PET/CT for Predicting Occult Lymph Node Metastasis in Gastric Cancer
Abstract
:1. Introduction
2. Article Selection
3. Review
- Advantages of 18F-FDG PET in detecting lymph node metastasis in gastric cancer
- 2.
- Limitations and challenges of 18F-FDG PET in gastric cancer
- (1)
- As the histological types in gastric cancer vary, the proportion of FDG-avid tumors accounts for only 60%, especially for those with non-intestinal tissue types (diffuse, mixed, and indolent cells) [22]. In addition, 18F-FDG PET/CT is not sensitive to lymph node metastases from non-FDG tumor metastases [50,51,52].
- (2)
- Some scholars believe that the size of metastatic lymph nodes is a critical factor in the evaluation of gastric cancer. Some of the metastatic lymph nodes may be smaller than 3 mm [19]. As this is lower than the spatial resolution limits of conventional PET scanners, PET/CT tends to miss some of the metastatic lymph nodes with smaller diameters [50]. This contradicts our view.
- (3)
- High physiological uptake of 18F-FDG by the normal gastric wall creates radioactive volume effects, and background noise, gastric peristalsis and the contraction of normal gastric folds can all hinder the detection of gastric cancer and LN metastases [51].
- (4)
- 3.
- Common methods for detecting OLNM based on 18FDG
4. Potential Approaches for the Detection of OLNM in Gastric Cancer
4.1. 18FDG-Based Methods
4.1.1. MTV and TLG
4.1.2. HF
4.1.3. SUR
4.2. Novel Imaging Agents
4.2.1. 68Ga-FAPI
4.2.2. [F-18] FLT
4.3. Radiomics
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet 2016, 388, 2654–2664. [Google Scholar] [CrossRef]
- Johnston, F.M.; Beckman, M. Updates on Management of Gastric Cancer. Curr. Oncol. Rep. 2019, 21, 67. [Google Scholar] [CrossRef] [PubMed]
- Das, M. Neoadjuvant chemotherapy: Survival benefit in gastric cancer. Lancet Oncol. 2017, 18, e307. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, L.; Huang, R.; Song, W. A clinical exploration of neoadjuvant chemotherapy with tegafur, gimeracil, and oteracil potassium capsules combined with oxaliplatin for advanced gastric cancer. Int. J. Clin. Exp. Med. 2015, 8, 19030–19036. [Google Scholar]
- Rizzo, A.; Mollica, V.; Ricci, A.D.; Maggio, I.; Massucci, M.; Rojas Limpe, F.L.; Fabio, F.D.; Ardizzoni, A. Third- and later-line treatment in advanced or metastatic gastric cancer: A systematic review and meta-analysis. Future Oncol. 2020, 16, 4409–4418. [Google Scholar] [CrossRef] [PubMed]
- Nitti, D.; Marchet, A.; Olivieri, M.; Ambrosi, A.; Mencarelli, R.; Belluco, C.; Lise, M. Ratio between metastatic and examined lymph nodes is an independent prognostic factor after D2 resection for gastric cancer: Analysis of a large European monoinstitutional experience. Ann. Surg. Oncol. 2003, 10, 1077–1085. [Google Scholar] [CrossRef]
- Siewert, J.R.; Böttcher, K.; Stein, H.J.; Roder, J.D.; Group, t.G.G.C.S. Relevant Prognostic Factors in Gastric Cancer: Ten-Year Results of the German Gastric Cancer Study. Ann. Surg. 1998, 228, 449–461. [Google Scholar] [CrossRef]
- Siewert, J.R.; Kestlmeier, R.; Busch, R.; Bottcher, K.; Roder, J.D.; Muller, J.; Fellbaum, C.; Hofler, H. Benefits of D2 lymph node dissection for patients with gastric cancer and pN0 and pN1 lymph node metastases. Br. J. Surg. 1996, 83, 1144–1147. [Google Scholar] [CrossRef]
- Yasuda, K.; Adachi, Y.; Shiraishi, N.; Inomata, M.; Takeuchi, H.; Kitano, S. Prognostic effect of lymph node micrometastasis in patients with histologically node-negative gastric cancer. Ann. Surg. Oncol. 2002, 9, 771–774. [Google Scholar] [CrossRef]
- Mukai, K.; Ishida, Y.; Okajima, K.; Isozaki, H.; Morimoto, T.; Nishiyama, S. Usefulness of preoperative FDG-PET for detection of gastric cancer. Gastric Cancer 2006, 9, 192–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zhang, G.J.; Wang, J.; Zheng, K.Y.; Fu, W. Current status of lymph node micrometastasis in gastric cancer. Oncotarget 2017, 8, 51963–51969. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Fang, M.J.; Tang, L.; Shan, X.H.; Gao, J.B.; Giganti, F.; Wang, R.P.; Chen, X.; Wang, X.X.; Palumbo, D.; et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: An international multicenter study. Ann. Oncol. 2020, 31, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Xu, Y.Y.; Li, M.; Sun, Z.; Zhu, Z.; Song, Y.X.; Miao, Z.F.; Wu, J.H.; Xu, H.M. The prognostic impact of occult lymph node metastasis in node-negative gastric cancer: A systematic review and meta-analysis. Ann. Surg. Oncol. 2013, 20, 3927–3934. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Wang, L.; Gong, L.; Han, C.; Liang, N.; Li, S. Predicting occult lymph node metastasis by nomogram in patients with lung adenocarcinoma </=2 cm. Future Oncol. 2021, 17, 2005–2013. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.A.V.; Drummond-Lage, A.P.; Wainstein, A.J.A.; Dias-Filho, M.A.; Savassi-Rocha, P.R.; Navarro, T.P. Impact of multisection and immunohistochemistry in lymph node staging of Gastric Carcinoma—Case series. Sci. Rep. 2020, 10, 3271. [Google Scholar] [CrossRef] [PubMed]
