Consensus Recommendations to Optimize Testing for New Targetable Alterations in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Biomarker Testing for New Targetable Alterations
3.2. Foundational Recommendations
3.2.1. New Targetable Alterations as Part of a Comprehensive Biomarker Panel
3.2.2. Selection of Molecular Tests to Detect Clinically Relevant Alterations
3.2.3. Timing of Comprehensive Biomarker Testing
3.2.4. Liquid Biopsy as a Complementary or Alternative Approach for Molecular Profiling
3.2.5. Implementation of Molecular Tumor Boards
3.3. Interpretation and Reporting of New Targetable Alterations
3.3.1. Laboratory Accreditation
3.3.2. Key Elements on a Clinical Report
3.3.3. Variant Classification System
3.3.4. Variant Interpretation in the Context of Clinical Significance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics. 2021. Available online: https://cdn.cancer.ca/-/media/files/research/cancer-statistics/2021-statistics/2021-pdf-en-final.pdf (accessed on 24 November 2021).
- Redman, M.W.; Papadimitrakopoulou, V.A.; Minichiello, K.; Hirsch, F.R.; Mack, P.C.; Schwartz, L.H.; Vokes, E.; Ramalingam, S.; Leighl, N.; Bradley, J.; et al. Biomarker-driven therapies for previously treated squamous non-small-cell lung cancer (Lung-MAP SWOG S1400): A biomarker-driven master protocol. Lancet. Oncol. 2020, 21, 1589–1601. [Google Scholar] [CrossRef]
- Griesinger, F.; Eberhardt, W.; Nusch, A.; Reiser, M.; Zahn, M.O.; Maintz, C.; Bernhardt, C.; Losem, C.; Stenzinger, A.; Heukamp, L.C.; et al. Biomarker testing in non-small cell lung cancer in routine care: Analysis of the first 3717 patients in the German prospective, observational, nation-wide CRISP Registry (AIO-TRK-0315). Lung Cancer 2021, 152, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Majeed, U.; Manochakian, R.; Zhao, Y.; Lou, Y. Targeted therapy in advanced non-small cell lung cancer: Current advances and future trends. J. Hematol. Oncol. 2021, 14, 108. [Google Scholar] [CrossRef]
- Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson, S.L.; Su, P.F.; et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014, 311, 1998–2006. [Google Scholar] [CrossRef]
- Duruisseaux, M.; Besse, B.; Cadranel, J.; Perol, M.; Mennecier, B.; Bigay-Game, L.; Descourt, R.; Dansin, E.; Audigier-Valette, C.; Moreau, L.; et al. Overall survival with crizotinib and next-generation ALK inhibitors in ALK-positive non-small-cell lung cancer (IFCT-1302 CLINALK): A French nationwide cohort retrospective study. Oncotarget 2017, 8, 21903–21917. [Google Scholar] [CrossRef] [Green Version]
- Melosky, B.; Blais, N.; Cheema, P.; Couture, C.; Juergens, R.; Kamel-Reid, S.; Tsao, M.S.; Wheatley-Price, P.; Xu, Z.; Ionescu, D.N. Standardizing biomarker testing for Canadian patients with advanced lung cancer. Curr. Oncol. 2018, 25, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Michels, S.; Heydt, C.; van Veggel, B.; Deschler-Baier, B.; Pardo, N.; Monkhorst, K.; Russeler, V.; Stratmann, J.; Griesinger, F.; Steinhauser, S.; et al. Genomic Profiling Identifies Outcome-Relevant Mechanisms of Innate and Acquired Resistance to Third-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy in Lung Cancer. JCO Precis. Oncol. 2019, 3. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. S4), iv192–iv237, Correction in Ann. Oncol. 2019, 30, 863–870. [Google Scholar] [CrossRef]
- Lee, D.H.; Tsao, M.S.; Kambartel, K.O.; Isobe, H.; Huang, M.S.; Barrios, C.H.; Khattak, A.; de Marinis, F.; Kothari, S.; Arunachalam, A.; et al. Molecular testing and treatment patterns for patients with advanced non-small cell lung cancer: PIvOTAL observational study. PLoS ONE 2018, 13, e0202865. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Wei, S.; Song, Y. T790M and acquired resistance of EGFR TKI: A literature review of clinical reports. J. Thorac. Dis. 2011, 3, 10–18. [Google Scholar] [CrossRef]
- Cheema, P.K.; Gomes, M.; Banerji, S.; Joubert, P.; Leighl, N.B.; Melosky, B.; Sheffield, B.S.; Stockley, T.; Ionescu, D.N. Consensus recommendations for optimizing biomarker testing to identify and treat advanced EGFR-mutated non-small-cell lung cancer. Curr. Oncol. 2020, 27, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.H.; Robinson, A.G.; Temin, S.; Baker, S.J.; Brahmer, J.R.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; et al. Therapy for Stage IV Non-Small-Cell Lung Cancer With Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. J. Clin. Oncol. 2021, 39, 1040–1091. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Schiwitza, A.; Sahovic, L.; Eul, B.; Andreas, S. Update on recent key publications in lung oncology: Picking up speed. Eur. Respir. Rev. 2021, 30. [Google Scholar] [CrossRef]
- Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef]
- Smit, E.F.; Nakagawa, K.; Nagasaka, M.; Felip, E.; Goto, Y.; Li, B.T.; Pacheco, J.M.; Murakami, H.; Barlesi, F.; Saitos, A.N.; et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-mutated metastatic non-small cell lung cancer (NSCLC): Interim results of DESTINY-Lung01. J. Clin. Oncol. 2020, 38, 9504. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Haura, E.B.; Leighl, N.B.; Mitchell, P.; Shu, C.A.; Girard, N.; Viteri, S.; Han, J.Y.; Kim, S.W.; Lee, C.K.; et al. Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study. J. Clin. Oncol. 2021, JCO2100662. [Google Scholar] [CrossRef] [PubMed]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
- Gainor, J.F.; Curigliano, G.; Kim, D.W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 2021, 22, 959–969. [Google Scholar] [CrossRef]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
- Meador, C.B.; Hata, A.N. Acquired resistance to targeted therapies in NSCLC: Updates and evolving insights. Pharmacol. Ther. 2020, 210, 107522. [Google Scholar] [CrossRef] [PubMed]
- Suda, K.; Mitsudomi, T. Emerging oncogenic fusions other than ALK, ROS1, RET, and NTRK in NSCLC and the role of fusions as resistance mechanisms to targeted therapy. Transl. Lung Cancer Res. 2020, 9, 2618–2628. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, M.; Bria, E.; Nottegar, A.; Cingarlini, S.; Simionato, F.; Calio, A.; Eccher, A.; Parolini, C.; Iannucci, A.; Gilioli, E.; et al. True 3q chromosomal amplification in squamous cell lung carcinoma by FISH and aCGH molecular analysis: Impact on targeted drugs. PLoS ONE 2012, 7, e49689. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489, 519–525. [Google Scholar] [CrossRef]
- Pacini, L.; Jenks, A.D.; Lima, N.C.; Huang, P.H. Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells 2021, 10, 1154. [Google Scholar] [CrossRef]
- Park, Y.R.; Bae, S.H.; Ji, W.; Seo, E.J.; Lee, J.C.; Kim, H.R.; Jang, S.J.; Choi, C.M. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers. J. Korean Med. Sci. 2017, 32, 1784–1791. [Google Scholar] [CrossRef]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Kalemkerian, G.P.; Narula, N.; Kennedy, E.B.; Biermann, W.A.; Donington, J.; Leighl, N.B.; Lew, M.; Pantelas, J.; Ramalingam, S.S.; Reck, M.; et al. Molecular Testing Guideline for the Selection of Patients With Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 911–919. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J. Mol. Diagn. 2018, 20, 129–159. [Google Scholar] [CrossRef] [Green Version]
- National Comprehensive Cancer Network. NCCN Guidelines for Non-Small Cell Lung Cancer (6-15-2021). Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 3 August 2021).
- Perdrizet, K.; Stockley, T.L.; Law, J.H.; Smith, A.; Zhang, T.; Fernandes, R.; Shabir, M.; Sabatini, P.J.B.; Al-Youssef, N.; Ishu, C.; et al. Integrating comprehensive genomic sequencing of non-small cell lung cancer into a public healthcare system. Cancer Treat. Res. Commun. 2022, in press. [Google Scholar] [CrossRef]
- Miller, T.E.; Yang, M.; Bajor, D.; Friedman, J.D.; Chang, R.Y.C.; Dowlati, A.; Willis, J.E.; Sadri, N. Clinical utility of reflex testing using focused next-generation sequencing for management of patients with advanced lung adenocarcinoma. J. Clin. Pathol. 2018, 71, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.A.; Balbi, K.; Ingham, A.; Arkenau, H.T.; Bennett, P. Analysis of a large cohort of non-small cell lung cancers submitted for somatic variant analysis demonstrates that targeted next-generation sequencing is fit for purpose as a molecular diagnostic assay in routine practice. J. Clin. Pathol. 2018, 71, 1001–1006. [Google Scholar] [CrossRef]
- Leighl, N.B.; Page, R.D.; Raymond, V.M.; Daniel, D.B.; Divers, S.G.; Reckamp, K.L.; Villalona-Calero, M.A.; Dix, D.; Odegaard, J.I.; Lanman, R.B.; et al. Clinical Utility of Comprehensive Cell-free DNA Analysis to Identify Genomic Biomarkers in Patients with Newly Diagnosed Metastatic Non-small Cell Lung Cancer. Clin. Cancer Res. 2019, 25, 4691–4700. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, M.L.; Alwithenani, A.; Bethune, D.; Castonguay, M.; Drucker, A.; Flowerdew, G.; French, D.; Fris, J.; Greer, W.; Henteleff, H.; et al. Molecular profiling of non-small cell lung cancer. PLoS ONE 2020, 15, e0236580. [Google Scholar] [CrossRef] [PubMed]
