Surgical Treatment of Distal Cholangiocarcinoma
Abstract
:1. Introduction
2. Presentation and Preoperative Considerations
2.1. Presentation
2.2. Radiological Evaluation
2.3. Endoscopic Evlauation
2.4. Tumor Markers and Biologic Resectability
2.5. Multidisciplinary Evaluation – Tumor Board Discussion
2.6. Cardiac and Pulmonary Evaluation
2.7. The role of ERAS/Prehabilitation
3. Prognostic Factors for Distal Cholangiocarcinoma
4. Surgical Principles
4.1. Classic Versus Pylorus-preserving Pancreaticoduodenectomy
4.2. Lymph Node Dissection
4.3. Margin Negative Resection/Intraoperative Frozen Section
4.4. Adjuvant Chemotherapy
5. Recurrence
6. Surgical Complications after Pancreaticoduodenectomy in Patients with Distal Cholangiocarcinoma
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACC | American College of Cardiology |
AJCC | American Joint Committee on Cancer |
AHA | American Heart Association |
CA 19-9 | Carbohydrate Antigen 19-9 |
CCA | Cholangiocarcinoma |
CEA | Carcinoembryonic Antigen |
CPET | Cardiopulmonary Exercise Testing |
CT | Computed Tomography |
CW | Classic Whipple |
dCCA | Distal cholangiocarcinoma |
DGE | Delayed Gastric Emptying |
EBD | Endoscopic Biliary Drainage |
EKG | Electrocardiogram |
ERAS | Enhanced Recovery After Surgery |
ERCP | Endoscopic Retrograde Cholangiopancreatography |
EUS | Endoscopic Ultrasound |
h | hour |
IV | Intravenous |
LNR | Lymph Node Ratio |
METs | Metabolic Equivalents |
min | minute |
MRCP | Magnetic Resonance Cholangiopancreatography |
MRI | Magnetic Resonance Imaging |
NCCN | National Comprehensive Cancer Network |
NG | Nasogastric |
NS | Normal Saline |
OS | Overall Survival |
PCA | Patient-controlled Analgesia |
PLNC | Positive Lymph Node Count |
PONV | Postoperative Nausea and Vomiting |
PPW | Pylorus-preserving Pancreaticoduodenectomy |
PS | Plastic Stent |
PSC | Primary Sclerosing Cholangitis |
PTBD | Percutaneous Transhepatic Biliary Drainage |
R0 | Microscopically Negative |
SEMS | Self-Expandable Metal Stent |
TLNC | Total Lymph Node Count |
References
- Garikipati, S.C.; Roy, P. Biliary Tract Cholangiocarcinoma; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- DeOliveira, M.L.; Cunningham, S.C.; Cameron, J.L.; Kamangar, F.; Winter, J.M.; Lillemoe, K.D.; Choti, M.; Yeo, C.; Schulick, R. Cholangiocarcinoma: Thirty-one-year experience with 564 patients at a single institution. Ann. Surg. 2007, 245, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Chen, S.H.; Wan, Q.S. A prognostic nomogram for distal bile duct cancer from Surveillance, Epidemiology, and End Results (SEER) database based on the STROBE compliant. Medicine 2019, 98, e17903. [Google Scholar] [CrossRef] [PubMed]
- Beetz, O.; Klein, M.; Schrem, H.; Gwiasda, J.; Vondran, F.W.R.; Oldhafer, F.; Cammann, S.; Klempnauer, J.; Oldhafer, K.; Moritz, K. Relevant prognostic factors influencing outcome of patients after surgical resection of distal cholangiocarcinoma. BMC Surg. 2018, 18, 56. [Google Scholar] [CrossRef]
- Bragazzi, M.; Vardinale, V.; Carpino, G.; Venere, R.; Semeraro, R.; Gentile, R.; Gaudio, E.; Alvaro, D. Cholangiocarcinoma: Epidemiology and risk factors. Transl. Gastrointest. Cancer 2012, 1, 19–31. [Google Scholar]
- Soares, K.C.; Kamel, I.; Cosgrove, D.P.; Herman, J.M.; Pawlik, T.M. Hilar cholangiocarcinoma: Diagnosis, treatment options, and management. Hepatobiliary Surg. Nutr. 2014, 3, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Washington, M.K.; Berlin, J.; Branton, P.A.; Burgart, L.J.; Carter, D.K.; Compton, C.C.; Frankel, W.L.; Jessup, J.M.; Kakar, S.; Minsky, B.; et al. Protocol for the examination of specimens from patients with carcinoma of the distal extrahepatic bile ducts. Arch. Pathol. Lab. Med. 2010, 134, e8–e13. [Google Scholar] [CrossRef]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Tyson, G.L.; El-Serag, H.B. Risk factors for cholangiocarcinoma. Hepatology 2011, 54, 173–184. [Google Scholar] [CrossRef]
