1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Comprehensive Cancer Network. Non-Small Cell Lung Cancer. Version 3.2022. 16 March 2022. Available online: https://www.nccn.org/login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 13 May 2022).
- Kalemkerian, G.P.; Narula, N.; Kennedy, E.B.; Biermann, W.A.; Donington, J.; Leighl, N.B.; Lew, M.; Pantelas, J.; Ramalingam, S.S.; Reck, M.; et al. Molecular Testing Guideline for the Selection of Patients with Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2018, 142, 321–346. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. 4), iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- Sukhai, M.A.; Craddock, K.J.; Thomas, M.; Hansen, A.R.; Zhang, T.; Siu, L.; Bedard, P.; Stockley, T.L.; Kamel-Reid, S. A classification system for clinical relevance of somatic variants identified in molecular profiling of cancer. Genet. Med. 2016, 18, 128–136. [Google Scholar] [CrossRef]
- Fiset, P.O.; Labbé, C.; Young, K.; Craddock, K.J.; Smith, A.C.; Tanguay, J.; Pintilie, M.; Wang, R.; Torlakovic, E.; Cheung, C.; et al. Anaplastic lymphoma kinase 5A4 immunohistochemistry as a diagnostic assay in lung cancer: A Canadian reference testing center’s results in population-based reflex testing. Cancer 2019, 125, 4043–4051. [Google Scholar] [CrossRef]
- Hwang, D.M.; Albaqer, T.; Santiago, R.C.; Weiss, J.; Tanguay, J.; Cabanero, M.; Leung, Y.; Pal, P.; Khan, Z.; Lau, S.C.M.; et al. Prevalence and Heterogeneity of PD-L1 Expression by 22C3 Assay in Routine Population-Based and Reflexive Clinical Testing in Lung Cancer. J. Thorac. Oncol. 2021, 16, 1490–1500. [Google Scholar] [CrossRef]
- Cheung, C.C.; Smith, A.C.; Albadine, R.; Bigras, G.; Bojarski, A.; Couture, C.; Cutz, J.C.; Huang, W.Y.; Ionescu, D.; Itani, D.; et al. Canadian ROS proto-oncogene 1 study (CROS) for multi-institutional implementation of ROS1 testing in non-small cell lung cancer. Lung Cancer 2021, 160, 127–135. [Google Scholar] [CrossRef]
- Gauthier, M.; Law, J.; Le, L.; Li, J.J.N.; Zahir, S.; Nirmalakumar, S.; Sung, M.; Pettengell, C.; Aviv, S.; Chu, R.; et al. Automating Access to Real-World Evidence. J. Thorac. Oncol. 2022, 3, 100340. [Google Scholar] [CrossRef]
- Yuan, M.; Huang, L.L.; Chen, J.H.; Wu, J.; Xu, Q. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal. Transduct. Target Ther. 2019, 4, 61. [Google Scholar] [CrossRef]
- Rivera, G.A.; Wakelee, H. Lung Cancer in Never Smokers. Adv. Exp. Med. Biol. 2016, 893, 43–57. [Google Scholar] [CrossRef]
- Kempf, E.; Rousseau, B.; Besse, B.; Paz-Ares, L. KRAS oncogene in lung cancer: Focus on molecularly driven clinical trials. Eur. Respir. Rev. 2016, 25, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Illumina, I. Multi-Site Analytical Validation of TruSight® Tumor 15 (TST15) Determining Robustness and Concordance. 2022. Available online: https://www.illumina.com/products/by-type/clinical-research-products/trusight-tumor-15-gene.html (accessed on 8 April 2022).