- Mpallas, K.D.; Lagopoulos, V.I.; Kamparoudis, A.G. Prognostic Significance of Solitary Lymphnode Metastasis and Micrometastasis in Gastric Cancer. Front. Surg. 2018, 5, 63. [Google Scholar] [CrossRef]
- Lee, C.M.; Cho, J.M.; Jang, Y.J.; Park, S.S.; Park, S.H.; Kim, S.J.; Mok, Y.J.; Kim, C.S.; Kim, J.H. Should lymph node micrometastasis be considered in node staging for gastric cancer? Ann. Surg. Oncol. 2015, 22, 765–771. [Google Scholar] [CrossRef]
- Monig, S.P.; Schroder, W.; Baldus, S.E.; Holscher, A.H. Preoperative lymph-node staging in gastrointestinal cancer—Correlation between size and tumor stage. Oncol. Res. Treat. 2002, 25, 342–344. [Google Scholar] [CrossRef]
- Chen, J.; Cheong, J.H.; Yun, M.J.; Kim, J.; Lim, J.S.; Hyung, W.J.; Noh, S.H. Improvement in preoperative staging of gastric adenocarcinoma with positron emission tomography. Cancer 2005, 103, 2383–2390. [Google Scholar] [CrossRef]
- Serrano, O.K.; Love, C.; Goldman, I.; Huang, K.; Ng, N.; Abraham, T.; Da Silva, R.; Friedmann, P.; Libutti, S.K.; Kennedy, T.J. The value of FDG-PET in the staging of gastric adenocarcinoma: A single institution retrospective review. J. Surg. Oncol. 2016, 113, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.; Schoder, H.; Strong, V.E.; Capanu, M.; Kelsen, D.P.; Coit, D.G.; Shah, M.A. A prospective evaluation of the utility of 2-deoxy-2-[(18) F]fluoro-D-glucose positron emission tomography and computed tomography in staging locally advanced gastric cancer. Cancer 2012, 118, 5481–5488. [Google Scholar] [CrossRef] [PubMed]
- Bosch, K.D.; Chicklore, S.; Cook, G.J.; Davies, A.R.; Kelly, M.; Gossage, J.A.; Baker, C.R. Staging FDG PET-CT changes management in patients with gastric adenocarcinoma who are eligible for radical treatment. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Kudou, M.; Kosuga, T.; Kubota, T.; Okamoto, K.; Komatsu, S.; Shoda, K.; Konishi, H.; Shiozaki, A.; Fujiwara, H.; Arita, T.; et al. Value of Preoperative PET-CT in the Prediction of Pathological Stage of Gastric Cancer. Ann. Surg. Oncol. 2018, 25, 1633–1639. [Google Scholar] [CrossRef]
- Findlay, J.M.; Antonowicz, S.; Segaran, A.; El Kafsi, J.; Zhang, A.; Bradley, K.M.; Gillies, R.S.; Maynard, N.D.; Middleton, M.R. Routinely staging gastric cancer with (18)F-FDG PET-CT detects additional metastases and predicts early recurrence and death after surgery. Eur. Radiol. 2019, 29, 2490–2498. [Google Scholar] [CrossRef]
- Ru, Y.; Zhang, L.; Chen, Q.; Gao, S.G.; Wang, G.P.; Qu, Z.F.; Shan, T.Y.; Qian, N.; Feng, X.S. Detection and clinical significance of lymph node micrometastasis in gastric cardia adenocarcinoma. J. Int. Med. Res. 2012, 40, 293–299. [Google Scholar] [CrossRef]
- Tan, Z. Recent Advances in the Surgical Treatment of Advanced Gastric Cancer: A Review. Med. Sci. Monit. 2019, 25, 3537–3541. [Google Scholar] [CrossRef]
- Degiuli, M.; Sasako, M.; Ponti, A.; Vendrame, A.; Tomatis, M.; Mazza, C.; Borasi, A.; Capussotti, L.; Fronda, G.; Morino, M.; et al. Randomized clinical trial comparing survival after D1 or D2 gastrectomy for gastric cancer. Br. J. Surg. 2014, 101, 23–31. [Google Scholar] [CrossRef]
- Roviello, F.; Rossi, S.; Marrelli, D.; Pedrazzani, C.; Corso, G.; Vindigni, C.; Morgagni, P.; Saragoni, L.; de Manzoni, G.; Tomezzoli, A. Number of lymph node metastases and its prognostic significance in early gastric cancer: A multicenter Italian study. J. Surg. Oncol. 2006, 94, 275–280; discussion 274. [Google Scholar] [CrossRef]
- Pelz, J.; Merkel, S.; Horbach, T.; Papadopoulos, T.; Hohenberger, W. Determination of nodal status and treatment in early gastric cancer. Eur. J. Surg. Oncol. 2004, 30, 935–941. [Google Scholar] [CrossRef]
- Hyung, W.J.; Cheong, J.H.; Kim, J.; Chen, J.; Choi, S.H.; Noh, S.H. Application of minimally invasive treatment for early gastric cancer. J. Surg. Oncol. 2004, 85, 181–185; discussion 186. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.X.; Zhu, Z.H. Diagnosis and evaluation of gastric cancer by positron emission tomography. World J. Gastroenterol. 2014, 20, 4574–4585. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.W.; Lee, E.J.; Cho, Y.H.; Yoon, S.Y.; So, Y.; Kim, S.Y.; Lee, M.H.; Kim, J.H.; Lee, S.Y.; Sung, I.K.; et al. High FDG uptake in PET/CT predicts worse prognosis in patients with metastatic gastric adenocarcinoma. J. Cancer Res. Clin. Oncol. 2010, 136, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, T.; Yamaguchi, K.; Kubota, K.; Saginoya, T.; Yamazaki, T.; Ido, T.; Yamaura, G.; Takahashi, H.; Fukuda, H.; Kanamaru, R. Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. J. Nucl. Med. 2003, 44, 690–699. [Google Scholar]