- Oxnard, G.R.; Lo, P.C.; Nishino, M.; Dahlberg, S.E.; Lindeman, N.I.; Butaney, M.; Jackman, D.M.; Johnson, B.E.; Janne, P.A. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J. Thorac. Oncol. 2013, 8, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauml, J.M.; Viteri, S.; Minchom, A.; Bazhenova, L.; Ou, S.; Schaffer, M.; Le Croy, N.; Riley, R.; Mahadevia, P.; Girard, N. FP07.12 Underdiagnosis of EGFR Exon 20 Insertion Mutation Variants: Estimates from NGS-based Real-World Datasets. J. Thorac. Oncol. 2021, 16, S208–S209. [Google Scholar] [CrossRef]
- Riess, J.W.; Gandara, D.R.; Frampton, G.M.; Madison, R.; Peled, N.; Bufill, J.A.; Dy, G.K.; Ou, S.I.; Stephens, P.J.; McPherson, J.D.; et al. Diverse EGFR Exon 20 Insertions and Co-Occurring Molecular Alterations Identified by Comprehensive Genomic Profiling of NSCLC. J. Thorac Oncol. 2018, 13, 1560–1568. [Google Scholar] [CrossRef] [Green Version]
- Markey, F.B.; Ruezinsky, W.; Tyagi, S.; Batish, M. Fusion FISH imaging: Single-molecule detection of gene fusion transcripts in situ. PLoS ONE 2014, 9, e93488. [Google Scholar] [CrossRef] [Green Version]
- Mino-Kenudson, M. Immunohistochemistry for predictive biomarkers in non-small cell lung cancer. Transl. Lung Cancer Res. 2017, 6, 570–587. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, G.J.; Viljoen, G.J.; Nel, L.H.; Crowther, J.R. Molecular Diagnostic PCR Handbook. 2005. 1 Online Resource (324p.). Available online: https://link.springer.com/book/10.1007/1-4020-3404-0 (accessed on 30 June 2022).
- Ying, J.; Guo, L.; Qiu, T.; Shan, L.; Ling, Y.; Liu, X.; Lu, N. Diagnostic value of a novel fully automated immunochemistry assay for detection of ALK rearrangement in primary lung adenocarcinoma. Ann. Oncol. 2013, 24, 2589–2593. [Google Scholar] [CrossRef]
- Whale, A.S.; Huggett, J.F.; Tzonev, S. Fundamentals of multiplexing with digital PCR. Biomol. Detect. Quantif. 2016, 10, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, B.S.; Ladanyi, M. Clinical cancer genomics: How soon is now? J. Pathol. 2011, 223, 318–326. [Google Scholar] [CrossRef]
- Heydt, C.; Wolwer, C.B.; Velazquez Camacho, O.; Wagener-Ryczek, S.; Pappesch, R.; Siemanowski, J.; Rehker, J.; Haller, F.; Agaimy, A.; Worm, K.; et al. Detection of gene fusions using targeted next-generation sequencing: A comparative evaluation. BMC Med. Genom. 2021, 14, 62. [Google Scholar] [CrossRef]
- Esteve-Codina, A.; Arpi, O.; Martinez-Garcia, M.; Pineda, E.; Mallo, M.; Gut, M.; Carrato, C.; Rovira, A.; Lopez, R.; Tortosa, A.; et al. A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples. PLoS ONE 2017, 12, e0170632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samorodnitsky, E.; Jewell, B.M.; Hagopian, R.; Miya, J.; Wing, M.R.; Lyon, E.; Damodaran, S.; Bhatt, D.; Reeser, J.W.; Datta, J.; et al. Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing. Hum. Mutat. 2015, 36, 903–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, J.; Tawfik, O. Detection of MET exon 14 skipping mutations in non-small cell lung cancer: Overview and community perspective. Expert Rev. Anticancer Ther. 2021, 21, 877–886. [Google Scholar] [CrossRef]
- Poirot, B.; Doucet, L.; Benhenda, S.; Champ, J.; Meignin, V.; Lehmann-Che, J. MET Exon 14 Alterations and New Resistance Mutations to Tyrosine Kinase Inhibitors: Risk of Inadequate Detection with Current Amplicon-Based NGS Panels. J. Thorac. Oncol. 2017, 12, 1582–1587. [Google Scholar] [CrossRef] [Green Version]
- Oncomine Precision Assay. Available online: https://www.thermofisher.com/ca/en/home/clinical/preclinical-companion-diagnostic-development/oncomine-oncology/oncomine-precision-assay.html (accessed on 29 June 2022).
- Oncomine Focus Assay. Available online: https://www.thermofisher.com/ca/en/home/clinical/preclinical-companion-diagnostic-development/oncomine-oncology/oncomine-focus-assay.html (accessed on 29 June 2022).
- Oncomine Lung cfDNA Assay. Available online: https://www.thermofisher.com/order/catalog/product/A31149 (accessed on 29 June 2022).
- Oncomine Comprehensive Assay v3. Available online: https://www.thermofisher.com/ca/en/home/clinical/preclinical-companion-diagnostic-development/oncomine-oncology/oncomine-cancer-research-panel-workflow/oncomine-comprehensive-assay.html (accessed on 29 June 2022).