- Wellner, U.F.; Shen, Y.F.; Keck, T.; Jin, W.Y.; Xu, Z. The survival outcome and prognostic factors for distal cholangiocarcinoma following surgical resection: A meta-analysis for the 5-year survival. Surg. Today 2017, 47, 271–279. [Google Scholar] [CrossRef]
- Lyu, S.; Li, L.; Zhao, X.; Ren, Z.; Cao, D.; He, Q. Prognostic impact of lymph node parameters in distal cholangiocarcinoma after pancreaticoduodenectomy. World J. Surg. Oncol. 2020, 18, 262. [Google Scholar] [CrossRef]
- Yoshida, T.; Matsumoto, T.; Sasaki, A.; Morii, Y.; Aramaki, M.; Kitano, S. Prognostic factors after pancreatoduodenectomy with extended lymphadenectomy for distal bile duct cancer. Arch. Surg. 2002, 137, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartos, A.; Herdean, A.; Bartos, D.M. Surgical Treatment of Distal Common Bile Duct Malignancy. In Bile Duct Cancer; InTech Open: London, UK, 2019. [Google Scholar] [CrossRef]
- Bahra, M. Surgical treatment of distal cholangiocarcinoma. Chirurg 2021, 92, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Abe, Y.; Egawa, T.; Kitago, M.; Itano, O.; Kitagawa, Y. Predictive factors of early recurrence in patients with distal cholangiocarcinoma after pancreaticoduodenectomy. Gastroenterol. Res. Pract. 2018, 2018, 6431254. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, S.; Wu, L.; Wan, T. Survival after surgical resection of distal cholangiocarcinoma: A systematic review and meta-analysis of prognostic factors. Asian J. Surg. 2017, 40, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Komaya, K.; Ebata, T.; Shirai, K.; Ohira, S.; Morofuji, N.; Akutagawa, A.; Yamaguchim, R.; Nagino, M. Recurrence after resection with curative intent for distal cholangiocarcinoma. Br. J. Surg. 2017, 104, 426–433. [Google Scholar] [CrossRef]
- Dickson, P.V.; Behrman, S.W. Distal cholangiocarcinoma. Surg. Clin. N. Am. 2014, 94, 325–342. [Google Scholar] [CrossRef]
- Lee, R.M.; Maithel, S.K. Approaches and Outcomes to Distal Cholangiocarcinoma. Surg. Oncol. Clin. N. Am. 2019, 28, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Thomasset, S.C.; Saunders, D.; Holland, A.; Dennison, A.R.; Garcea, G. Malignant biliary strictures in patients with a normal bilirubin and/or normal liver enzymes. HPB 2015, 17, 969–974. [Google Scholar] [CrossRef]
- Benson, A.B.; D’Angelica, M.I.; Abbott, D.E.; Anaya, D.A.; Anders, R.; Are, C.; Bachini, M.; Borad, M.; Brown, D.; Burgoyne, A. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 541–565. [Google Scholar] [CrossRef]
- de Groen, P.; Gores, G.; LaRusso, N.; Gunderson, L.; Nagorney, D. Bilary Tract Cancers. N. Engl. J. Med. 1999, 341, 1368–1378. [Google Scholar] [CrossRef]
- Viesca, M.F.Y.; Arvanitakis, M. Early diagnosis and management of malignant distal biliary obstruction: A review on current recommendations and guidelines. Clin. Exp. Gastroenterol. 2019, 12, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Qin, Y.; Gong, W.; Li, H.; Li, B.; Wang, Y.; Choae, B.; Zhoa, S.; Liu, L.; Yao, S.; et al. Specific genomic alterations and prognostic analysis of perihilar cholangiocarcinoma and distal cholangiocarcinoma. J. Gastrointest. Oncol. 2021, 12, 2631. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Njei, B.; Lourdusamy, V.; Konjeti, R.; Vargo, J.J.; Parsi, M.A. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: A systematic review and meta-analysis. Gastrointest. Endosc. 2015, 81, 168–176. [Google Scholar] [CrossRef]
- Pugliese, V.; Conio, M.; Nicolò, G.; Saccomanno, S.; Gatteschi, B. Endoscopic retrograde forceps biopsy and brush cytology of biliary strictures: A prospective study. Gastrointest. Endosc. 1995, 42, 520–526. [Google Scholar] [CrossRef]
- Wu, L.M.; Jiang, X.X.; Gu, H.Y.; Xu, X.; Zhang, W.; Lin, L.H.; Deng, X.; Yin, Y.; Xu, J.R. Endoscopic ultrasound-guided fine-needle aspiration biopsy in the evaluation of bile duct strictures and gallbladder masses: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2011, 23, 113–120. [Google Scholar] [CrossRef]