- Ott, K.; Herrmann, K.; Lordick, F.; Wieder, H.; Weber, W.A.; Becker, K.; Buck, A.K.; Dobritz, M.; Fink, U.; Ulm, K.; et al. Early metabolic response evaluation by fluorine-18 fluorodeoxyglucose positron emission tomography allows in vivo testing of chemosensitivity in gastric cancer: Long-term results of a prospective study. Clin. Cancer Res. 2008, 14, 2012–2018. [Google Scholar] [CrossRef]
- Kawanaka, Y.; Kitajima, K.; Fukushima, K.; Mouri, M.; Doi, H.; Oshima, T.; Niwa, H.; Kaibe, N.; Sasako, M.; Tomita, T.; et al. Added value of pretreatment (18)F-FDG PET/CT for staging of advanced gastric cancer: Comparison with contrast-enhanced MDCT. Eur. J. Radiol. 2016, 85, 989–995. [Google Scholar] [CrossRef]
- Dai, C.L.; Yang, Z.G.; Xue, L.P.; Li, Y.M. Application value of multi-slice spiral computed tomography for imaging determination of metastatic lymph nodes of gastric cancer. World J. Gastroenterol. 2013, 19, 5732–5737. [Google Scholar] [CrossRef]
- Fukuya, T.; Honda, H.; Hayashi, T.; Kaneko, K.; Tateshi, Y.; Ro, T.; Maehara, Y.; Tanaka, M.; Tsuneyoshi, M.; Masuda, K. Lymph-node metastases: Efficacy for detection with helical CT in patients with gastric cancer. Radiology 1995, 197, 705–711. [Google Scholar] [CrossRef]
- Okumura, Y.; Aikou, S.; Onoyama, H.; Jinbo, K.; Yamagata, Y.; Mori, K.; Yamashita, H.; Nomura, S.; Takahashi, M.; Koyama, K.; et al. Evaluation of 18F-FDG uptake for detecting lymph node metastasis of gastric cancer: A prospective pilot study for one-to-one comparison of radiation dose and pathological findings. World J. Surg. Oncol. 2015, 13, 327. [Google Scholar] [CrossRef]
- Namikawa, T.; Okabayshi, T.; Nogami, M.; Ogawa, Y.; Kobayashi, M.; Hanazaki, K. Assessment of (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography in the preoperative management of patients with gastric cancer. Int. J. Clin. Oncol. 2014, 19, 649–655. [Google Scholar] [CrossRef]
- Findlay, J.M.; Gillies, R.S.; Franklin, J.M.; Teoh, E.J.; Jones, G.E.; di Carlo, S.; Gleeson, F.V.; Maynard, N.D.; Bradley, K.M.; Middleton, M.R. Restaging oesophageal cancer after neoadjuvant therapy with (18)F-FDG PET-CT: Identifying interval metastases and predicting incurable disease at surgery. Eur. Radiol. 2016, 26, 3519–3533. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.M.; Bradley, K.M.; Wang, L.M.; Franklin, J.M.; Teoh, E.J.; Gleeson, F.V.; Maynard, N.D.; Gillies, R.S.; Middleton, M.R. Metabolic nodal response as a prognostic marker after neoadjuvant therapy for oesophageal cancer. Br. J. Surg. 2017, 104, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.M.; Bradley, K.M.; Wang, L.M.; Franklin, J.M.; Teoh, E.J.; Gleeson, F.V.; Maynard, N.D.; Gillies, R.S.; Middleton, M.R. Predicting Pathologic Response of Esophageal Cancer to Neoadjuvant Chemotherapy: The Implications of Metabolic Nodal Response for Personalized Therapy. J. Nucl. Med. 2017, 58, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Lerut, T.; Flamen, P.; Ectors, N.; Van Cutsem, E.; Peeters, M.; Hiele, M.; De Wever, W.; Coosemans, W.; Decker, G.; De Leyn, P.; et al. Histopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction: A prospective study based on primary surgery with extensive lymphadenectomy. Ann. Surg. 2000, 232, 743–752. [Google Scholar] [CrossRef]
- Choi, J.Y.; Shim, K.N.; Kim, S.E.; Jung, H.K.; Jung, S.A.; Yoo, K. The clinical value of 18F-fluorodeoxyglucose uptake on positron emission tomography/computed tomography for predicting regional lymph node metastasis and non-curative surgery in primary gastric carcinoma. Korean J. Gastroenterol. 2014, 64, 340–347. [Google Scholar] [CrossRef]
- Shimada, H.; Okazumi, S.; Koyama, M.; Murakami, K. Japanese Gastric Cancer Association Task Force for Research Promotion: Clinical utility of (1)(8)F-fluoro-2-deoxyglucose positron emission tomography in gastric cancer. A systematic review of the literature. Gastric Cancer 2011, 14, 13–21. [Google Scholar] [CrossRef]
- Kwee, R.M.; Kwee, T.C. Imaging in assessing lymph node status in gastric cancer. Gastric Cancer 2009, 12, 6–22. [Google Scholar] [CrossRef]
- Birim, O.; Kappetein, A.P.; Stijnen, T.; Bogers, A.J. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann. Thorac. Surg. 2005, 79, 375–382. [Google Scholar] [CrossRef]
- Toloza, E.M.; Harpole, L.; McCrory, D.C. Noninvasive staging of non-small cell lung cancer: A review of the current evidence. Chest 2003, 123, 137S–146S. [Google Scholar] [CrossRef]
- Kim, S.K.; Kang, K.W.; Lee, J.S.; Kim, H.K.; Chang, H.J.; Choi, J.Y.; Lee, J.H.; Ryu, K.W.; Kim, Y.W.; Bae, J.M. Assessment of lymph node metastases using 18F-FDG PET in patients with advanced gastric cancer. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 148–155. [Google Scholar] [CrossRef]
