.59–0.90 | |||
Checkmate-577 | Kelly et al., 2021 [33] | 0 | 0.73 | 0.56–0.96 | |
1 | 0.66 | 0.48–0.89 | |||
Checkmate-648 | Doki et al., 2022 [35] | 0 | 0.47 | 0.31–0.73 | |
1 | 0.61 | 0.43–0.86 | |||
Gastric | Checkmate-649 | Janjigian et al., 2021 [8] | 0 | 0.79 | 0.61–1.02 |
1 | 0.63 | 0.52–0.76 | |||
Hepatocellular | IMbrave-150 | Finn et al., 2020 [36] | 0 | 0.67 | 0.43–1.06 |
1 | 0.51 | 0.33–0.80 | |||
HIMALAYA | Abou-Alfa et al., 2022 [37] | 0 | 0.79 | 0.63–0.98 | |
1 | 0.74 | 0.57–0.95 | |||
Colorectal | KEYNOTE-177 | André et al., 2020 [6] | 0 | 0.37 | 0.24–0.59 |
1 | 0.84 | 0.57–1.24 | |||
Biliary Tract | TOPAZ-1 | Oh et al., 2022 [38] | 0 | 0.90 | 0.68–1.20 |
1 | 0.72 | 0.56–0.94 |
Cancer Type | Study Name | Authors/Year | Geographic Region | Hazard Ratio | Confidence Interval |
---|---|---|---|---|---|
Esophageal | KEYNOTE-590 | Sun et al., 2021 [34] | Asian | 0.64 | 0.51–0.81 |
Non-Asian | 0.83 | 0.66–1.05 | |||
Checkmate-577 | Kelly et al., 2021 [33] | Asian | 0.78 | 0.43–1.41 | |
Non-Asian | 0.69 | 0.56–0.86 | |||
Checkmate-648 | Doki et al., 2022 [35] | Asian | 0.57 | 0.41–0.79 | |
Non-Asian | 0.48 | 0.29–0.79 | |||
Gastric | Checkmate-649 | Janjigian et al., 2021 [8] | Asian | 0.64 | 0.47–0.87 |
Canada/USA | 0.67 | 0.43–1.03 | |||
Other | 0.74 | 0.61–0.89 | |||
Hepatocellular | IMbrave150 | Finn et al., 2020 [36] | Asian | 0.53 | 0.32–0.87 |
Non-Asian | 0.65 | 0.44–0.98 | |||
HIMALAYA | Abou-Alfa et al., 2022 [37] | Asian | 0.71 | 0.54–0.92 | |
Non-Asian | 0.82 | 0.66–1.02 | |||
COSMIC-312 | Kelley et al., 2022 [45] | Asian | 0.56 | 0.34–0.92 | |
Non-Asian | 0.74 | 0.54–1.02 | |||
Colorectal | KEYNOTE-177 | André et al., 2020 [6] | Asian | 0.65 | 0.30–1.41 |
Europe/North America | 0.62 | 0.44–0.87 | |||
Other | 0.40 | 0.16–0.98 | |||
Biliary Tract | TOPAZ-1 | Oh et al., 2022 [38] | Asian | 0.72 | 0.56–0.94 |
Non-Asian | 0.89 | 0.66–1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohm, H.; Abdel-Rahman, O. Impact of Patient Characteristics on the Outcomes of Patients with Gastrointestinal Cancers Treated with Immune Checkpoint Inhibitors. Curr. Oncol. 2023, 30, 786-802. https://doi.org/10.3390/curroncol30010060
Ohm H, Abdel-Rahman O. Impact of Patient Characteristics on the Outcomes of Patients with Gastrointestinal Cancers Treated with Immune Checkpoint Inhibitors. Current Oncology. 2023; 30(1):786-802. https://doi.org/10.3390/curroncol30010060
Chicago/Turabian StyleOhm, Hyejee, and Omar Abdel-Rahman. 2023. "Impact of Patient Characteristics on the Outcomes of Patients with Gastrointestinal Cancers Treated with Immune Checkpoint Inhibitors" Current Oncology 30, no. 1: 786-802. https://doi.org/10.3390/curroncol30010060
APA StyleOhm, H., & Abdel-Rahman, O. (2023). Impact of Patient Characteristics on the Outcomes of Patients with Gastrointestinal Cancers Treated with Immune Checkpoint Inhibitors. Current Oncology, 30(1), 786-802. https://doi.org/10.3390/curroncol30010060