- Miura, F.; Sano, K.; Wada, K.; Shibuya, M.; Ikeda, Y.; Takahashi, K.; Kainuma, M.; Kawamura, S.; Hayano, K.; Takada, T.; et al. Prognostic impact of type of preoperative biliary drainage in patients with distal cholangiocarcinoma. Am. J. Surg. 2017, 214, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Aoki, T.; Park, K.H.; Shiraki, T.; Sakuraoka, Y.; Iso, Y.; Kato, M.; Kubota, K. Impact of preoperative percutaneous transhepatic biliary drainage on post-operative survival in patients with distal cholangiocarcinoma. ANZ J. Surg. 2019, 89, E363–E367. [Google Scholar] [CrossRef]
- Gustavo Ángel, G.-T.; Fernando Santiago, H.-G. Preoperative Biliary Drainage: Methods, Advantages, and Complications. In Bile Duct Cancer; InTech Open: London, UK, 2019. [Google Scholar] [CrossRef]
- al Mahjoub, A.; Menahem, B.; Fohlen, A.; Dupont, B.; Alves, A.; Launoy, G.; Lubrano, J. Preoperative Biliary Drainage in Patients with Resectable Perihilar Cholangiocarcinoma: Is Percutaneous Transhepatic Biliary Drainage Safer and More Effective than Endoscopic Biliary Drainage? A Meta-Analysis. J. Vasc. Interv. Radiol. 2017, 28, 576–582. [Google Scholar] [CrossRef]
- Chen, Y.; Ou, G.; Lian, G.; Luo, H.; Huang, K.; Huang, Y. Effect of preoperative biliary drainage on complications following pancreatoduodenectomy: A meta-Analysis. Medicine 2015, 94, e1199. [Google Scholar] [CrossRef]
- Drapek, L.C.; Kerlan, R.K.; Acquisto, S. Guidelines for biliary stents and drains. Chin. Clin. Oncol. 2020, 9, 9. [Google Scholar] [CrossRef]
- Mangiavillano, B.; Pagano, N.; Baron, T.H.; Luigiano, C. Outcome of stenting in biliary and pancreatic benign and malignant diseases: A comprehensive review. World J. Gastroenterol. 2015, 21, 9038–9054. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C.M.; Kim, H.; Seay, T.; Varadarajulu, S. Choice of plastic or metal stent for patients with jaundice with pancreaticobiliary malignancy using simple clinical tools: A prospective evaluation. BMJ Open Gastroenterol. 2015, 2, e000014. [Google Scholar] [CrossRef] [PubMed]
- Boulay, B.R.; Gardner, T.B.; Gordon, S.R. Occlusion rate and complications of plastic biliary stent placement in patients undergoing neoadjuvant chemoradiotherapy for pancreatic cancer with malignant biliary obstruction. J. Clin. Gastroenterol. 2010, 44, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.W.; Sherman, S.; Dua, K.S.; Slivka, A.; Roy, A.; Costamagna, G.; Deviere, J.; Peetermans, J.; Rousseau, M.; Nakai, Y.; et al. Covered and uncovered biliary metal stents provide similar relief of biliary obstruction during neoadjuvant therapy in pancreatic cancer: A randomized trial. Gastrointest. Endosc. 2019, 90, 602–612.e4. [Google Scholar] [CrossRef] [PubMed]
- Tringali, A.; Hassan, C.; Rota, M.; Rossi, M.; Mutignani, M.; Aabakken, L. Correction: Covered vs. uncovered self-expandable metal stents for malignant distal biliary strictures: A systematic review and meta-analysis. Endoscopy 2018, 50, C5. [Google Scholar] [CrossRef]
- Adams, M.A.; Anderson, M.A.; Myles, J.D.; Khalatbari, S.; Scheiman, J.M. Self-expanding metal stents (SEMS) provide superior outcomes compared to plastic stents for pancreatic cancer patients undergoing neoadjuvant therapy. J. Gastrointest. Oncol. 2012, 3, 309–313. [Google Scholar] [CrossRef]
- Vehviläinen, S.; Seppänen, H.; Nurmi, A.; Haglund, C.; Mustonen, H.; Udd, M.; Kylänpää, L. Use of self-expandable metallic stents for endoscopic biliary decompression decreases stent complications in pancreatic cancer patients receiving chemotherapy. Surg. Endosc. 2022, 36, 614–620. [Google Scholar] [CrossRef]
- Alvaro, D. Serum and bile biomarkers for cholangiocarcinoma. Curr. Opin. Gastroenterol. 2009, 25, 279–284. [Google Scholar] [CrossRef]
- Qin, X.L.; Wang, Z.R.; Shi, J.S.; Lu, M.; Wang, L.; He, Q.R. Utility of serum CA19-9 in diagnosis of cholangiocarcinoma: In comparison with CEA. World J. Gastroenterol. 2004, 10, 427–432. [Google Scholar] [CrossRef]
- Lindberg, B.; Arnelo, U.; Bergquist, A.; Thörne, A.; Hjerpe, A.; Granqvist, S.; Hansson, L.O.; Tribukai, B.; Persson, B.; Broome, U. Diagnosis of biliary strictures in conjunction with endoscopic retrograde cholangiopancreaticography, with special reference to patients with primary sclerosing cholangitis. Endoscopy 2002, 34, 909–916. [Google Scholar] [CrossRef]