- Kim, E.Y.; Lee, W.J.; Choi, D.; Lee, S.J.; Choi, J.Y.; Kim, B.T.; Kim, H.S. The value of PET/CT for preoperative staging of advanced gastric cancer: Comparison with contrast-enhanced CT. Eur. J. Radiol. 2011, 79, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cho, Y.S.; Moon, S.H.; Bae, J.M.; Kim, S.; Choe, Y.S.; Kim, B.T.; Lee, K.H. Primary Tumor (1)(8)F-FDG Avidity Affects the Performance of (1)(8)F-FDG PET/CT for Detecting Gastric Cancer Recurrence. J. Nucl. Med. 2016, 57, 544–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alakus, H.; Batur, M.; Schmidt, M.; Drebber, U.; Baldus, S.E.; Vallbohmer, D.; Prenzel, K.L.; Metzger, R.; Bollschweiler, E.; Holscher, A.H.; et al. Variable 18F-fluorodeoxyglucose uptake in gastric cancer is associated with different levels of GLUT-1 expression. Nucl. Med. Commun. 2010, 31, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, S.; Takechi, M.; Ishizu, K.; Tanaka, A.; Maeda, Y.; Suzuki, T.; Sadahiro, S.; Ohta, M.; Itoh, M.; Makuuchi, H. Preliminary study comparing diffuse gastric FDG uptake and gastritis. Tokai J. Exp. Clin. Med. 2008, 33, 138–142. [Google Scholar] [PubMed]
- Lin, C.Y.; Liu, C.S.; Ding, H.J.; Sun, S.S.; Yen, K.Y.; Hsieh, T.C.; Lin, C.C.; Kao, C.H. Positive correlation between standardized uptake values of FDG uptake in the stomach and the value of the C-13 urea breath test. Clin. Nucl. Med. 2006, 31, 792–794. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.T.; Yang, X.N.; Zhong, W.Z.; Liao, R.Q.; Dong, S.; Nie, Q.; Weng, S.X.; Fang, X.J.; Zheng, J.Y.; Wu, Y.L. Association of maximum standardized uptake value with occult mediastinal lymph node metastases in cN0 non-small cell lung cancer. Eur. J. Cardio-Thorac. Surg. 2016, 50, 914–919. [Google Scholar] [CrossRef]
- Xu, C.; Li, H.; Seng, D.; Liu, F. Significance of SUV Max for Predicting Occult Lymph Node Metastasis and Prognosis in Early-Stage Tongue Squamous Cell Carcinoma. J. Oncol. 2020, 2020, 6241637. [Google Scholar] [CrossRef]
- Miyasaka, Y.; Suzuki, K.; Takamochi, K.; Matsunaga, T.; Oh, S. The maximum standardized uptake value of fluorodeoxyglucose positron emission tomography of the primary tumour is a good predictor of pathological nodal involvement in clinical N0 non-small-cell lung cancer. Eur. J. Cardio-Thorac. Surg. 2013, 44, 83–87. [Google Scholar] [CrossRef]
- Song, B.I. Nomogram using F-18 fluorodeoxyglucose positron emission tomography/computed tomography for preoperative prediction of lymph node metastasis in gastric cancer. World J. Gastrointest. Oncol. 2020, 12, 447–456. [Google Scholar] [CrossRef]
- Mattes, M.D.; Moshchinsky, A.B.; Ahsanuddin, S.; Rizk, N.P.; Foster, A.; Wu, A.J.; Ashamalla, H.; Weber, W.A.; Rimner, A. Ratio of Lymph Node to Primary Tumor SUV on PET/CT Accurately Predicts Nodal Malignancy in Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2015, 16, e253–e258. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, J.; Gao, P.; Song, Y.; Sun, J.; Chen, X.; Ma, B.; Wang, Z. Prognostic value of pretreatment standardized uptake value of F-18-fluorodeoxyglucose PET in patients with gastric cancer: A meta-analysis. BMC Cancer 2017, 17, 275. [Google Scholar] [CrossRef] [PubMed]
- Song, B.I.; Kim, H.W.; Won, K.S.; Ryu, S.W.; Sohn, S.S.; Kang, Y.N. Preoperative Standardized Uptake Value of Metastatic Lymph Nodes Measured by 18F-FDG PET/CT Improves the Prediction of Prognosis in Gastric Cancer. Medicine 2015, 94, e1037. [Google Scholar] [CrossRef] [PubMed]
- Keyes, J.W., Jr. SUV: Standard uptake or silly useless value? J. Nucl. Med. 1995, 36, 1836–1839. [Google Scholar] [PubMed]
- Weiss, G.J.; Korn, R.L. Interpretation of PET scans: Do not take SUVs at face value. J. Thorac. Oncol. 2012, 7, 1744–1746. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Krak, N.C.; Hoekstra, O.S.; Lammertsma, A.A. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J. Nucl. Med. 2004, 45, 1519–1527. [Google Scholar]
- Adams, M.C.; Turkington, T.G.; Wilson, J.M.; Wong, T.Z. A systematic review of the factors affecting accuracy of SUV measurements. Am. J. Roentgenol. 2010, 195, 310–320. [Google Scholar] [CrossRef]
- Oh, H.H.; Lee, S.E.; Choi, I.S.; Choi, W.J.; Yoon, D.S.; Min, H.S.; Ra, Y.M.; Moon, J.I.; Kang, Y.H. The peak-standardized uptake value (P-SUV) by preoperative positron emission tomography-computed tomography (PET-CT) is a useful indicator of lymph node metastasis in gastric cancer. J. Surg. Oncol. 2011, 104, 530–533. [Google Scholar] [CrossRef]
- Zasadny, K.R.; Wahl, R.L. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: Variations with body weight and a method for correction. Radiology 1993, 189, 847–850. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.; Ouyang, M.; Lin, J.; Wang, L.; Zheng, X.; Miao, S.; Tang, K. Prediction of lymph node metastasis by PET/CT metabolic parameters in patients with esophageal squamous cell carcinoma. Nucl. Med. Commun. 2019, 40, 933–939. [Google Scholar] [CrossRef]
- Park, S.Y.; Yoon, J.K.; Park, K.J.; Lee, S.J. Prediction of occult lymph node metastasis using volume-based PET parameters in small-sized peripheral non-small cell lung cancer. Cancer Imaging 2015, 15, 21. [Google Scholar] [CrossRef]