- Oncomine Comprehensive Assay Plus. Available online: https://www.thermofisher.com/ca/en/home/clinical/preclinical-companion-diagnostic-development/oncomine-oncology/oncomine-cancer-research-panel-workflow/oncomine-comprehensive-assay-plus.html (accessed on 29 June 2022).
- QIAseq Pan-cancer Multimodal Panel. Available online: https://www.qiagen.com/us/products/next-generation-sequencing/multianalyte-sequencing-multimodal/qiaseq-pan-cancer-multimodal-panel/qiaseq-pan-cancer-multimodal-panel/ (accessed on 29 June 2022).
- AmpliSeq for Illumina Cancer Hotspot Panel v2. Available online: https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/ampliseq-cancer-hotspot-panel.html (accessed on 29 June 2022).
- AmpliSeq for Illumina Focus Panel. Available online: https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/ampliseq-focus-panel.html (accessed on 29 June 2022).
- AmpliSeq for Illumina Comprehensive Panel v3. Available online: https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/ampliseq-comprehensive-panel.html (accessed on 29 June 2022).
- AmpliSeq for Illumina Comprehensive Cancer Panel. Available online: https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/ampliseq-comprehensive-cancer-panel.html (accessed on 29 June 2022).
- TruSight Tumor 15. Available online: https://www.illumina.com/products/by-type/clinical-research-products/trusight-tumor-15-gene.html (accessed on 29 June 2022).
- TruSight Tumor 170. Available online: https://www.illumina.com/products/by-type/clinical-research-products/trusight-tumor-170.html (accessed on 29 June 2022).
- TruSight Oncology 500. Available online: https://www.illumina.com/products/by-type/clinical-research-products/trusight-oncology-500.html#:~:text=TruSight%20Oncology%20500%20is%20a,in%20various%20solid%20tumor%20types (accessed on 29 June 2022).
- FusionPlex Lung v2 Panel. Available online: https://www.dlongwood.com/en/products/fusionplex-lung-v2/ (accessed on 29 June 2022).
- FusionPlex Pan Solid Tumor v2 Panel. Available online: https://www.dlongwood.com/en/products/fusionplex-pan-solid-tumor-v2/ (accessed on 29 June 2022).
- VariantPlex Comprehensive Thyroid and Lung (CTL) Panel. Available online: https://www.dlongwood.com/en/products/archer-variantplex-comprehensive-thyroid-lung/ (accessed on 29 June 2022).
- Desmeules, P.; Boudreau, D.K.; Bastien, N.; Boulanger, M.C.; Bosse, Y.; Joubert, P.; Couture, C. Performance of an RNA-Based Next-Generation Sequencing Assay for Combined Detection of Clinically Actionable Fusions and Hotspot Mutations in NSCLC. JTO Clin. Res. Rep. 2022, 3, 100276. [Google Scholar] [CrossRef]
- Wu, Y.L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.W.; Kato, T.; et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef]
- Lim, C.; Tsao, M.S.; Le, L.W.; Shepherd, F.A.; Feld, R.; Burkes, R.L.; Liu, G.; Kamel-Reid, S.; Hwang, D.; Tanguay, J.; et al. Biomarker testing and time to treatment decision in patients with advanced nonsmall-cell lung cancer. Ann. Oncol. 2015, 26, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Sekhon, H.S.; Cutz, J.C.; Hwang, D.M.; Kamel-Reid, S.; Carter, R.F.; Santos, G.D.C.; Waddell, T.; Binnie, M.; Patel, M.; et al. Improving molecular testing and personalized medicine in non-small-cell lung cancer in Ontario. Curr. Oncol. 2017, 24, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, S.P.; Park, B.; Azzoli, C.G.; Kris, M.G.; Rusch, V.; Ladanyi, M.; Zakowski, M.F. Reflex testing of resected stage I through III lung adenocarcinomas for EGFR and KRAS mutation: Report on initial experience and clinical utility at a single center. J. Thorac. Cardiovasc. Surg. 2011, 141, 476–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheema, P.K.; Menjak, I.B.; Winterton-Perks, Z.; Raphael, S.; Cheng, S.Y.; Verma, S.; Muinuddin, A.; Freedman, R.; Toor, N.; Perera, J.; et al. Impact of Reflex EGFR/ ALK Testing on Time to Treatment of Patients With Advanced Nonsquamous Non-Small-Cell Lung Cancer. J. Oncol. Pract. 2017, 13, e130–e138. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Mack, P.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid Biopsy for Advanced Non-Small Cell Lung Cancer: A Consensus Statement from The International Association for the Study of Lung Cancer (IASLC). J. Thorac. Oncol. 2021. [Google Scholar] [CrossRef]
- Drusbosky, L.M.; Rodriguez, E.; Dawar, R.; Ikpeazu, C.V. Therapeutic strategies in RET gene rearranged non-small cell lung cancer. J. Hematol. Oncol. 2021, 14, 50. [Google Scholar] [CrossRef]
- Guo, R.; Luo, J.; Chang, J.; Rekhtman, N.; Arcila, M.; Drilon, A. MET-dependent solid tumours-molecular diagnosis and targeted therapy. Nat. Rev. Clin. Oncol. 2020, 17, 569–587. [Google Scholar] [CrossRef]