- Okada, R.; Shimada, H.; Otsuka, Y.; Tsuchiya, M.; Ishii, J.; Katagiri, T.; Maeda, T.; Kubota, Y.; Nemoto, T.; Kaneko, H. Serum p53 antibody as a potential tumor marker in extrahepatic cholangiocarcinoma. Surg. Today 2017, 47, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Juratli, M.A.; Hofmann, K.; Balaban, Ü.; el Youzouri, H.; Pession, U.; Heise, M.; Mekicar, J.; Schreckenbach, T.; Trojan, J.; Waidmann, O.; et al. Introduction of an interdisciplinary tumor board leads to improvement of treatment outcome of cholangiocarcinoma (bile duct cancer). Chirurg 2020, 91, 650–661. [Google Scholar] [CrossRef]
- Siddique, O.; Yoo, E.R.; Perumpail, R.B.; Perumpail, B.J.; Liu, A.; Cholankeril, G.; Ahmed, A. The importance of a multidisciplinary approach to hepatocellular carcinoma. J. Multidiscip. Healthc. 2017, 10, 95–100. [Google Scholar] [CrossRef]
- Salami, A.C.; Barden, G.M.; Castillo, D.L.; Hanna, M.; Petersen, N.J.; Davila, J.A.; Naik, A.D.; Anaya, D.A. Establishment of a regional virtual tumor board program to improve the process of care for patients with hepatocellular carcinoma. J. Oncol. Pract. 2015, 11, e66–e74. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.; Salami, A.; Barden, G.; Khawja, S.; Castillo, D.L.; Poppelaars, V.; Arinyan, A.; Awad, S.; Berger, D.; Albo, D.; et al. The effect of a regional hepatopancreaticobiliary surgical program on clinical volume, quality of cancer care, and outcomes in the veterans affairs system. JAMA Surg. 2014, 149, 1153. [Google Scholar] [CrossRef] [PubMed]
- Ben Khaled, N.; Jacob, S.; Rössler, D.; Bösch, F.; de Toni, E.N.; Werner, J.; Ricke, J.; Mayerle, J.; Seidensticker, M.; Schulz, C.; et al. Current State of Multidisciplinary Treatment in Cholangiocarcinoma. Dig. Dis. 2021, 40, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Chandrabalan, V.V.; McMillan, D.C.; Carter, R.; Kinsella, J.; McKay, C.J.; Carter, C.R.; Dickson, E. Pre-operative cardiopulmonary exercise testing predicts adverse post-operative events and non-progression to adjuvant therapy after major pancreatic surgery. HPB 2013, 15, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Albouaini, K.; Egred, M.; Alahmar, A.; Wright, D.J. Cardiopulmonary exercise testing and its application. Postgrad. Med. J. 2007, 83, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Wiltberger, G.; Muhl, B.; Benzing, C.; Atanasov, G.; Hau, H.M.; Horn, M.; Krenzien, F.; Bartels, M. Preoperative risk stratification for major complications following pancreaticoduodenectomy: Identification of high-risk patients. Int. J. Surg. 2016, 31, 33–39. [Google Scholar] [CrossRef]
- Owen, M.L.; Beal, E.W. Minimally Invasive Surgery for Intrahepatic Cholangiocarcinoma: Patient Selection and Special Considerations. Hepatic Med. 2021, 13, 137–143. [Google Scholar] [CrossRef]
- Fleisher, L.A.; Fleischmann, K.E.; Auerbach, A.D.; Barnason, S.A.; Beckman, J.A.; Bozkurt, B.; Davila-Roman, V.G.; Gerhard-Herman, M.D.; Holly, T.A.; Kane, G.; et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 130, 2215–2245. [Google Scholar] [CrossRef] [PubMed]
- Ronnekleiv-Kelly, S.M.; Greenblatt, D.Y.; Lin, C.P.; Kelly, K.J.; Cho, C.S.; Winslow, E.R.; Weber, S. Impact of Cardiac Comorbidity on Early Outcomes after Pancreatic Resection. J. Gastrointest. Surg. 2014, 18, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Shahrokni, A.; Tin, A.; Alexander, K.; Sarraf, S.; Afonso, A.; Filippova, O.; Harris, J.; Downey, R.J.; Vickers, A.J.; Korc-Grodzicki, B. Development and evaluation of a new frailty index for older surgical patients with cancer. JAMA Netw. Open 2019, 2, e193545. [Google Scholar] [CrossRef] [PubMed]
- Lassen, K.; Coolsen, M.M.E.; Slim, K.; Carli, F.; de Aguilar-Nascimento, J.E.; Schäfer, M.; Parks, R.; Fearon, K.C.H.; Lobo, D.; Demartines, N. Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Clin. Nutr. 2012, 31, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Melloul, E.; Lassen, K.; Roulin, D.; Grass, F.; Perinel, J.; Adham, M.; Wellge, E.B.; Kunzler, F.; Besselink, M.; Asbun, H.; et al. Guidelines for Perioperative Care for Pancreatoduodenectomy: Enhanced Recovery After Surgery (ERAS) Recommendations 2019. World J. Surg. 2020, 44, 2056–2084. [Google Scholar] [CrossRef]