- Chang, C.; Sun, X.Y.; Zhao, W.L.; Wang, R.; Qian, X.H.; Lei, B.; Wang, L.H.; Liu, L.; Ruan, M.M.; Xie, W.H.; et al. Minor components of micropapillary and solid subtypes in lung invasive adenocarcinoma (<= 3 cm): PET/CT findings and correlations with lymph node metastasis. Radiol. Med. 2020, 125, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Song, B.I.; Hong, C.; Jeong, S.; Lee, S.W.; Lee, J.; Ahn, B.C. Metabolic parameters using F-18-FDG PET/CT correlate with occult lymph node metastasis in squamous cell lung carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, Z.; Chen, P.; Yu, J.; Wang, F.; Yang, Z.; Wang, X. A (18)FDG PET/CT-based volume parameter is a predictor of overall survival in patients with local advanced gastric cancer. Chin. J. Cancer Res. 2019, 31, 632–640. [Google Scholar] [CrossRef]
- Kim, J.; Lim, S.T.; Na, C.J.; Han, Y.H.; Kim, C.Y.; Jeong, H.J.; Sohn, M.H. Pretreatment F-18 FDG PET/CT Parameters to Evaluate Progression-Free Survival in Gastric Cancer. Nucl. Med. Mol. Imaging 2014, 48, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ho, I.S.; Kim, S.J.; Kim, I.J.; Kim, K. Predictive value of metabolic tumor volume measured by 18F-FDG PET for regional lymph node status in patients with esophageal cancer. Clin. Nucl. Med. 2012, 37, 442–446. [Google Scholar] [CrossRef]
- Ouyang, M.L.; Tang, K.; Xu, M.M.; Lin, J.; Li, T.C.; Zheng, X.W. Prediction of Occult Lymph Node Metastasis Using Tumor-to-Blood Standardized Uptake Ratio and Metabolic Parameters in Clinical N0 Lung Adenocarcinoma. Clin. Nucl. Med. 2018, 43, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Budiawan, H.; Cheon, G.J.; Im, H.J.; Lee, S.J.; Paeng, J.C.; Kang, K.W.; Chung, J.K.; Lee, D.S. Heterogeneity Analysis of (18)F-FDG Uptake in Differentiating Between Metastatic and Inflammatory Lymph Nodes in Adenocarcinoma of the Lung: Comparison with Other Parameters and its Application in a Clinical Setting. Nucl. Med. Mol. Imaging 2013, 47, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, M.L.; Xia, H.W.; Xu, M.M.; Lin, J.; Wang, L.L.; Zheng, X.W.; Tang, K. Prediction of occult lymph node metastasis using SUV, volumetric parameters and intratumoral heterogeneity of the primary tumor in T1-2N0M0 lung cancer patients staged by PET/CT. Ann. Nucl. Med. 2019, 33, 671–680. [Google Scholar] [CrossRef]
- Kim, S.J.; Pak, K.; Chang, S. Determination of regional lymph node status using (18)F-FDG PET/CT parameters in oesophageal cancer patients: Comparison of SUV, volumetric parameters and intratumoral heterogeneity. Br. J. Radiol. 2016, 89, 20150673. [Google Scholar] [CrossRef]
- van den Hoff, J.; Oehme, L.; Schramm, G.; Maus, J.; Lougovski, A.; Petr, J.; Beuthien-Baumann, B.; Hofheinz, F. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. Ejnmmi Res. 2013, 3, 77. [Google Scholar] [CrossRef]
- Butof, R.; Hofheinz, F.; Zophel, K.; Stadelmann, T.; Schmollack, J.; Jentsch, C.; Lock, S.; Kotzerke, J.; Baumann, M.; van den Hoff, J. Prognostic Value of Pretherapeutic Tumor-to-Blood Standardized Uptake Ratio in Patients with Esophageal Carcinoma. J. Nucl. Med. 2015, 56, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.M.; Niu, R.; Shao, X.L.; Zhang, F.F.; Shao, X.N.; Wang, J.F.; Wang, X.S.; Liu, B.; Yu, W.J.; Wang, Y.T. Tumor-to-liver standard uptake ratio using fluorine-18 fluorodeoxyglucose positron emission tomography computed tomography effectively predict occult lymph node metastasis of non-small cell lung cancer patients. Nucl. Med. Commun. 2020, 41, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Belge, G.; Bilgin, C.; Ozkaya, G.; Kandemirli, S.G.; Alper, E. Prognostic value of pretreatment tumor-to-blood standardized uptake ratio (SUR) in rectal cancer. Ann. Nucl. Med. 2020, 34, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Huang, L.; Zhou, J.M.; Duan, Y.H.; Zhang, Z.W.; Wang, X.Y.; Huang, P.Z.; Tan, S.Y.; Hu, P.; Wang, J.P.; et al. Elevated tumor-to-liver uptake ratio (TLR) from F-18-FDG-PET/CT predicts poor prognosis in stage IIA colorectal cancer following curative resection. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1958–1968. [Google Scholar] [CrossRef]
- Shin, S.; Pak, K.; Kim, I.J.; Kim, B.S.; Kim, S.J. Prognostic Value of Tumor-to-Blood Standardized Uptake Ratio in Patients with Resectable Non-Small-Cell Lung Cancer. Nucl. Med. Mol. Imaging 2017, 51, 233–239. [Google Scholar] [CrossRef]
- Arslan, E.; Aksoy, T.; Gundogan, C.; Sen, C.; Yilmaz Tatar, S.; Dursun, N.; Cermik, T.F. Metabolic Characteristics and Diagnostic Contribution of (18)F-FDG PET/CT in Gastric Carcinomas. Mol. Imaging Radionucl. Ther. 2020, 29, 25–32. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, N.; Beom, S.H.; Kim, H.S.; Lee, C.K.; Rha, S.Y.; Chung, H.C.; Yun, M.; Cho, A.; Jung, M. The prognostic value of volume-based parameters using (18)F-FDG PET/CT in gastric cancer according to HER2 status. Gastric Cancer 2018, 21, 213–224. [Google Scholar] [CrossRef]