- Heist, R.S.; Garon, E.B.; Tan, D.S.-W.; Groen, J.M.; Seto, T.; Smit, E.F.; Zhou, M.R.; Yang, Y.; Chassot-Agostinho, A.; Wolf, J. Capmatinib efficacy in patients with NSCLC identified as METex14 using an NGS-based liquid biopsy assay: Results from the GEOMETRY mono-1 study. J. Clin. Oncol. 2021, 39. [Google Scholar] [CrossRef]
- Lanman, R.B.; Mortimer, S.A.; Zill, O.A.; Sebisanovic, D.; Lopez, R.; Blau, S.; Collisson, E.A.; Divers, S.G.; Hoon, D.S.; Kopetz, E.S.; et al. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tum.or DNA. PLoS ONE 2015, 10, e0140712. [Google Scholar] [CrossRef]
- Lin, J.J.; Liu, S.V.; McCoach, C.E.; Zhu, V.W.; Tan, A.C.; Yoda, S.; Peterson, J.; Do, A.; Prutisto-Chang, K.; Dagogo-Jack, I.; et al. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann. Oncol. 2020, 31, 1725–1733. [Google Scholar] [CrossRef]
- Fleischhacker, M.; Schmidt, B. Pre-analytical issues in liquid biopsy-where do we stand? J. Lab. Med. 2020, 44, 117–142. [Google Scholar] [CrossRef]
- Gerber, T.; Taschner-Mandl, S.; Saloberger-Sindhöringer, L.; Popitsch, N.; Heitzer, E.; Witt, V.; Geyeregger, R.; Hutter, C.; Schwentner, R.; Ambros, I.M.; et al. Assessment of Pre-Analytical Sample Handling Conditions for Comprehensive Liquid Biopsy Analysis. J. Mol. Diagn. 2020, 22, 1070–1086. [Google Scholar] [CrossRef] [PubMed]
- Makarem, M.; Leighl, N.B. Molecular testing for lung adenocarcinoma: Is it time to adopt a “plasma-first” approach? Cancer 2020, 126, 3176–3180. [Google Scholar] [CrossRef] [PubMed]
- Magios, N.; Bozorgmehr, F.; Volckmar, A.L.; Kazdal, D.; Kirchner, M.; Herth, F.J.; Heussel, C.P.; Eichhorn, F.; Meister, M.; Muley, T.; et al. Real-world implementation of sequential targeted therapies for EGFR-mutated lung cancer. Ther. Adv. Med. Oncol. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Liao, B.C.; Griesing, S.; Yang, J.C. Second-line treatment of EGFR T790M-negative non-small cell lung cancer patients. Ther. Adv. Med. Oncol. 2019, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Malone, E.R.; Saleh, R.R.; Yu, C.; Ahmed, L.; Pugh, T.; Torchia, J.; Bartlett, J.; Virtanen, C.; Hotte, S.J.; Hilton, J.; et al. OCTANE (Ontario-wide Cancer Targeted Nucleic Acid Evaluation): A platform for intraprovincial, national, and international clinical data-sharing. Curr. Oncol. 2019, 26, e618–e623. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, R.; Bartley, A.N.; Bridge, J.A.; Jennings, L.J.; Kamel-Reid, S.; Kim, A.; Lazar, A.J.; Lindeman, N.I.; Moncur, J.; Rai, A.J.; et al. A Window Into Clinical Next-Generation Sequencing–Based Oncology Testing Practices. Arch. Pathol. Lab. Med. 2017, 141, 1679–1685. [Google Scholar] [CrossRef] [Green Version]
- Merker, J.D.; Devereaux, K.; Iafrate, A.J.; Kamel-Reid, S.; Kim, A.S.; Moncur, J.T.; Montgomery, S.B.; Nagarajan, R.; Portier, B.P.; Routbort, M.J.; et al. Proficiency Testing of Standardized Samples Shows Very High Interlaboratory Agreement for Clinical Next-Generation Sequencing–Based Oncology Assays. Arch. Pathol. Lab. Med. 2019, 143, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Cree, I.A.; Deans, Z.; Ligtenberg, M.J.; Normanno, N.; Edsjö, A.; Rouleau, E.; Solé, F.; Thunnissen, E.; Timens, W.; Schuuring, E.; et al. Guidance for laboratories performing molecular pathology for cancer patients. J. Clin. Pathol. 2014, 67, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindeman, N.I.; Cagle, P.T.; Beasley, M.B.; Chitale, D.A.; Dacic, S.; Giaccone, G.; Jenkins, R.B.; Kwiatkowski, D.J.; Saldivar, J.S.; Squire, J.; et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: Guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Mol. Diagn. 2013, 15, 415–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, D.A.; Baluchova, K.; Russomando, G.; Ahmad-Nejad, P.; Mamotte, C.; Rousseau, F.; van Schaik, R.H.N.; Marriott, K.; Maekawa, M.; Chan, K.C.A. Toward harmonization of clinical molecular diagnostic reports: Findings of an international survey. Clin. Chem Lab. Med. 2018, 57, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
I | New Targetable Alterations as Part of a Comprehensive Biomarker Panel - All targetable alterations should be tested as part of a comprehensive panel that includes the standard-of-care biomarkers as summarized by current Canadian consensus recommendations as well as international guidelines, including the National Comprehensive Cancer Network, College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. |