- You, Y.; Shin, Y.C.; Choi, D.W.; Heo, J.S.; Shin, S.H.; Kim, N.; Jang, K.T.; Kim, H.; Lim, C.S.; Chang, S.H.; et al. Proposed modification of staging for distal cholangiocarcinoma based on the lymph node ratio using korean multicenter database. Cancers 2020, 12, 762. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.M.; Pawlik, T.M.; Cho, H.J.; Aggarwal, B.; Goggins, M.; Hruban, R.H.; Anders, R.A. Depth of tumor invasion better predicts prognosis than the current American Joint Committee on Cancer T classification for distal bile duct carcinoma. Surgery 2009, 146, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Shimoyama, Y.; Fukami, Y.; Miyake, H.; Sakamoto, E.; Takara, D.; Shirai, K.; Ohira, S.; Tojima, Y.; Hashimoto, M.; Akutagawa, A.; et al. Prognostic impact of lymph node metastasis in distal cholangiocarcinoma. Br. J. Surg. 2015, 102, 399–406. [Google Scholar]
- Murakami, Y.; Uemura, K.; Hayashidani, Y.; Sudo, T.; Hashimoto, Y.; Ohge, H.; Sueda, T. Prognostic significance of lymph node metastasis and surgical margin status for distal cholangiocarcinoma. J. Surg. Oncol. 2007, 95, 207–212. [Google Scholar] [CrossRef]
- Chung, Y.J.; Choi, D.W.; Choi, S.H.; Heo, J.S.; Kim, D.H. Prognostic factors following surgical resection of distal bile duct cancer. J. Korean Surg. Soc. 2013, 85, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.S.; Higuchi, R.; He, J.; Yamamoto, M.; Wolfgang, C.L.; Cameron, J.L.; Han, Y.; Son, D.; Lee, S.; Choi, Y.; et al. Proposal of the minimal number of retrieved regional lymph nodes for accurate staging of distal bile duct cancer and clinical validation of the three-tier lymph node staging system (AJCC 8th edition). J. Hepatobiliary Pancreat. Sci. 2020, 27, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, B.; Bai, J.; Li, Q.; Xu, B.; Dong, Z.; Zhi, X.; Li, T. The Impact of Intraoperative Frozen Section on Resection Margin Status and Survival of Patients Underwent Pancreatoduodenectomy for Distal Cholangiocarcinoma. Front. Oncol. 2021, 11, 650585. [Google Scholar] [CrossRef]
- Kawai, M.; Tani, M.; Kobayashi, Y.; Tsuji, T.; Tabuse, K.; Horiuchi, T.; Oka, M.; Yamaguchi, K.; Sakata, Y.; Shimomura, T.; et al. The ratio between metastatic and examined lymph nodes is an independent prognostic factor for patients with resectable middle and distal bile duct carcinoma. Am. J. Surg. 2010, 199, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.M.; Kim, M.J.; Cho, H.J.; Pi, D.Y.; Jo, D.; Yu, E.; Ro, J. Superficial vs deep pancreatic parenchymal invasion in the extrahepatic bile duct carcinomas: A significant prognostic factor. Mod. Pathol. 2005, 18, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Diener, M.K.; Fitzmaurice, C.; Schwarzer, G.; Seiler, C.M.; Hüttner, F.J.; Antes, G.; Knaebel, H.P.; Buchler, M. Pylorus-preserving pancreaticoduodenectomy (pp Whipple) versus pancreaticoduodenectomy (classic Whipple) for surgical treatment of periampullary and pancreatic carcinoma. Cochrane Database Syst. Rev. 2014, 11, CD006053. [Google Scholar] [CrossRef]
- Barreto, S. Classical or pylorus-preserving pancreatoduodenectomy in pancreatic and periampullary cancer: “The jury is still out! ” Indian J. Med. Paediatr. Oncol. 2016, 37, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Kim, S.G.; Chun, J.M.; Lee, W.K.; Hwang, Y.J. Prognostic factors in patients with middle and distal bile duct cancers. World J. Gastroenterol. 2014, 20, 6658–6665. [Google Scholar] [CrossRef]
- Kendall, T.; Verheij, J.; Gaudio, E.; Evert, M.; Guido, M.; Goeppert, B.; Carpino, G. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019, 39, 7–18. [Google Scholar] [CrossRef]