- Li, Y.M.; Lin, Q.; Zhao, L.; Wang, L.C.; Sun, L.; Dai, M.M.; Luo, Z.M.; Zheng, H.; Wu, H. Pre-treatment metabolic tumor volume and total lesion glycolysis are useful prognostic factors for esophageal squamous cell cancer patients. Asian Pac. J. Cancer Prev. 2014, 15, 1369–1373. [Google Scholar] [CrossRef]
- Chung, H.H.; Kim, J.W.; Han, K.H.; Eo, J.S.; Kang, K.W.; Park, N.H.; Song, Y.S.; Chung, J.K.; Kang, S.B. Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol. Oncol. 2011, 120, 270–274. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hyun, S.H.; Lee, K.S.; Kim, B.T.; Kim, J.; Shim, Y.M.; Ahn, M.J.; Kim, T.S.; Yi, C.A.; Chung, M.J. Volume-based parameter of 18)F-FDG PET/CT in malignant pleural mesothelioma: Prediction of therapeutic response and prognostic implications. Ann. Surg. Oncol. 2010, 17, 2787–2794. [Google Scholar] [CrossRef]
- Soydal, C.; Yuksel, C.; Kucuk, N.O.; Okten, I.; Ozkan, E.; Doganay Erdogan, B. Prognostic Value of Metabolic Tumor Volume Measured by 18F-FDG PET/CT in Esophageal Cancer Patients. Mol. Imaging Radionucl. Ther. 2014, 23, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Kim, H.H.; Han, E.J.; Byun, J.H.; Jang, H.S.; Choi, E.K.; Kang, J.H.; Yoo Ie, R. Total Lesion Glycolysis Using (1)(8)F-FDG PET/CT as a Prognostic Factor for Locally Advanced Esophageal Cancer. J. Korean Med. Sci. 2016, 31, 39–46. [Google Scholar] [CrossRef]
- Choi, E.S.; Ha, S.G.; Kim, H.S.; Ha, J.H.; Paeng, J.C.; Han, I. Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1836–1842. [Google Scholar] [CrossRef]
- Moon, S.H.; Choi, J.Y.; Lee, H.J.; Son, Y.I.; Baek, C.H.; Ahn, Y.C.; Park, K.; Lee, K.H.; Kim, B.T. Prognostic value of 18F-FDG PET/CT in patients with squamous cell carcinoma of the tonsil: Comparisons of volume-based metabolic parameters. Head Neck 2013, 35, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Choi, J.Y.; Lee, K.T.; Heo, J.S.; Park, S.B.; Moon, S.H.; Choe, Y.S.; Lee, K.H.; Kim, B.T. Prognostic Significance of Volume-based Metabolic Parameters by (18)F-FDG PET/CT in Gallbladder Carcinoma. Nucl. Med. Mol. Imaging 2012, 46, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Grabinska, K.; Pelak, M.; Wydmanski, J.; Tukiendorf, A.; d’Amico, A. Prognostic value and clinical correlations of 18-fluorodeoxyglucose metabolism quantifiers in gastric cancer. World J. Gastroenterol. 2015, 21, 5901–5909. [Google Scholar] [CrossRef]
- Son, S.H.; Kim, D.H.; Hong, C.M.; Kim, C.Y.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast. BMC Cancer 2014, 14, 585. [Google Scholar] [CrossRef]
- Kwon, S.H.; Yoon, J.K.; An, Y.S.; Shin, Y.S.; Kim, C.H.; Lee, D.H.; Jo, K.S.; Lee, S.J. Prognostic significance of the intratumoral heterogeneity of (18) F-FDG uptake in oral cavity cancer. J. Surg. Oncol. 2014, 110, 702–706. [Google Scholar] [CrossRef]
- Nikulin, P.; Hofheinz, F.; Maus, J.; Li, Y.; Butof, R.; Lange, C.; Furth, C.; Zschaeck, S.; Kreissl, M.C.; Kotzerke, J.; et al. A convolutional neural network for fully automated blood SUV determination to facilitate SUR computation in oncological FDG-PET. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 995–1004. [Google Scholar] [CrossRef]
- Loktev, A.; Lindner, T.; Mier, W.; Debus, J.; Altmann, A.; Jager, D.; Giesel, F.; Kratochwil, C.; Barthe, P.; Roumestand, C.; et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J. Nucl. Med. 2018, 59, 1423–1429. [Google Scholar] [CrossRef]
- Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jaeger, D.; Mier, W.; Haberkorn, U. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J. Nucl. Med. 2018, 59, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pang, Y.; Wu, J.; Zhao, L.; Hao, B.; Wu, J.; Wei, J.; Wu, S.; Zhao, L.; Luo, Z.; et al. Comparison of [(68)Ga]Ga-DOTA-FAPI-04 and [(18)F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, L.; Ruan, D.; Pang, Y.; Hao, B.; Dai, Y.; Wu, X.; Guo, W.; Fan, C.; Wu, J.; et al. Usefulness of [(68)Ga]Ga-DOTA-FAPI-04 PET/CT in patients presenting with inconclusive [(18)F]FDG PET/CT findings. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Giesel, F.L.; Kratochwil, C.; Lindner, T.; Marschalek, M.M.; Loktev, A.; Lehnert, W.; Debus, J.; Jager, D.; Flechsig, P.; Altmann, A.; et al. Ga-68-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J. Nucl. Med. 2019, 60, 386–392. [Google Scholar] [CrossRef]
- Treglia, G.; Muoio, B.; Roustaei, H.; Kiamanesh, Z.; Aryana, K.; Sadeghi, R. Head-to-Head Comparison of Fibroblast Activation Protein Inhibitors (FAPI) Radiotracers versus [(18)F]F-FDG in Oncology: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 1192. [Google Scholar] [CrossRef]
- Qin, C.; Shao, F.; Gai, Y.; Liu, Q.; Ruan, W.; Liu, F.; Hu, F.; Lan, X. (68)Ga-DOTA-FAPI-04 PET/MR in the Evaluation of Gastric Carcinomas: Comparison with (18)F-FDG PET/CT. J. Nucl. Med. 2022, 63, 81–88. [Google Scholar] [CrossRef]
