Routine Screening for Central and Primary Adrenal Insufficiency during Immune-Checkpoint Inhibitor Therapy: An Endocrinology Perspective for Oncologists
Abstract
:1. Introduction
2. Methods
2.1. Cortisol Measurement
2.2. Immune-Checkpoint-Inhibitor-Associated HPA-Axis Dysfunction
3. Results
3.1. Patient Cohort
3.2. Cortisol Testing
3.3. Immune-Checkpoint-Inhibitor-Associated HPA-Axis Pathology
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nghiem, P.T.; Bhatia, S.; Lipson, E.J.; Kudchadkar, R.R.; Miller, N.J.; Annamalai, L.; Berry, S.; Chartash, E.K.; Daud, A.; Fling, S.P.; et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvillla, J.; et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Eggermont, A.M.; Chiarion-Silieni, V.; Grob, J.J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; et al. Prolonged Survival in Stage III Melanoma with Ipilimumab Adjuvant Therapy. N. Engl. J. Med. 2016, 375, 1845–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulovic, S.; Demey, W.; Ullen, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Brahmer, J.; Rechamp, K.L.; Baas, P.; Crino, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schandendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Atkinson, V.; Lo, S.; Sandhu, S.; Guminski, A.D.; Brown, M.P.; Wilmott, J.S.; Edwards, J.; Gonzalez, M.; Scolyer, R.A.; et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018, 19, 672–681. [Google Scholar] [CrossRef]
- Esfahani, K.; Meti, N.; Miller, W.H.; Hudson, M. Adverse events associated with immune checkpoint inhibitor treatment for cancer. CMAJ 2019, 191, E40–E46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaud-Coffin, P.; Maillet, D.; Gan, H.K.; Stelmes, J.J.; You, B.; Dalle, S.; Peron, J. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. Int. J. Cancer 2019, 145, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Charmandari, E.; Nicolaides, N.C.; Chrousos, G.P. Adrenal insufficiency. Lancet 2014, 383, 2152–2167. [Google Scholar] [CrossRef]
- Oelkers, W. Adrenal Insufficiency. N. Engl. J. Med. 1996, 335, 1206–1212. [Google Scholar] [CrossRef]
- Bornstein, S.R.; Allolio, B.; Arlt, W.; Barthel, A.; Don-Wauchope, A.; Hammer, G.D.; Husebye, E.S.; Merke, D.P.; Murad, M.H.; Stratakis, C.A.; et al. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 364–389. [Google Scholar] [CrossRef] [Green Version]
- Faje, A.; Reynolds, K.; Zubiri, L.; Lawrence, D.; Cohen, J.V.; Sullivan, R.J.; Nachtigall, L.; Trtos, N. Hypophysitis secondary to nivolumab and pembrolizumab is a clinical entity distinct from ipilimumab-associated hypophysitis. Eur. J. Endocrinol. 2019, 181, 211–219. [Google Scholar] [CrossRef]
- Aventis, S. Product Monograph: LIBTAYO (Cemiplimab). 2019. Available online: https://pdf.hres.ca/dpd_pm/00050602.PDF (accessed on 6 June 2022).
- Merck. Product Monograph: KEYTRUDA (Pembrolizumab). 2017. Available online: https://pdf.hres.ca/dpd_pm/00040232.PDF (accessed on 6 June 2022).
- Pfizer. Product Monograph: BAVENCIO (Avelumab). 2018. Available online: https://www.pfizer.ca/sites/default/files/201805/BAVENCIO_PM_208742_4May2018_E.PDF (accessed on 6 June 2022).
- Squibb, B.-M. Product Mongraph: YERVOY (Ipilimumab). 2017. Available online: https://pdf.hres.ca/dpd_pm/00042562.PDF (accessed on 6 June 2022).
- Squibb, B.M. Product Monograph: OPDIVO (Nivolumab). 2017. Available online: https://pdf.hres.ca/dpd_pm/00042102.PDF (accessed on 6 June 2022).
- Zeneca, A. Highlights of Prescribing Information: INFINZI (Durvalumab). 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761069s000lbl.pdf (accessed on 6 June 2022).