- Abdullah Madkhali, A.; Al-alem, F. Distal Cholangiocarcinoma. In Bile Duct Cancer; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Wu, R.Y.; Zhang, G.; Feng, J.; Zhang, L.; Yang, Z.M. Proposal of the optimal numbers of examined and positive lymph nodes to the 8th edition of American Joint Committee on Cancer (AJCC) staging for 758 patients with distal cholangiocarcinoma. PLoS ONE 2020, 15, e0234464. [Google Scholar] [CrossRef]
- Hurtuk, M.G.; Hughes, C.; Shoup, M.; Aranha, G.V. Does lymph node ratio impact survival in resected periampullary malignancies? Am. J. Surg. 2009, 197, 348–352. [Google Scholar] [CrossRef]
- Li, X.; Lin, H.; Sun, Y.; Gong, J.; Feng, H.; Tu, J. Prognostic Significance of the Lymph Node Ratio in Surgical Patients with Distal Cholangiocarcinoma. J. Surg. Res. 2019, 236, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, C.Y.; Hur, Y.H.; Koh, Y.S.; Kim, J.C.; Kim, H.J.; Cho, C.K. The prognostic factors for survival after curative resection of distal cholangiocarcinoma: Perineural invasion and lymphovascular invasion. Surg. Today 2014, 44, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.P.; Li, S.W.; Liu, Y.; Zhou, S.J. Prognostic value of lymph nodes count on survival of patients with distal cholangiocarcinomas. World J. Gastroenterol. 2018, 24, 1022–1034. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, Y.; Sasaki, R.; Kobayashi, A.; Murata, S.; Fukunaga, K.; Kondo, T.; Oda, T.; Ohkohchi, N. Prognostic relevance of the lymph node ratio in surgical patients with extrahepatic cholangiocarcinoma. Eur. J. Surg. Oncol. 2011, 37, 60–64. [Google Scholar] [CrossRef]
- Primrose, J.N.; Neoptolemos, J.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): A randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019, 20, 663–673. [Google Scholar] [CrossRef]
- Edeline, J.; Benabdelghani, M.; Bertaut, A.; Watelet, J.; Hammel, P.; Joly, J.P.; Boudjema, K.; Fartoux, L.; Bouhier-Leporrier, K.; Jouve, J.L.; et al. Gemcitabine and oxaliplatin chemotherapy or surveillance in resected biliary tract cancer (Prodige 12-accord 18-Unicancer GI): A randomized phase III study. J. Clin. Oncol. 2019, 37, 658–667. [Google Scholar] [CrossRef]
- Ebata, T.; Hirano, S.; Konishi, M.; Uesaka, K.; Tsuchiya, Y.; Ohtsuka, M.; Kaneoka, Y.; Yamamoto, M.; Ambo, Y.; Shimizu, Y.; et al. Randomized clinical trial of adjuvant gemcitabine chemotherapy versus observation in resected bile duct cancer. Br. J. Surg. 2018, 105, 192–202. [Google Scholar] [CrossRef]
- Yamamoto, R.; Sugiura, T.; Ashida, R.; Ohgi, K.; Yamada, M.; Otsuka, S.; Uesaka, K. Prognostic Value of Carbohydrate Antigen 19-9 and the Surgical Margin in Extrahepatic Cholangiocarcinoma. Ann. Gastroenterol. Surg. 2022, 6, 307–315. [Google Scholar] [CrossRef]
- Koh, M.; Park, J.H.; Yoo, C.; Yoon, S.M.; Jung, J.; Ryoo, B.Y.; Chang, H.N.; Kim, K.P.; Jeong, J.H.; Kim, J.H. Radiation therapy for recurrent extrahepatic bile duct cancer. PLoS ONE 2021, 16, e0253285. [Google Scholar] [CrossRef]
- Sahara, K.; Tsilimigras, D.I.; Toyoda, J.; Miyake, K.; Ethun, C.G.; Maithel, S.K.; Abbott, D.E.; Poultsides, G.A.; Hatzaras, L.; Fields, R.; et al. Defining the Risk of Early Recurrence Following Curative-Intent Resection for Distal Cholangiocarcinoma. Ann. Surg. Oncol. 2021, 28, 4205–4213. [Google Scholar] [CrossRef]
- Reames, B.N.; Rocha, F.G. Early Recurrence Following Resection of Distal Cholangiocarcinoma: A New Tool for the Toolbox. Ann. Surg. Oncol. 2021, 28, 4069–4071. [Google Scholar] [CrossRef] [PubMed]
- Lang, H. Surgical Approach to Recurrent Cholangiocarcinoma. Visc. Med. 2021, 37, 26–31. [Google Scholar] [CrossRef] [PubMed]
- D’Cruz, J.R.; Misra, S.; Shamsudeen, S. Pancreaticoduodenectomy; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Amico, E.C.; de Azevedo, Í.M.; Fernandes, M.V.D.L.; Reis, M.A.; João, S.A. Drain amylase on the first postoperative day of whipple surgery: What value is the best predictor for early drain removal? Arq. Bras. Cir. Dig. 2018, 31, e1345. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, M.; Liang, C.; Xu, Y.; Yu, W. Delayed gastric emptying after Pancreaticoduodenectomy: A propensity score-matched analysis and clinical Nomogram study. BMC Surg. 2020, 20, 149. [Google Scholar] [CrossRef] [PubMed]