- Pang, Y.; Zhao, L.; Luo, Z.; Hao, B.; Wu, H.; Lin, Q.; Sun, L.; Chen, H. Comparison of (68)Ga-FAPI and (18)F-FDG Uptake in Gastric, Duodenal, and Colorectal Cancers. Radiology 2021, 298, 393–402. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, X.; You, Z.; Wang, H.; Zhang, X.; Li, X.; Ren, S.; Huang, Q.; Hua, F.; Guan, Y.; et al. Comparison of [(68) Ga]Ga-FAPI-04 and [(18)F]-FDG for the detection of primary and metastatic lesions in patients with gastric cancer: A bicentric retrospective study. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 732–742. [Google Scholar] [CrossRef]
- Hino, H.; Utsumi, T.; Maru, N.; Matsui, H.; Taniguchi, Y.; Saito, T.; Murakawa, T. Clinical impact and utility of positron emission tomography on occult lymph node metastasis and survival: Radical surgery for stage I lung cancer. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 1196–1203. [Google Scholar] [CrossRef]
- Shields, A.F.; Grierson, J.R.; Dohmen, B.M.; Machulla, H.J.; Stayanoff, J.C.; Lawhorn-Crews, J.M.; Obradovich, J.E.; Muzik, O.; Mangner, T.J. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 1998, 4, 1334–1336. [Google Scholar] [CrossRef]
- Nakajo, M.; Kajiya, Y.; Jinguji, M.; Nakabeppu, Y.; Nakajo, M.; Nihara, T.; Yoshiura, T. Current clinical status of F-18-FLT PET or PET/CT in digestive and abdominal organ oncology. Abdom. Radiol. 2017, 42, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Staniuk, T.; Zegarski, W.; Malkowski, B.; Jankowski, M.; Klag, M.; Pietrzak, T. Evaluation of FLT-PET/CT usefulness in diagnosis and qualification for surgical treatment of gastric cancer. Contemp. Oncol. 2013, 17, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Nakajo, M.; Kajiya, Y.; Tani, A.; Jinguji, M.; Nakajo, M.; Yoshiura, T. FLT-PET/CT diagnosis of primary and metastatic nodal lesions of gastric cancer: Comparison with FDG-PET/CT. Abdom. Radiol. 2016, 41, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Ott, K.; Buck, A.K.; Lordick, F.; Wilhelm, D.; Souvatzoglou, M.; Becker, K.; Schuster, T.; Wester, H.J.; Siewert, J.R.; et al. Imaging gastric cancer with PET and the radiotracers 18F-FLT and 18F-FDG: A comparative analysis. J. Nucl. Med. 2007, 48, 1945–1950. [Google Scholar] [CrossRef]
- Staniuk, T.; Malkowski, B.; Srutek, E.; Szlezak, P.; Zegarski, W. Comparison of FLT-PET/CT and CECT in gastric cancer diagnosis. Abdom. Radiol. 2016, 41, 1349–1356. [Google Scholar] [CrossRef]
- Stahl, A.; Ott, K.; Weber, W.A.; Becker, K.; Link, T.; Siewert, J.R.; Schwaiger, M.; Fink, U. FDG PET imaging of locally advanced gastric carcinomas: Correlation with endoscopic and histopathological findings. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 288–295. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Yuan, Q.Y.; Lv, W.B.; Xi, S.J.; Huang, W.C.; Sun, Z.P.; Chen, H.; Zhao, L.Y.; Liu, W.; Hu, Y.F.; et al. Radiomic signature of F-18 fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits. Theranostics 2018, 8, 5915–5928. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Chen, C.; Zhang, X.; Zha, X.; Lv, W.; Xie, J.; Huang, W.; Sun, Z.; Hu, Y.; et al. Radiomics Signature on Computed Tomography Imaging: Association With Lymph Node Metastasis in Patients With Gastric Cancer. Front. Oncol. 2019, 9, 340. [Google Scholar] [CrossRef]
- Zhong, Y.W.; Jiang, Y.; Dong, S.; Wu, W.J.; Wang, L.X.; Zhang, J.; Huang, M.W. Tumor radiomics signature for artificial neural network-assisted detection of neck metastasis in patient with tongue cancer. J. Neuroradiol. 2022, 49, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yuan, M.; Zhang, T.; Zhang, Y.D.; Li, H.; Yu, T.F. Radiomics Approach to Prediction of Occult Mediastinal Lymph Node Metastasis of Lung Adenocarcinoma. Am. J. Roentgenol. 2018, 211, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, D.; Fang, M.J.; Wang, R.; Tian, J.; Li, H.L.; Gao, J.B. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. Eur. Radiol. 2020, 30, 2324–2333. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.; Bae, J.S.; Yoo, J.; Lee, D.H.; Kim, S.H. Added value of [(18)F]FDG PET/MRI over MDCT alone in the staging of recurrent gastric cancer. Eur. Radiol. 2021, 31, 7834–7844. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Z.D.; Li, S.; Guo, Y.T.; Wu, Q.Y.; Liu, S.H.; Yang, S.J.; Ding, L.; Zhao, B.C.; Li, S.; et al. Deep neural network-assisted computed tomography diagnosis of metastatic lymph nodes from gastric cancer. Chin. Med. J. 2019, 132, 2804–2811. [Google Scholar] [CrossRef]
SUV | SUV = activity concentration in tissue/activity per body weight injected [63,68]. Quantitative description of the glucose metabolism of the lesion. |
SUVmax | SUVmax is the highest voxel value of focal uptake of the tracer in tumors and represents the most intensive 18F-FDG uptake in tumors. |
SUVmean | SUVmean is the average level of glucose metabolism. |
SUVpeak | SUVpeak is the local average SUV value of a 1 cm3 group of voxels centered on the hottest voxel point in the tumor [66]. |