- Higham, C.E.; Olsson-Brown, A.; Carroll, P.; Cooksley, T.; Larkinn, J.; Lorigan, P.; Morganstein, D.; Trainer, P.J. Society for endocrinology endocrine emergency guidance: Acute management of the endocrine complications of checkpoint inhibitor therapy. Endocr. Connect. 2018, 7, G1–G7. [Google Scholar] [CrossRef]
- Cole, P.; Morrison, A.S. Basic ISSUES in Population Screening for Cancer. J. Natl. Cancer Inst. 1980, 64, 1263–1272. [Google Scholar]
- Veldhuis, J.D.I.; Iranmanesh, A.; Johnson, M.L.; Lizarralde, G. Amplitude, but not Frequency, Modulation of Adrenocorticotropic Secretory BUrsts Give Rise to the Nyctohemeral Rhythm of the Corticotropic Axis in Man. J. Clin. Endocrinol. Metab. 1990, 71, 452–463. [Google Scholar] [CrossRef]
- Grispoon, S.K.B.; Biller, B.M.K. Laboratory Assessment of Adrenal Insufficiency. J. Clin. Endocrinol. Metab. 1994, 79, 923–931. [Google Scholar]
- Hagg, E.; Asplund, K.; Lithner, F. Value of Basal Plasma Cortisol Assays in the Assessment of Pituitary-Adrenal Insufficiency. Clin. Endocrinol. 1987, 26, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Guidi, G.C.; Simundic, A.M.; Salvagno, G.L.; Aquino, J.L.; Lima-Oliviera, G. To avoid fasting time, more risk than benefits. Clin. Chem. Lab. Med. 2015, 53, e261–e264. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Sznol, M.; Postow, M.A.; Davies, M.J.; Pavlick, A.C.; Plimack, E.R.; Shaheen, M.; Veloski, C.; Robert, C. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat. Rev. 2017, 58, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Corsello, S.M.; Barnabei, A.; Marchetti, P.; De Vecchis, L.; Salvator, R.; Torino, F. Endocrine side effects induced by immune checkpoint inhibitors. J. Clin. Endocrinol. Metab. 2013, 98, 1361–1375. [Google Scholar] [CrossRef] [Green Version]
- Di Dalmazi, G.; Ippolito, S.; Lup, I.; Caturegli, P. Hypophysitis induced by immune checkpoint inhibitors: A 10-year assessment. Expert. Rev. Endocrinol. Metab. 2019, 14, 381–398. [Google Scholar] [CrossRef]
- Guerrero, E.J.; Johnson, D.B.; Bachelot, A.; Lebrun-Vignes, B.; Moslehi, J.J.; Salem, J.-E. Immune checkpoing inhibotors assocaited hypophysitis—WHO VigiVase report analysis. Eur. J. Cancer 2019, 113, 10–13. [Google Scholar] [CrossRef]
- Joshi, M.N.; Whiteclaw, B.C.; Palomar, M.T.P.; Wu, Y.; Carroll, V.P. Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction: Clinical review. Clin. Endocrinol. 2016, 85, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Konda, B.; Nabhan, F.; Shah, M.H. Endocrine dysfunction following immune checkpoint inhibitor therapy. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 337–347. [Google Scholar] [CrossRef]
- Albarel, F.; Castinetti, F.; Brue, T. Management of endocrine disease: Immune check point inhibitors-induced hypophysitis. Eur. J. Endocrinol. 2019, 181, R107–R118. [Google Scholar] [CrossRef] [Green Version]
- Scott, E.S.; Long, G.V.; Guminski, A.; Clifton-Bligh, R.J.; Menzies, A.M.; Tsang, V.H. The spectrum, incidence, kinetics and management of endocrinopathies with immune checkpoint inhibitors for metastatic melanoma. Eur. J. Endocrinol. 2018, 178, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kanie, K.; Iguchi, G.; Bando, H.; Urai, S.; Shichi, H.; Fujita, Y.; Matsumoto, R.; Suda, K.; Yamamoto, M.; Fukuoka, H.; et al. Mechanistic insights into immune checkpoint inhibitor-related hypophysitis: A form of paraneoplastic syndrome. Cancer Immunol. Immunother. 2021, 70, 3669–3677. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Pasquali, D.; Johannsson, G. Primary Adrenal Insufficiency: Managing Mineralocorticoid Replacement Therapy. J. Clin. Endocrinol. Metab. 2018, 103, 376–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faje, A.T.; Sullivann, R.; Lawrence, D.; Tritos, A.; Fadden, R.; Klibanski, A.; Nachtigall, L. Ipilimumab-induced hypophysitis: A detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J. Clin. Endocrinol. Metab. 2014, 99, 4078–4085. [Google Scholar] [CrossRef] [Green Version]