- Wente, M.N.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; Traverso, L.W.; et al. Delayed gastric emptying (DGE) after pancreatic surgery: A suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007, 142, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, R.A.; Relles, D.; Pineda, D.M.; Gabale, S.; Sauter, P.K.; Rosato, E.L.; Koniaris, L.G.; Lavu, H.; Kennedy, E.; Yeo, C.; et al. Defining Treatment and Outcomes of Hepaticojejunostomy Failure Following Pancreaticoduodenectomy. J. Gastrointest. Surg. 2013, 17, 451–460. [Google Scholar] [CrossRef] [PubMed]
- de Castro, S.M.M.; Kuhlmann, K.F.D.; Busch, O.R.C.; van Delden, O.M.; Laméris, J.S.; van Gulik, T.M.; Obertop, H.; Gouma, D.J. Incidence and management of biliary leakage after hepaticojejunostomy. J. Gastrointest. Surg. 2005, 9, 1163–1173. [Google Scholar] [CrossRef]
- Duconseil, P.; Turrini, O.; Ewald, J.; Berdah, S.V.; Moutardier, V.; Delpero, J.R. Biliary complications after pancreaticoduodenectomy: Skinny bile ducts are surgeons’ enemies. World J. Surg. 2014, 38, 2946–2951. [Google Scholar] [CrossRef]
- Suzuki, Y.; Fujino, Y.; Tanioka, Y.; Ajiki, T.; Hiraoka, K.; Takada, M.; Takeyama, Y.; Tominaga, M.; Ku, Y.; Kuroda, Y. Factors influencing hepaticojejunostomy leak following pancreaticoduodenal resection; Importance of anastomotic leak test. Hepatogastroenterology 2003, 50, 254–257. [Google Scholar]
- Farooqui, W.; Penninga, L.; Burgdorf, S.K.; Storkholm, J.H.; Hansen, C.P. Biliary Leakage Following Pancreatoduodenectomy: Experience from a High-Volume Center. J. Pancreat. Cancer 2021, 7, 80–85. [Google Scholar] [CrossRef]
- Malgras, B.; Duron, S.; Gaujoux, S.; Dokmak, S.; Aussilhou, B.; Rebours, V.; Palazzo, M.; Belghiti, J.; Sauvanet, A. Early biliary complications following pancreaticoduodenectomy: Prevalence and risk factors. HPB 2016, 18, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Leeds, I.L.; Canner, J.K.; Efron, J.E.; Ahuja, N.; Haut, E.R.; Wick, E.C.; Johnston, F.M. The independent effect of cancer on outcomes: A potential limitation of surgical risk prediction. J. Surg. Res. 2017, 220, 402–409.e6. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.; Lloyd, S.; Johnson, S.B.; Scaife, C.L.; Garrido-Laguna, I.; Tao, R. The implications of treatment delays in adjuvant therapy for cholangiocarcinoma patients. J. Clin. Oncol. 2021, 39, 291. [Google Scholar] [CrossRef]
- Chikhladze, S.; Lederer, A.K.; Kousoulas, L.; Reinmuth, M.; Sick, O.; Fichtner-Feigl, S.; Wittel, U.A. Adjuvant chemotherapy after surgery for pancreatic ductal adenocarcinoma: Retrospective real-life data. World J. Surg. Oncol. 2019, 17, 185. [Google Scholar] [CrossRef]
- Ma, S.J.; Oladeru, O.T.; Miccio, J.A.; Iovoli, A.J.; Hermann, G.M.; Singh, A.K. Association of Timing of Adjuvant Therapy with Survival in Patients with Resected Stage i to II Pancreatic Cancer. JAMA Netw. Open 2019, 2, e199126. [Google Scholar] [CrossRef] [Green Version]
Preoperative | Intraoperative | Postoperative |
---|---|---|
Alcohol cessation: one month of abstinence. | Wound catheters/transversus abdominis plane block: conflicting results on efficacy. | PCA or IV lidocaine. |
Smoking Cessation: one month of abstinence. | Avoid hypothermia: cutaneous warming. | Postoperative Nausea and Vomiting (PONV): multimodal intervention during and after surgery. |
Supplements and enteral nutrition beneficial for significantly malnourished patients. | Fluid balance: avoid volume overload; fluid bolus resuscitation based on transesophageal doppler found to be beneficial. Balanced crystalloid > 0.9% NS. | Hyperglycemia should be avoided to reduce postoperative complication; however, implemented in conjunction with avoiding hypoglycemia. |
Fasting: clear liquids cessation 2 h prior to surgery, solid food cessation 6 h prior to surgery with emphasis on carbohydrate intake in non-diabetics. | Perianastomotic drain: maintain for 72 h with early removal subsequently. | Transurethral advised to remove postoperative day 1 or 2. |
