Second Primary Malignancies in Patients with Differentiated Thyroid Cancer after Radionuclide Therapy: A Retrospective Single-Centre Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Follow-Up
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaccarella, S.; Lortet-Tieulent, J.; Colombet, M.; Davies, L.; Stiller, C.A.; Schüz, J.; Togawa, K.; Bray, F.; Franceschi, S.; Maso, L.D.; et al. Global Patterns and Trends in Incidence and Mortality of Thyroid Cancer in Children and Adolescents: A Population-Based Study. Lancet Diabetes Endocrinol. 2021, 9, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The Epidemiological Landscape of Thyroid Cancer Worldwide: GLOBOCAN Estimates for Incidence and Mortality Rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Xing, M. Recent Incidences and Differential Trends of Thyroid Cancer in the USA. Endocr. Relat. Cancer 2016, 23, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Elisei, R.; Molinaro, E.; Agate, L.; Bottici, V.; Masserini, L.; Ceccarelli, C.; Lippi, F.; Grasso, L.; Basolo, F.; Bevilacqua, G.; et al. Are the Clinical and Pathological Features of Differentiated Thyroid Carcinoma Really Changed over the Last 35 Years? Study on 4187 Patients from a Single Italian Institution to Answer This Question. J. Clin. Endocrinol. Metab. 2010, 95, 1516–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinecke, M.J.; Ahlers, G.; Burchert, A.; Eilsberger, F.; Flux, G.D.; Marlowe, R.J.; Mueller, H.-H.; Reiners, C.; Rohde, F.; van Santen, H.M.; et al. Second Primary Malignancies Induced by Radioactive Iodine Treatment of Differentiated Thyroid Carcinoma—A Critical Review and Evaluation of the Existing Evidence. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3247–3256. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Lang, B.H.-H.; Wong, I.O.L.; Wong, K.P.; Cowling, B.J.; Wan, K.-Y. Risk of Second Primary Malignancy in Differentiated Thyroid Carcinoma Treated with Radioactive Iodine Therapy. Surgery 2012, 151, 844–850. [Google Scholar] [CrossRef]
- Rubino, C.; de Vathaire, F.; Dottorini, M.E.; Hall, P.; Schvartz, C.; Couette, J.E.; Dondon, M.-G.; Abbas, M.T.; Langlois, C.; Schlumberger, M. Second Primary Malignancies in Thyroid Cancer Patients. Br. J. Cancer 2003, 89, 1638–1644. [Google Scholar] [CrossRef]
- Silva-Vieira, M.; Carrilho Vaz, S.; Esteves, S.; Ferreira, T.C.; Limbert, E.; Salgado, L.; Leite, V. Second Primary Cancer in Patients with Differentiated Thyroid Cancer: Does Radioiodine Play a Role? Thyroid 2017, 27, 1068–1076. [Google Scholar] [CrossRef]
- Khang, A.R.; Cho, S.W.; Choi, H.S.; Ahn, H.Y.; Yoo, W.S.; Kim, K.W.; Kang, K.W.; Yi, K.H.; Park, D.J.; Lee, D.S.; et al. The Risk of Second Primary Malignancy Is Increased in Differentiated Thyroid Cancer Patients with a Cumulative 131I Dose over 37 GBq. Clin. Endocrinol. 2015, 83, 117–123. [Google Scholar] [CrossRef]
- Al-Qahtani, K.H.; Al-Asiri, M.; Tunio, M.A.; Aljohani, N.J.; Bayoumi, Y.; Al-Hussain, H.; Maklad, A.M. Prevalence and Treatment Outcomes of Second Primary Malignancies in Saudi Patients with Differentiated Thyroid Cancers. Saudi Med. J. 2015, 36, 442–448. [Google Scholar] [CrossRef]