II | Selection of Molecular Tests to Detect Clinically Relevant Alterations - Molecular tests used should be able to detect all mutation types relevant for targetable alterations, including gene fusions, copy number variants, single nucleotide variants, and small insertion/deletions. |
III | Timing of Comprehensive Biomarker Testing - Comprehensive biomarker testing, including new targetable alterations, is recommended for all patients diagnosed with non-squamous NSCLC and should be initiated by the pathologist at the time of initial diagnosis as a reflex test. Upon analytic failure due to insufficient nucleic acid content, other techniques such as single gene assays should be attempted if no other sample is available. - Comprehensive biomarker testing, including new targetable alterations, should also be considered beyond adenocarcinoma for patients that may have an enhanced incidence of driver mutations, and when treatment can be impacted by the results of testing. - Comprehensive biomarker testing for all targetable alterations should be performed at the development of resistance to targeted therapy in patients with advanced NSCLC. |
IV | Liquid Biopsy as a Complementary or Alternative Approach for Molecular Profiling - Liquid biopsy * can be considered as an alternative or complementary approach to tissue genomic testing in patients with advanced NSCLC. - Liquid biopsy is preferred over tissue biopsy as a first step at progression after a targeted therapy for identification of mechanisms of acquired resistance to targeted therapies. - A targeted alteration detected at liquid biopsy can be considered actionable, but a negative result should be confirmed with a tumor tissue biopsy. |
V | Implementation of Molecular Tumor Boards - Molecular tumor boards ** should be established provincially and within institutions to aid in interpretation of results and selection of appropriate therapy. |
Test | Variant Detection | Limitations |
---|---|---|
Fluorescence in Situ Hybridization (FISH) [40] | Translocations, large deletions, and duplications/amplifications | -May not be informative regarding specific fusion partners |
Immunohistochemistry (IHC) [41] | Protein expression | -May require additional confirmatory molecular/cytogenetic testing (e.g., ROS1) |
Polymerase Chain Reaction (PCR) Methodologies | ||
Endpoint PCR [42] | SNVs, small insertions/deletions, splice variants (at exon boundaries) | -Limited ability to detect translocations and large deletions |
Reverse Transcription PCR (RT-PCR) [43] | SNVs, small insertions/deletions, splice variants, and fusions | -Inability to detect fusions with novel partners -Usually limited to known variants and established break points |
Droplet Digital PCR [44] | SNVs, small insertions/deletions, splice variants (at exon boundaries) | -Limited ability to detect translocations and large deletions -Potential for multiplex detection of several biomarkers is limited |
Next-Generation Sequencing (NGS) Methodologies [45] | - Requires NGS platform equipment and skill with bioinformatics tools -Variants observed may be of uncertain clinical significance | |
DNA-Based [46] | Typically used to detect SNVs, CNVs, small insertions/deletions; can be customized to detect gene fusions | -Addition of gene fusion coverage may impair overall assay sensitivity and increase cost |
RNA-based [47] | Typically used to detect fusions but can also be used to detect SNVs, CNVs, small insertions/deletions | -Theoretically may be impacted by quality of RNA especially from older FFPE material |
Amplicon-Based Library [48] | SNVs, CNVs, small insertions/deletions, fusions, and splice variants | -Panel will only detect targets included in the amplified regions, so sensitivity may be reduced for some variants |
Hybrid Capture-Based Library [48] | SNVs, CNVs, small insertions/deletions, fusions, and splice variants | -More time-intensive than amplicon-based NGS -Requires larger amounts of input DNA compared to amplicon-based NGS |
Variant Type | Tissue Biopsy Specimens | Liquid Biopsy Specimens | |||||
---|---|---|---|---|---|---|---|
IHC | FISH 1 | PCR 2 | NGS 3 | PCR 2 | NGS 3 | ||
Established Targets | EGFR mutations (sensitizing and T790M) | — | — | •• | •• | •• 4 | •• |
ALK fusions 5 | •• | •• | • | •• | • | •• | |
ROS1 fusions | S | •• | • | •• | • | •• | |
NTRK fusions | S | •• | • | •• | — | • | |
BRAF mutations | • 6 | — | •• | •• | •• | •• | |
Updated Target Inclusion | EGFR exon 20 insertions | — | — | • | •• | • | •• |
EGFR resistance mutations (excluding T790M) | — | — | •• | •• | •• | •• | |
MET exon 14 skipping mutations | — | — | •• | •• | • | • | |
KRAS G12C mutation | — | — | •• | •• | •• | •• | |
HER2 mutations | — | — | •• | •• | • | •• | |