- Catania, C.; Botteri, E.; Barberis, M.; Conforti, F.; Toffalorio, F.; De Marinis, F.; Boselli, S.; Noberasco, C.; Delmonte, A.; Spitaleri, G.; et al. Molecular features and clinical outcome of lung malignancies in very young people. Future Oncol. 2015, 11, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Gerstung, M.; Jolly, C.; Leshchiner, I.; Dentro, S.C.; Gonzalez, S.; Rosebrock, D.; Mitchell, T.J.; Rubanova, Y.; Anur, P.; Yu, K.; et al. The evolutionary history of 2,658 cancers. Nature 2020, 578, 122–128. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Beasley, M.B.; Chitale, D.A.; Dacic, S.; Giaccone, G.; Jenkins, R.B.; Kwiatkowski, D.J.; Saldivar, J.S.; Squire, J.; et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: Guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Thorac. Oncol. 2013, 8, 823–859. [Google Scholar] [CrossRef]
- Lim, C.; Tsao, M.S.; Le, L.W.; Shepherd, F.A.; Feld, R.; Burkes, R.L.; Liu, G.; Kamel-Reid, S.; Hwang, D.; Tanguay, J.; et al. Biomarker testing and time to treatment decision in patients with advanced nonsmall-cell lung cancer. Ann. Oncol. 2015, 26, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Arbour, K.C.; Rizvi, H.; Iqbal, A.N.; Gadgeel, S.M.; Girshman, J.; Kris, M.G.; Riely, G.J.; Yu, H.A.; Hellmann, M.D. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann. Oncol. 2019, 30, 839–844. [Google Scholar] [CrossRef]
- Shiau, C.J.; Babwah, J.P.; da Cunha Santos, G.; Sykes, J.R.; Boerner, S.L.; Geddie, W.R.; Leighl, N.B.; Wei, C.; Kamel-Reid, S.; Hwang, D.M.; et al. Sample features associated with success rates in population-based EGFR mutation testing. J. Thorac. Oncol. 2014, 9, 947–956. [Google Scholar] [CrossRef]
- Lim, C.; Sekhon, H.S.; Cutz, J.C.; Hwang, D.M.; Kamel-Reid, S.; Carter, R.F.; Santos, G.D.C.; Waddell, T.; Binnie, M.; Patel, M.; et al. Improving molecular testing and personalized medicine in non-small-cell lung cancer in Ontario. Curr. Oncol. 2017, 24, 103–110. [Google Scholar] [CrossRef]
- Zer, A.; Cutz, J.C.; Sekhon, H.; Hwang, D.M.; Sit, C.; Maganti, M.; Sung, M.; Binnie, M.; Brade, A.; Chung, T.B.; et al. Translation of Knowledge to Practice-Improving Awareness in NSCLC Molecular Testing. J. Thorac. Oncol. 2018, 13, 1004–1011. [Google Scholar] [CrossRef]
- Makarem, M.; Ezeife, D.A.; Smith, A.C.; Li, J.J.N.; Law, J.H.; Tsao, M.S.; Leighl, N.B. Reflex ROS1 IHC Screening with FISH Confirmation for Advanced Non-Small Cell Lung Cancer-A Cost-Efficient Strategy in a Public Healthcare System. Curr. Oncol. 2021, 28, 3268–3279. [Google Scholar] [CrossRef]
- Tsao, M.S.; Yatabe, Y. Old Soldiers Never Die: Is There Still a Role for Immunohistochemistry in the Era of Next-Generation Sequencing Panel Testing? J. Thorac. Oncol. 2019, 14, 2035–2038. [Google Scholar] [CrossRef] [PubMed]
- Leighl, N.B.; Nirmalakumar, S.; Ezeife, D.A.; Gyawali, B. An Arm and a Leg: The Rising Cost of Cancer Drugs and Impact on Access. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Perdrizet, K.; Stockley, T.; Law, J.; Smith, A.; Zhang, T.; Fernandes, R.; Shabir, M.; Sabatini, P.; Youssef, N.; Ishu, C.; et al. Integrating comprehensive genomic sequencing of non-small cell lung cancer into a public healthcare system. Cancer Treat. Res. Commun. 2022, 31, 100534. [Google Scholar] [CrossRef] [PubMed]