- Mei, X.; Yao, X.; Feng, F.; Cheng, W.; Wang, H. Risk and Outcome of Subsequent Malignancies after Radioactive Iodine Treatment in Differentiated Thyroid Cancer Patients. BMC Cancer 2021, 21, 543. [Google Scholar] [CrossRef]
- Cappagli, V.; Caldarella, A.; Manneschi, G.; Piaggi, P.; Bottici, V.; Agate, L.; Molinaro, E.; Bianchi, F.; Elisei, R. Nonthyroidal Second Primary Malignancies in Differentiated Thyroid Cancer Patients: Is the Incidence Increased Comparing to the General Population and Could It Be a Radioiodine Therapy Consequence? Int. J. Cancer 2020, 147, 2838–2846. [Google Scholar] [CrossRef]
- Hakala, T.T.; Sand, J.A.; Jukkola, A.; Huhtala, H.S.; Metso, S.; Kellokumpu-Lehtinen, P.-L. Increased Risk of Certain Second Primary Malignancies in Patients Treated for Well-Differentiated Thyroid Cancer. Int. J. Clin. Oncol. 2016, 21, 231–239. [Google Scholar] [CrossRef]
- Brown, A.; Chen, J.; Hitchcock, Y.; Szabo, A.; Shrieve, D.C.; Tward, J. The Risk of Second Primary Malignancies up to Three Decades after the Treatment of Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2008, 93, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Iyer, N.G.; Morris, L.G.; Tuttle, R.M.; Shaha, A.R.; Ganly, I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer 2011, 117, 4439–4446. [Google Scholar] [CrossRef] [Green Version]
- Molenaar, R.J.; Sidana, S.; Radivoyevitch, T.; Advani, A.S.; Gerds, A.; Carraway, H.E.; Angelini, D.; Kalaycio, M.; Nazha, A.; Adelstein, D.J.; et al. Risk of Hematologic Malignancies After Radioiodine Treatment of Well-Differentiated Thyroid Cancer. J. Clin. Oncol. 2018, 36, 1831–1839. [Google Scholar] [CrossRef]
- Molenaar, R.J.; Pleyer, C.; Radivoyevitch, T.; Sidana, S.; Godley, A.; Advani, A.S.; Gerds, A.T.; Carraway, H.E.; Kalaycio, M.; Nazha, A.; et al. Risk of developing chronic myeloid neoplasms in well-differentiated thyroid cancer patients treated with radioactive iodine. Leukemia 2018, 32, 952–959. [Google Scholar] [CrossRef]
- Berthe, E.; Henry-Amar, M.; Michels, J.-J.; Rame, J.-P.; Berthet, P.; Babin, E.; Icard, P.; Samama, G.; Mahoudeau, J. Risk of Second Primary Cancer Following Differentiated Thyroid Cancer. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 685–691. [Google Scholar] [CrossRef]
- Kim, S.; Bang, J.-I.; Boo, D.; Kim, B.; Choi, I.Y.; Ko, S.; Yoo, I.R.; Kim, K.; Kim, J.; Joo, Y.; et al. Second Primary Malignancy Risk in Thyroid Cancer and Matched Patients with and without Radioiodine Therapy Analysis from the Observational Health Data Sciences and Informatics. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3547–3556. [Google Scholar] [CrossRef]
- Pacini, F.; Basolo, F.; Bellantone, R.; Boni, G.; Cannizzaro, M.A.; De Palma, M.; Durante, C.; Elisei, R.; Fadda, G.; Frasoldati, A.; et al. Italian Consensus on Diagnosis and Treatment of Differentiated Thyroid Cancer: Joint Statements of Six Italian Societies. J. Endocrinol. Investig. 2018, 41, 849–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klain, M.; Nappi, C.; Zampella, E.; Cantoni, V.; Green, R.; Piscopo, L.; Volpe, F.; Manganelli, M.; Caiazzo, E.; Petretta, M.; et al. Ablation Rate after Radioactive Iodine Therapy in Patients with Differentiated Thyroid Cancer at Intermediate or High Risk of Recurrence: A Systematic Review and a Meta-Analysis. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Klain, M.; Ricard, M.; Leboulleux, S.; Baudin, E.; Schlumberger, M. Radioiodine Therapy for Papillary and Follicular Thyroid Carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, S479–S485. [Google Scholar] [CrossRef] [PubMed]