RET fusions | — | •• | • | •• | • | • | |
MET amplification | — 7 | •• | — | •• | — | • | |
ALK mutations | — | — | •• | •• | • | •• | |
ROS1 mutations | — | — | •• | •• | • | •• | |
BRAF fusions | — | •• | — | •• | — | • | |
MET fusions | — | •• | — | •• | — | • | |
NRG1 fusions | — 7 | •• | — | •• | — | • |
Assay Name | Nucleic Acid Input | Target Enrichment Method | Platform | Ability to Detect New Targetable Alterations | Number of Genes/Targets | Variant Type Detection |
---|---|---|---|---|---|---|
Oncomine Precision Assay [52] | DNA, RNA, or cfDNA | amplicon-based | Ion Torrent Genexus Integrated Sequencer | yes | 50 genes; 45 hotspot, 14 CNV genes, 16 intergenetic fusions, 3 intragenetic fusions | SNVs, indels, CNVs, fusions |
Oncomine Focus Assay [53] | DNA, RNA | amplicon-based | Ion GeneStudio S5, S5 Plus, or S5 Prime System | yes, except NRG1 fusion | 52 genes; 35 hotspot regions, 19 copy number genes, 23 fusions | SNVs, indels, CNVs, fusions |
Oncomine Lung cfDNA Assay [54] | cfDNA | amplicon-based | Ion GeneStudio S5 System, Ion PGM System, Ion S5 XL System | yes, except fusions and amplifications | 11 genes; >150 hotspot regions | SNVs, indels |
Oncomine Comprehensive Assay v3 [55] | DNA, RNA | amplicon-based | Ion Torrent Genexus System, Ion GeneStudio S5 System | yes | 161 genes; 87 hotspot regions, 43 focal CNV gains, 48 full CDS for del mutations, 51 fusion drivers | SNVs, indels, CNVs, fusions |
Oncomine Comprehensive Assay Plus [56] | DNA, RNA | amplicon-based | Ion GeneStudio S5 Prime System, Ion GeneStudio S5 Plus System | yes | >500 genes; 165 hotspot regions, 333 genes with focal CNV gains/loss, 227 full CDS, 49 fusion driver genes | SNVs, indels, CNVs, fusions, TMB, MSI |
QIAseq Pan-Cancer Multimodal Panel [57] | DNA, RNA | amplicon-based (simultaneous DNA, RNA enrichment) | MiniSeq, MiSeq, NextSeq 500/550, HiSeq 2500, HiSeq 3000/4000, and NovaSeq 6000 | yes | 523 genes; panel size of 1.44 Mb, 56 fusions, 26 MSI loci | SNVs, indels, CNVs, fusions, gene expression, TMB, MSI |
AmpliSeq for Illumina Cancer Hotspot Panel v2 [58] | DNA | amplicon-based | iSeq 100, MiniSeq, MiSeq | can only detect hotspot SNVs and indels in EGFR, KRAS, ERBB2, ALK genes | Hotspot regions across 50 genes | SNVs, indels |
AmpliSeq for Illumina Focus Panel [59] | DNA, RNA | amplicon-based | iSeq 100, MiniSeq, MiSeq | yes, except NRG1 fusion | Biomarkers across 52 genes | SNVs, indels, CNVs, fusions |
AmpliSeq for Illumina Comprehensive Panel v3 [60] | DNA, RNA | amplicon-based | NextSeq 1000, NextSeq 2000, NextSeq 550 | yes | 161 genes; 86 hotspot regions, 48 full-length genes, copy number genes, and inter- and intragenic gene fusions | SNVs, indels, CNVs, fusions |
AmpliSeq for Illumina Comprehensive Cancer Panel [61] | DNA | amplicon-based | NextSeq 1000, NextSeq 2000, NextSeq 550 | yes, except fusions (i.e., RET, BRAF, MET, NRG1) | Full exon coverage of 409 genes | SNVs, indels, CNVs |
TruSight Tumor 15 [62] | DNA | amplicon-based | MiniSeq, MiSeq | can only detect hotspot SNVs and indels in EGFR, ERBB2, KRAS, MET genes | Hotspot regions/biomarkers across 15 genes | SNVs, indels |
TruSight Tumor 170 [63] | DNA, RNA | hybrid-based | HiSeq 2500, NextSeq 2000, NextSeq 500, NextSeq 550 | yes | Full coding sequences of 170 genes; SNVs and InDels in 151 genes, amplifications in 59 genes, and fusions plus splice variants in 55 genes | SNVs, indels, CNVs, fusions |
TruSight Oncology 500 [64] | DNA, RNA | hybrid-based | NextSeq 500, NextSeq 550, NovaSeq 6000 | yes | 523 targeted biomarkers aligned with key guidelines and clinical trials; 523 SNVs and indels, 60 focal amp, 55 fusions | SNVs, indels, CNVs, fusions, TMB, MSI |
FusionPlex Lung v2 Panel * [65] | RNA | Anchored Multiplex PCR | Illumina® and Ion Torrent™ | yes, except MET amplification | 17 gene targets; 11 SNV/indels, 16 fusions/splicing/exon-skipping | SNVs, indels, fusions |
FusionPlex Pan Solid Tumor v2 Panel [66] | RNA | Anchored Multiplex PCR | Illumina® and Ion Torrent™ | can only detect METex14 skipping, SNVs in KRAS, ERBB2, and BRAF, MET and NRG1 fusions | 137 gene targets; 17 SNV/indels, 137 fusions/splicing/exon skipping | SNVs, indels, fusions |
VariantPlex Comprehensive Thyroid and Lung (CTL) Panel [67] | DNA | Anchored Multiplex PCR | Illumina® | yes, except fusions (i.e., RET, BRAF, MET, NRG1) | 31 gene targets; 29 SNV/indels, 20 CNVs | SNVs, indels, CNVs |
VariantPlex Solid Tumor Panel | DNA | Anchored Multiplex PCR | Illumina® | yes, except fusions (i.e., RET, BRAF, MET, NRG1) | 67 gene targets; 62 SNVs/indels, 44 CNVs | SNVs, indels, CNVs |