- Yuen, K.C.J.; Moloney, K.J.; Mercado, J.U.; Rostad, S.; McCullough, B.J.; Litvack, Z.N.; Delashaw, J.B.; Mayberg, M.R. A case series of atypical features of patients with biopsy-proven isolated IgG4-related hypophysitis and normal serum IgG4 levels. Pituitary 2018, 21, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Barroso-Sousa, R.; Ott, P.A.; Hodi, S.; Kaiser, U.B.; Tolaney, S.M.; Min, L. Endocrine dysfunction induced by immune checkpoint inhibitors: Practical recommendations for diagnosis and clinical management. Cancer 2018, 124, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Briet, C.; Albarel, F.; Kuhn, E.; Merlen, E.; Chanson, P.; Cortet, C. Expert opinion on pituitary complications in immunotherapy. Ann. Endocrinol. 2018, 79, 562–568. [Google Scholar] [CrossRef]
- Castinetti, F.; Albarel, F.; Archambeaud, F.; Bertherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; et al. Endocrine side-effects of new anticancer therapies: Overall monitoring and conclusions. Ann. Endocrinol. 2018, 79, 591–595. [Google Scholar] [CrossRef]
- Castinetti, F.; Albarel, F.; Archambeaud, F.; Betherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; et al. French Endocrine Society Guidance on endocrine side effects of immunotherapy. Endocr. Relat. Cancer 2019, 26, G1–G18. [Google Scholar] [CrossRef] [Green Version]
- Champiat, S.; Lambotte, O.; Barreau, E.; Belkhir, R.; Berdelou, A.; Carbonnel, F.; Cauquil, C.; Chanson, P.; Collins, M.; Durrbach, A.; et al. Management of immune checkpoint blockade dysimmune toxicities: A collaborative position paper. Ann. Oncol. 2016, 27, 559–574. [Google Scholar] [CrossRef]
- Illouz, F.; Briet, C.; Cloix, L.; Le Corre, Y.; Baize, N.; Urban, T.; Martin, L.; Rodien, P. Endocrine toxicity of immune checkpoint inhibitors: Essential crosstalk between endocrinologists and oncologists. Cancer Med. 2017, 6, 1923–1929. [Google Scholar] [CrossRef] [PubMed]
- Kotwal, A. Hypophysitis from immune checkpoint inhibitors: Challenges in diagnosis and management. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Shah, K.; Waguespack, S.G.; Hu, M.I.; Habra, M.A.; Cabanillas, M.E.; Busaidy, N.L.; Bassett, R.; Zhou, S.; Iyer, P.C.; et al. Immune checkpoint inhibitor related hypophysitis: Diagnostic criteria and recovery patterns. Endocr. Relat. Cancer 2021, 28, 419–431. [Google Scholar] [CrossRef] [PubMed]
Number | Percent | |
---|---|---|
Gender (n = 265) | ||
Male | 178 | 67.42 |
Female | 86 | 32.58 |
Age (years, median) | 65.5 | |
Disease site (n = 265) | ||
Melanoma | 124 | 46.8 |
Thoracic | 66 | 24.9 |
Genitourinary | 41 | 15.5 |
Gastrointestinal | 11 | 4.2 |
Head & Neck | 9 | 3.4 |
Other | 14 | 5.3 |
Treatment type (n = 265) | ||
PD-1/PDL-1 monotherapy | 168 | 63.4 |
CTLA-4 monotherapy | 49 | 18.5 |
CTLA-4 combination with PD-1/PDL-1 | 48 | 18.1 |
Intent of Treatment (n = 265) | ||
Palliative | 256 | 96.59 |
Adjuvant | 9 | 3.41 |
Clinical Trial (n = 265) | ||
Yes | 83 | 31.42 |
No | 182 | 68.67 |
Etiology | Cortisol ≤ 140 nmol/L (≤5 mcg/dL) n (%) | Method of Diagnosis |
---|---|---|