- Schonfeld, S.J.; Morton, L.M.; de González, A.B.; Curtis, R.E.; Kitahara, C.M. Risk of Second Primary Papillary Thyroid Cancer among Adult Cancer Survivors in the United States, 2000–2015. Cancer Epidemiol. 2020, 64, 101664. [Google Scholar] [CrossRef] [PubMed]
- Crocetti, E.; Mattioli, V.; Buzzoni, C.; Franceschi, S.; Serraino, D.; Vaccarella, S.; Ferretti, S.; Busco, S.; Fedeli, U.; Varvarà, M.; et al. Risk of thyroid as a first or second primary cancer. A population-based study in Italy, 1998–2012. Cancer Med. 2021, 10, 6855–6867. [Google Scholar] [CrossRef]
- Nappi, C.; Klain, M.; Cantoni, V.; Green, R.; Piscopo, L.; Volpe, F.; Maurea, S.; Petretta, M.; Cuocolo, A. Risk of Primary Breast Cancer in Patients with Differentiated Thyroid Cancer Undergoing Radioactive Iodine Therapy: A Systematic Review and Meta-Analysis. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1630–1639. [Google Scholar] [CrossRef]
- Hong, C.M.; Shin, J.-Y.; Kim, B.I.; Song, H.-C.; Yoon, J.-K.; Won, K.S.; Kim, S.-M.; Cho, I.H.; Jeong, S.Y.; Lee, S.-W. Incidence rate and factors associated with the development of secondary cancers after radioiodine therapy in differentiated thyroid cancer: A multicenter retrospective study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1661–1670. [Google Scholar] [CrossRef]
- Sawka, A.; Thabane, L.; Parlea, L.; Ibrahim-Zada, I.; Tsang, R.; Brierley, J.D.; Straus, S.; Ezzat, S.; Goldstein, D.P. Second Primary Malignancy Risk After Radioactive Iodine Treatment for Thyroid Cancer: A Systematic Review and Meta-Analysis. Thyroid 2009, 19, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Verburg, F.A.; Hoffmann, M.; Iakovou, I.; Konijnenberg, M.W.; Mihailovic, J.; Gabina, P.M.; Ovčariček, P.P.; Reiners, C.; Vrachimis, A.; Zerdoud, S.; et al. Errare humanum est, sed in errare perseverare diabolicum: Methodological errors in the assessment of the relationship between I-131 therapy and possible increases in the incidence of malignancies. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 519–522. [Google Scholar] [CrossRef] [Green Version]
- Tulchinsky, M.; Binse, I.; Campennì, A.; Dizdarevic, S.; Giovanella, L.; Jong, I.; Kairemo, K.; Kim, C.K. Radioactive Iodine Therapy for Differentiated Thyroid Cancer: Lessons from Confronting Controversial Literature on Risks for Secondary Malignancy. J. Nucl. Med. 2018, 59, 723–725. [Google Scholar] [CrossRef]
- Lebbink, C.A.; Links, T.P.; Czarniecka, A.; Dias, R.P.; Elisei, R.; Izatt, L.; Krude, H.; Lorenz, K.; Luster, M.; Newbold, K.; et al. 2022 European Thyroid Association Guidelines for the management of pediatric thyroid nodules and differentiated thyroid carcinoma. Eur. Thyroid. Thyroid. Thyroid. J. 2022, 11, e220146. [Google Scholar] [CrossRef]
All Patients (n = 1237) | Without SPM (n = 1212) | With SPM (n = 25) | p Value | |
---|---|---|---|---|