Number (%) | |
---|---|
N = 1395 | |
Age at diagnosis, median (range) | 68.6 years (18.8–97.2) |
Sex | |
Female | 730 (52.3%) |
Male | 665 (47.7%) |
Smoking status | |
Never | 444 (33.1%) |
Former Smoker | 492 (36.7%) |
Current Smoker | 405 (30.2%) |
Unknown | 54 |
Stage at diagnosis | |
I | 485 (35.0%) |
II | 109 (7.9%) |
III | 231 (16.7%) |
IV | 560 (40.4%) |
Unknown | 10 |
Histology | |
Adenocarcinoma | 1198 (85.9%) |
Large Cell | 40 (2.9%) |
Squamous | 34 (2.4%) |
Pleomorphic/Sarcomatoid | 14 (1.0%) |
Small Cell | 12 (0.9%) |
Mixed histology | 6 (1.2%) |
Not otherwise specified | 91 (6.5%) |
Number (%) | |
---|---|
N = 1460 | |
Samples tested per patient * | |
1 | 1335 (95.7%) |
2 | 55 (3.9%) |
3 | 5 (0.4%) |
Sample type | |
Core biopsy | 665 (45.5%) |
Surgical specimen | 379 (26.0%) |
FNA cytology | 353 (24.2%) |
Exfoliative cytology | 62 (4.2%) |
Unknown | 1 |
Sample site | |
Primary (lung) | 997 (68.3%) |
Non-bone visceral or soft tissue metastasis | 357 (24.5%) |
Pleural fluid | 57 (3.9%) |
Bone metastasis | 33 (2.3%) |
Other | 16 (1.1%) |
Gene Variant | Never Smoker (N = 444) | Former/Current Smoker (N = 897) | All Patients (N = 1395) |
---|---|---|---|
AKT | 0 | 3 (0.3%) | 3 (0.2%) |
BRAF | 7 (1.6%) | 21 (2.3%) | 29 (2.1%) |
V600E * | 6 | 11 | 18 |
Non-V600E | 1 | 10 | 11 |
EGFR | 228 (51.4%) | 97 (10.8%) | 337 (24.2%) |
Exon 19 deletion * | 102 | 41 | 147 |
L858R * | 98 | 34 | 137 |
Other Exon 19/20/21 | 12 | 12 | 27 |
Exon 18 * | 13 | 10 | 24 |
Exon 20 insertion * | 17 | 1 | 18 |
T790M * | 11 | 15 | 16 |
L861Q * | 5 | 5 | 10 |
C797S | 1 | 0 | 1 |
≥2 EGFR variants | 28 | 11 | 40 |
ERBB2 | 20 (4.5%) | 10 (1.1%) | 30 (2.2%) |
Exon 20 | 17 | 5 | 22 |
Transmembrane domain | 2 | 2 | 4 |
Other | 1 | 3 | 4 |
KRAS | 40 (9.0%) | 393 (43.8%) | 449 (32.2%) |
G12C * | 4 | 152 | 161 |
Non-G12C | 36 | 253 | 300 |
≥2 KRAS variants | 0 | 12 | 12 |
MET | 1 (0.1%) | 3 (0.3%) | 4 (0.3%) |
Exon 14 splice site * | 1 | 1 | 2 |
Exon 14 skipping * | 0 | 1 | 1 |
Non-splice site missense | 0 | 1 | 1 |
NRAS | 1 (0.1%) | 2 (0.2%) | 3 (0.2%) |
PI3KCA | 15 (3.4%) | 29 (3.2%) | 45 (3.2%) |
RET * | 0 | 2 (0.2%) | 2 (0.1%) |
TP53 | 168 (37.8%) | 469 (52.3%) | 662 (47.5%) |
Gene Variant | <40 years (N = 19) | 40-65 years (N = 506) | ≥65 years (N = 870) |
---|---|---|---|
AKT | 0 | 1 (0.2%) | 2 (0.2%) |
BRAF | 0 | 6 (1.2%) | 23 (2.6%) |
V600E * | 0 | 5 | 13 |
Non-V600E | 0 | 1 | 10 |
EGFR | 2 (10.5%) | 132 (26.1%) | 203 (23.3%) |
Exon 19 deletion * | 0 | 68 | 79 |
L858R * | 1 | 48 | 88 |
Other Exon 19/20/21 | 0 | 10 | 17 |
Exon 18 * | 1 | 7 | 16 |
Exon 20 insertion * | 0 | 7 | 11 |
T790M * | 0 | 8 | 8 |
L861Q * | 0 | 2 | 8 |
C797S | 0 | 1 | 0 |
≥2 EGFR variants | 0 | 17 | 23 |
ERBB2 | 1 (5.3%) | 14 (2.8%) | 15 (1.7%) |
Exon 20 | 1 | 9 | 12 |
Transmembrane domain | 0 | 2 | 2 |
Other | 0 | 3 | 1 |
KRAS | 1 (5.3%) | 153 (30.2%) | 295 (33.9%) |
G12C * | 0 | 55 | 106 |
Non-G12C | 1 | 102 | 197 |
≥2 KRAS variants | 0 | 4 | 8 |
MET | 0 | 0 | 4 (0.5%) |
Exon 14 splice site * | 0 | 0 | 2 |
Exon 14 skipping * | 0 | 0 | 1 |
Non-splice site missense | 0 | 0 | 1 |
NRAS | 0 | 0 | 3 (0.3%) |
PI3KCA | 0 | 13 (2.6%) | 32 (3.7%) |
RET * | 0 | 2 (0.4%) | 0 |
TP53 | 9 (47.4%) | 251 (49.6%) | 402 (46.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).