MTV |
|
TLG | TLG = MTV × (tumor SUVmean/blood SUVmean). |
HF | HF by linear regression analysis of the derivative (volume difference/threshold difference) of the SUVmax metabolic volume (V)-threshold (T) function. |
SUR | SUR was derived from the tumor SUV to B-SUR, and the tumor SUV to L-SUR was derived. |
Parameters | Summarize | Deficiency |
---|---|---|
SUVmax | SUVmax is the most commonly used non-invasive metabolic parameter to predict tumor metastasis [40,86], SUVmax is now widely used for predicting OLNM in patients with lung cancer. The incidence of lymph node metastasis increased with higher SUVmax. | SUVmax only indicates a single voxel value and is susceptible to a variety of factors, such as blood glucose levels, inflammation, injection dose, imaging technical differences, etc. [63,64,65]. |
MTV | MTV is the volume of tumor lesions above a certain metabolic threshold [87]. Some studies have demonstrated that MTV predicts survival prognosis better than SUVmax [88]. MTV has been proposed to be an independent prognostic factor of several cancers [75,89,90,91]. | The method of obtaining MTV is not yet standardized, and SUVmax is still the most commonly used parameter. |
TLG | Some studies suggest that TLG may be superior to MTV and SUVmax [72,92]. TLG is a more accurate predicter of survival than MTV in lung, head and neck, gallbladder and soft tissue sarcomas [93,94,95]. It has the potential to become an important marker for predicting OLNM [96]. | The relationship between TLG and OLNM at the primary site of gastric cancer is still unclear. |
HF | Some studies [79] have suggested that HF is an independent predicter of lymph node metastasis, and it has been applied to the evaluation of breast, oral, endometrial and other tumors [97,98]. | Tumoral metabolic heterogeneity is not well standardized and a feasible and highly reproducible method is needed to obtain heterogeneous parameters representing tumoral metabolic heterogeneity. |
SUR | SUR is an SUV-based parameter that can be used as a potential alternative to SUV, complementing its limitations [80,81]. SURmax is another potential parameter for predicting OLNM. | SURs are usually derived from a region of interest (ROI) located within the aortic lumen, which is manually delineated in the CT image volume of a given PET/CT data. This manual delineation of ROI requires more care and time control and therefore creates additional workloads for the clinician [99]. |
Author/Year | Types of Cancer | No. Patients | PET Imaging | Metabolic Parameters | No. of OLNM (%) | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
Hino [109]/2021 | Lung cancer | 598 | 18F-FDG | SUVmax | 17.06% | 88.40% | 41.80% |
Pang [107]/2020 | Gastrointestinal tumors | 35 | 68Ga-FAPIs | SUVmax | 7.10% | 79.00% | 82.00% |
Shi [82]/2020 | NSCLC | 124 | 18F-FDG | SUR | 15.00% | 94.70% | 57.10% |
Xu [57]/2020 | Early-Stage Tongue Squamous Cell Carcinoma | 120 | 18F-FDG | SUVmax | 15.00% | 77.80% | 92.20% |
Xu [69]/2019 | Esophageal squamous cell carcinoma | 84 | 18F-FDG | MTV | 46.03% | 51.20% | 83.70% |
Ouyang [78]/2019 | NSCLC | 215 | 18F-FDG | HF | 16.70% | 88.90% | 61.10% |
Ouyang [76]/2018 | Lung adenocarcinoma | 157 | 18F-FDG | TLG | 19.75% | 48.40% | 89.70% |
Park [70]/2015 | NSCLC | 139 | 18F-FDG | MTV | 17.20% | 83.30% | 60.00% |
Author/Year | Types of Cancer | No. Patients | Radiomics Method | AUC | Conclusion |
---|---|---|---|---|---|
Zhong [121]/2022 | Tongue cancer | 33 | ANN | 0.943 (Sensitivity: 93.10%; Specificity: 76.50%) | Using CT radiomics of the primary tumor, the rate of OLNM decreased from 30.9% to a minimum of 12.7% in the T1–2 group. |
Dong [13]/2020 | Gastric cancer | 730 | DLRN | 0.821 | DLRN can detect 81.7% of OLNM patients. |
Zhong [122]/2018 | Lung adenocarcinoma | 492 | Relief-based feature and support vector machine classification | 0.972 (Sensitivity: 94.80%; Specificity: 92.00%) | Radiomics predicts occult mediastinal LN metastases with 91.1% accuracy. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Zhang, Y.; Shao, X.; Wu, C.; Wu, J. PET/CT for Predicting Occult Lymph Node Metastasis in Gastric Cancer. Curr. Oncol. 2022, 29, 6523-6539. https://doi.org/10.3390/curroncol29090513
Ma D, Zhang Y, Shao X, Wu C, Wu J. PET/CT for Predicting Occult Lymph Node Metastasis in Gastric Cancer. Current Oncology. 2022; 29(9):6523-6539. https://doi.org/10.3390/curroncol29090513
Chicago/Turabian StyleMa, Danyu, Ying Zhang, Xiaoliang Shao, Chen Wu, and Jun Wu. 2022. "PET/CT for Predicting Occult Lymph Node Metastasis in Gastric Cancer" Current Oncology 29, no. 9: 6523-6539. https://doi.org/10.3390/curroncol29090513
APA StyleMa, D., Zhang, Y., Shao, X., Wu, C., & Wu, J. (2022). PET/CT for Predicting Occult Lymph Node Metastasis in Gastric Cancer. Current Oncology, 29(9), 6523-6539. https://doi.org/10.3390/curroncol29090513