Age (years) | 45 ± 14 | 45 ± 14 | 55 ± 16 | 0.001 |
Age ≥ 55 years | 338 (27) | 323 (27) | 15 (60) | 0.001 |
Female gender, n (%) | 985 (80) | 967 (80) | 18 (72) | 0.34 |
Papillary type, n (%) | 641 (52) | 627 (52) | 14 (56) | 0.67 |
>T2, n (%) | 206 (87) | 200 (16) | 6 (24) | 0.17 |
N1, n (%) | 203 (16) | 203 (17) | 0 (0) | 0.02 |
131I cumulative activity (MBq) | 5722 ± 5867 | 5710 ± 5820 | 6364 ± 5176 | 0.58 |
≤1850 MBq, n (%) | 131 (11) | 130 (11) | 1 (4) | 0.28 |
1850–3700 MBq, n (%) | 693 (56) | 682 (56) | 11 (44) | 0.22 |
>3700 MBq, n (%) | 413 (33) | 400 (33) | 13 (52) | 0.05 |
Follow-up duration (months) | 89 ± 73 | 89 ± 73 | 133 ± 73 | 0.001 |
Cancer Type | SPM, n (%) | Amount of 131I (MBq) |
---|---|---|
Breast | 8 (32) | 6532 |
Colon and rectum | 4 (16) | 3700 |
Lung | 1 (4) | 24,050 |
Leukemia | 2 (8) | 5143 |
Kidney | 2 (8) | 5162 |
Cholangiocarcinoma | 1 (4) | 4366 |
Meningioma | 1 (4) | 11,100 |
Salivary glands | 1 (4) | 4366 |
Gynecological | 2 (8) | 2997 |
Prostate | 1 (4) | 3700 |
Mesothelioma | 1 (4) | 14,726 |
Mastocytes | 1 (4) | 3108 |
Hazard Ratio (95% CI) | p Value | |
---|---|---|
Age at the time of DTC diagnosis | 1.049 (1.021–1.078) | 0.001 |
Age ≥ 55 years | 3.990 (1.792–8.880) | 0.001 |
Female gender | 0.658 (0.275–1.575) | 0.35 |
Papillary type | 1.183 (0.537–2.607) | 0.68 |
>T2 | 1.954 (0.733–5.206) | 0.18 |
N1 | 0.036 (0.001–2.733) | 0.13 |
Thyroglobulin level at first RAI | 1.000 (0.997–1.002) | 0.73 |
131I cumulative activity dose | 1.001 (0.998–1.003) | 0.58 |
<1850 MBq | 0.352 (0.048–2.600) | 0.31 |
1850–3700 MBq | 0.617 (0.280–1.359) | 0.23 |
>3700 MBq | 0.895 (0.863–4.159) | 0.11 |
Follow-up duration | 1.007 (1.002–1.011) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piscopo, L.; Volpe, F.; Nappi, C.; Zampella, E.; Manganelli, M.; Matrisciano, F.; Totaro, P.; Pace, L.; Maurea, S.; Cuocolo, A.; et al. Second Primary Malignancies in Patients with Differentiated Thyroid Cancer after Radionuclide Therapy: A Retrospective Single-Centre Study. Curr. Oncol. 2023, 30, 37-44. https://doi.org/10.3390/curroncol30010003
Piscopo L, Volpe F, Nappi C, Zampella E, Manganelli M, Matrisciano F, Totaro P, Pace L, Maurea S, Cuocolo A, et al. Second Primary Malignancies in Patients with Differentiated Thyroid Cancer after Radionuclide Therapy: A Retrospective Single-Centre Study. Current Oncology. 2023; 30(1):37-44. https://doi.org/10.3390/curroncol30010003
Chicago/Turabian StylePiscopo, Leandra, Fabio Volpe, Carmela Nappi, Emilia Zampella, Mariarosaria Manganelli, Francesca Matrisciano, Pasquale Totaro, Leonardo Pace, Simone Maurea, Alberto Cuocolo, and et al. 2023. "Second Primary Malignancies in Patients with Differentiated Thyroid Cancer after Radionuclide Therapy: A Retrospective Single-Centre Study" Current Oncology 30, no. 1: 37-44. https://doi.org/10.3390/curroncol30010003
APA StylePiscopo, L., Volpe, F., Nappi, C., Zampella, E., Manganelli, M., Matrisciano, F., Totaro, P., Pace, L., Maurea, S., Cuocolo, A., & Klain, M. (2023). Second Primary Malignancies in Patients with Differentiated Thyroid Cancer after Radionuclide Therapy: A Retrospective Single-Centre Study. Current Oncology, 30(1), 37-44. https://doi.org/10.3390/curroncol30010003