Anti-thrombotic prophylaxis: Mechanical and chemical prophylaxis. Chemical prophylaxis with continuation 4 weeks after hospitalization. Precautions for chemical prophylaxis with the utilization of epidural. | Nasogastric tube: not preemptively indicated. | Oral nutrition in the form of small meals. |
Antimicrobial prophylaxis: utilize single dose 30–60 min prior to skin incision; repeated doses as indicated based on half-life intraoperatively. | Delayed gastric emptying: artificial nutrition indicated for patients with long duration delayed gastric emptying. | |
Preanesthetic medication: short acting anxiolytics may be used for procedures, i.e., epidural insertion. Routine use of long-acting sedatives not advised. | Early ambulation: encouraged on morning of postoperative day 1 with daily targets. | |
Epidural analgesia: superior pain control with lower rates of respiratory compromised compared to IV opioids. | Stimulation of bowel: oral laxatives, chewing gum, near-zero fluid balance. |
Prognostic factors | Outcomes |
---|---|
Depth of invasion | T2 and T3 associated with lower OS [60]. |
Presence of lymph node metastasis | N2 disease associated with significantly lower median survival than N1 disease [10,61,62,63]. |
LNR | >0.2 associated with worse overall survival [64]. |
Lymph Node Harvest | <12 lymph nodes harvest, associated with decreased overall survival [66]. |
Pancreatic invasion | Can be further categorized into ≤1 mm or >1 mm, which impact prognosis differently [62,63,67]. |
Perineural invasion | Indicator of poor prognosis, and decreased 5-year survival [62,63,70]. |
Tumor histology/differentiation | Mucin-producing vs papillary [71]. |
Resection Margins | Microscopically negative (R0) resection associated with more favorable OS [10,16,62,63,72]. |
Primary Tumor (T) | Regional Lymph Nodes (N) | Distant Metastasis (M) |
---|---|---|
T1: depth of invasion <5 mm. | N0: no regional lymph node metastasis. | M0: no distant metastasis. |
T2: depth of invasion between 5–12 mm. | N1: regional metastasis to 1–3 lymph nodes. | M1: distant metastasis. |
T3: depth of invasion >12 mm. | N2: regional metastasis to greater than 4 lymph nodes. | |
T4: tumor invasion into the celiac axis, or superior mesenterenic artery. |
Author | Study Period | N | TLNC Median | Outcomes |
---|---|---|---|---|
Kang et al. [64] | 1991–2015 | 780 | ≥12 | TLNC < 12 and TLNC ≥ 12 displayed significant OS difference, accounting for both node negative and node positive disease. |
Kawai et al. [66] | 1991–2004 | 62 | ≥12 | LNR > 0.2 is an important factor predicting OS. |
Kim et al. [76] | 2004–2011 | 91 | ≤11 | Perineural invasion prognostic indicator of OS in TLNC of ≤ 11, but not in patients with TLNC > 11. |
Kiriyama et al. [61] | 2001–2010 | 370 | ≥19 | Median survival significantly decreased by 4+ PLNC and LNR > 0.17. |
Li et al. [75] | 2000–2014 | 448 | ≥12 | LNR better prognostic indicator of OS than PLNC. |
Lin et al. [77] | 2004–2014 | 449 | 4–9 | Optimal TLNC to function as prognostic indicator 4–9. |
Oshiro et al. [78] | 2001-–2009 | 60 | < 12 = ≤ 12 | No statistical difference between TLNC < 12 or≥12. |
You et al. [59] | 2002-–-2012 | 251 | ≥12 | Better prediction of OS than AJCC 8th edition, using the following modified staging system, consisting of revised T category (T1: <5 mm, T2: 5–10 mm, and T3: >10 mm) and LNR ≥ 0.1. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorji, L.; Beal, E.W. Surgical Treatment of Distal Cholangiocarcinoma. Curr. Oncol. 2022, 29, 6674-6687. https://doi.org/10.3390/curroncol29090524
Gorji L, Beal EW. Surgical Treatment of Distal Cholangiocarcinoma. Current Oncology. 2022; 29(9):6674-6687. https://doi.org/10.3390/curroncol29090524
Chicago/Turabian StyleGorji, Leva, and Eliza W. Beal. 2022. "Surgical Treatment of Distal Cholangiocarcinoma" Current Oncology 29, no. 9: 6674-6687. https://doi.org/10.3390/curroncol29090524
APA StyleGorji, L., & Beal, E. W. (2022). Surgical Treatment of Distal Cholangiocarcinoma. Current Oncology, 29(9), 6674-6687. https://doi.org/10.3390/curroncol29090524