VI | Laboratory Accreditation - Laboratories should participate in external quality control programs, as well as monitoring the rates of positivity and failure for each biomarker in the comprehensive panel at the frequency required by their laboratory accreditation programs. |
VII | Key Elements on a Clinical Report - Molecular reports should have a clear, top line summary of the key, clinically relevant findings at the beginning of the report. - Tumor cellularity and assessment of the quality and quantity of DNA and/or RNA should be performed and documented prior to biomarker testing. - The molecular report should state which specimen and block were tested. In the case of test failure, an attempt should be made first by the pathologist and then by the clinical team to identify another specimen for testing. - Molecular reports should contain a description of the methodology used, and limitations of assays used to detect targetable alterations should be clearly communicated. |
VIII | Variant Classification System - All detected genetic alterations should be classified using a standardized tier system such as the system recommended by AMP/ASCO/CAP for the interpretation and reporting of sequence variants in cancer: tier I, variants of strong clinical significance; tier II, variants of potential clinical significance; tier III, variants of unknown significance; and tier IV, variants deemed benign or likely benign. Tiers I to III should be included in the report, with the tier of each alteration noted. Tier I and II alterations should be included in the top line summary of clinically relevant findings. Tier IV alterations should not be listed in the report. It is up to the discretion of the reporting facility whether to pool tier I and II variants in their reports as tier I/II. - It is recommended that laboratories reevaluate previous reports for changes in actionability of reported alterations at the request of the treating oncologist. - When an alteration changes in clinical significance and actionability, on request of the clinician, the laboratory should issue an updated report with the appropriate variant classification. |
XI | Variant Interpretation in the Context of Clinical Significance - As with standard-of-care biomarker testing, it is strongly recommended that pathologists participate in biomarker interpretation training and validation for new targetable alterations in NSCLC. - All variants in the report should be described at the cDNA and protein level, using Human Genome Variation Society nomenclature, and in relation to a reference transcript ID. In addition, nomenclature associated with treatment indications should be included, for example, EGFR T790M as well as NM_005228.4(EGFR):c.2369C > T(p.Thr790Met), if agreed upon by the multidisciplinary clinical team. - Variant annotation should include a description of the protein, the variant type, exon location if clinically relevant, and a brief summary of the clinical importance of the variant including expected responsiveness/resistance to therapies. - Reports may refer to a resource for finding information on clinical trials for which a patient may be eligible, rather than including a list of clinical trials. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionescu, D.N.; Stockley, T.L.; Banerji, S.; Couture, C.; Mather, C.A.; Xu, Z.; Blais, N.; Cheema, P.K.; Chu, Q.S.-C.; Melosky, B.; et al. Consensus Recommendations to Optimize Testing for New Targetable Alterations in Non-Small Cell Lung Cancer. Curr. Oncol. 2022, 29, 4981-4997. https://doi.org/10.3390/curroncol29070396
Ionescu DN, Stockley TL, Banerji S, Couture C, Mather CA, Xu Z, Blais N, Cheema PK, Chu QS-C, Melosky B, et al. Consensus Recommendations to Optimize Testing for New Targetable Alterations in Non-Small Cell Lung Cancer. Current Oncology. 2022; 29(7):4981-4997. https://doi.org/10.3390/curroncol29070396
Chicago/Turabian StyleIonescu, Diana N., Tracy L. Stockley, Shantanu Banerji, Christian Couture, Cheryl A. Mather, Zhaolin Xu, Normand Blais, Parneet K. Cheema, Quincy S.-C. Chu, Barbara Melosky, and et al. 2022. "Consensus Recommendations to Optimize Testing for New Targetable Alterations in Non-Small Cell Lung Cancer" Current Oncology 29, no. 7: 4981-4997. https://doi.org/10.3390/curroncol29070396
APA StyleIonescu, D. N., Stockley, T. L., Banerji, S., Couture, C., Mather, C. A., Xu, Z., Blais, N., Cheema, P. K., Chu, Q. S. -C., Melosky, B., & Leighl, N. B. (2022). Consensus Recommendations to Optimize Testing for New Targetable Alterations in Non-Small Cell Lung Cancer. Current Oncology, 29(7), 4981-4997. https://doi.org/10.3390/curroncol29070396