Concurrent systemic glucocorticoid use | 36 (47.4) | Medical record included active prescription for systemic glucocorticoid at time of blood draw |
Hypophysitis | 22 (28.9) | Patient went on to require glucocorticoid replacement and Endocrinology referral |
Pre-existing HPA dysfunction | 2 (2.6) | Past medical history included pre-existing etiology of HPA dysfunction and patient was on glucocorticoid therapy prior to ICI administration |
Data uninterpretable | 16 (21.1) | No record of concurrent glucocorticoid use; patient did not go on to require glucocorticoid replacement |
Cortisol Screening (Yes/No) | Treatment Regimen | Primary Malignancy Site | Time of Diagnosis (Days) | Diagnosis after Treatment DC (Yes/No) | Diagnosed in Outpatient Setting (Yes/No) | Hormones Affected | |
---|---|---|---|---|---|---|---|
1 | Yes | CTLA4 + PD1 Concurrent | Melanoma | 110 | Yes | Yes | ACTH |
2 | Yes | CTLA4 + PD1 Concurrent | Melanoma | 104 | Yes | Yes | ACTH, TSH, LH, FSH |
3 | Yes | CTLA4 + PD1 Concurrent | Melanoma | 88 | Yes | Yes | ACTH, TSH |
4 | Yes | CTLA4, PD1 Sequential | Melanoma | 41 | No | Yes | ACTH, LH, FSH, Prl |
5 | Yes | CTLA4, PD1 Sequential | Melanoma | 371 | Yes | Yes | ACTH, TSH |
6 | Yes | CTLA4 | Melanoma | 106 | Yes | Yes | ACTH, TSH, LH, FSH, Prl |
7 | Yes | CTLA4 | GU | 161 | Yes | Yes | ACTH, TSH |
8 | Yes | PD1 | Melanoma | 207 | Yes | Yes | ACTH, Prl |
9 | No | CTLA4, PD1 Sequential | Melanoma | 74 | No | Yes | ACTH |
10 | No | CTLA4, PD1 Sequential | Melanoma | 70 | No | Yes | ACTH |
11 | No | CTLA4, PD1 Sequential | Melanoma | 205 | No | No | ACTH |
12 | No | CTLA4, PD1 Sequential | Melanoma | 192 | No | No | ACTH |
13 | No | CTLA4 | Melanoma | 171 | Yes | No | ACTH, Prl |
14 | No | CTLA4 | Melanoma | 56 | No | Yes | ACTH, LH, FSH, Prl |
15 | No | CTLA4 | Melanoma | 45 | No | Yes | ACTH |
16 | No | CTLA4 | Melanoma | 34 | No | No | ACTH, LH, FSH |
17 | No | CTLA4 | GU | 99 | Yes | No | ACTH, TSH |
18 | No | PD1 | GU | 412 | No | No | ACTH, TSH, LH, FSH, Prl |
19 | No | PD1 | GU | 287 | No | Yes | ACTH |
20 | No | PD1 | H&N | 154 | No | Yes | ACTH |
21 | No | PD1 | GI | 93 | Yes | Yes | ACTH |
22 | No | PD1 | Melanoma | 283 | No | Yes | ACTH, Prl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Druce, I.; Tawagi, K.; Shaw, J.L.V.; Ibrahim, A.; Lochnan, H.; Ong, M. Routine Screening for Central and Primary Adrenal Insufficiency during Immune-Checkpoint Inhibitor Therapy: An Endocrinology Perspective for Oncologists. Curr. Oncol. 2022, 29, 4665-4677. https://doi.org/10.3390/curroncol29070370
Druce I, Tawagi K, Shaw JLV, Ibrahim A, Lochnan H, Ong M. Routine Screening for Central and Primary Adrenal Insufficiency during Immune-Checkpoint Inhibitor Therapy: An Endocrinology Perspective for Oncologists. Current Oncology. 2022; 29(7):4665-4677. https://doi.org/10.3390/curroncol29070370
Chicago/Turabian StyleDruce, Irena, Karine Tawagi, Julie L. V. Shaw, Andrea Ibrahim, Heather Lochnan, and Michael Ong. 2022. "Routine Screening for Central and Primary Adrenal Insufficiency during Immune-Checkpoint Inhibitor Therapy: An Endocrinology Perspective for Oncologists" Current Oncology 29, no. 7: 4665-4677. https://doi.org/10.3390/curroncol29070370
APA StyleDruce, I., Tawagi, K., Shaw, J. L. V., Ibrahim, A., Lochnan, H., & Ong, M. (2022). Routine Screening for Central and Primary Adrenal Insufficiency during Immune-Checkpoint Inhibitor Therapy: An Endocrinology Perspective for Oncologists. Current Oncology, 29(7), 4665-4677. https://doi.org/10.3390/curroncol29070370