Upfront DPYD Genotyping and Toxicity Associated with Fluoropyrimidine-Based Concurrent Chemoradiotherapy for Oropharyngeal Carcinomas: A Work in Progress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Population
2.3. Treatment
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Safety Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saltz, L.; Cox, J.V.; Blanke, C.; Rosen, L.S.; Fehrenbacher, L.; Moore, M.J.; Maroun, J.A.; Ackland, S.P.; Locker, P.K.; Pirotta, N.; et al. Irinotecan plus Fluorouracil and Leucovorin for Metastatic Colorectal Cancer. N. Engl. J. Med. 2000, 343, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.-R.; Cupissol, D.; et al. Platinum-Based Chemotherapy plus Cetuximab in Head and Neck Cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, J.S.; Smalley, S.R.; Benedetti, J.; Hundahl, S.A.; Estes, N.C.; Stemmermann, G.N.; Haller, D.G.; Ajani, J.A.; Gunderson, L.L.; Jessup, J.M.; et al. Chemoradiotherapy after Surgery Compared with Surgery Alone for Adenocarcinoma of the Stomach or Gastroesophageal Junction. N. Engl. J. Med. 2001, 345, 725–730. [Google Scholar] [CrossRef] [PubMed]
- James, R.D.; Glynne-Jones, R.; Meadows, H.M.; Cunningham, D.; Myint, A.S.; Saunders, M.P.; Maughan, T.; McDonald, A.; Essapen, S.; Leslie, M.; et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy for treatment of squamous-cell carcinoma of the anus (ACT II): A randomised, phase 3, open-label, 2×2 factorial trial. Lancet Oncol. 2013, 14, 516–524. [Google Scholar] [CrossRef]
- NCI. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. 2017. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v6_Solicitation_Brief_Overview.pdf (accessed on 5 November 2021).
- Koopman, M.; Antonini, N.F.; Douma, J.; Wals, J.; Honkoop, A.H.; Erdkamp, F.L.; de Jong, R.S.; Rodenburg, C.J.; Vreugdenhil, G.; Loosveld, O.J.; et al. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): A phase III randomised controlled trial. Lancet 2007, 370, 135–142. [Google Scholar] [CrossRef]
- Jacobs, C.; Lyman, G.; Velez-García, E.; Sridhar, K.S.; Knight, W.; Hochster, H.; Goodnough, L.T.; Mortimer, J.E.; Einhorn, L.H.; Schacter, L. A phase III randomized study comparing cisplatin and fluorouracil as single agents and in combination for advanced squamous cell carcinoma of the head and neck. J. Clin. Oncol. 1992, 10, 257–263. [Google Scholar] [CrossRef]
- Heggie, G.D.; Sommadossi, J.P.; Cross, D.S.; Huster, W.J.; Diasio, R.B. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res. 1987, 47, 2203–2206. [Google Scholar]
- Daher, G.C.; Harris, B.E.; Diasio, R.B. Metabolism of pyrimidine analogues and their nucleosides. Pharmacol. Ther. 1990, 48, 189–222. [Google Scholar] [CrossRef]
- Wei, X.; Elizondo, G.; Sapone, A.; McLeod, H.L.; Raunio, H.; Fernandez-Salguero, P.M.; Gonzalez, F.J. Characterization of the Human Dihydropyrimidine Dehydrogenase Gene. Genomics 1998, 51, 391–400. [Google Scholar] [CrossRef]
- Etienne, M.C.; Lagrange, J.L.; Dassonville, O.; Fleming, R.; Thyss, A.; Renée, N.; Schneider, M.; Demard, F.; Milano, G. Population study of dihydropyrimidine dehydrogenase in cancer patients. J. Clin. Oncol. 1994, 12, 2248–2253. [Google Scholar] [CrossRef]
- Van Kuilenburg, A.B.; Haasjes, J.; Richel, D.J.; Zoetekouw, L.; Van Lenthe, H.; De Abreu, R.A.; Maring, J.G.; Vreken, P.; Van Gennip, A.H. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: Identification of new mutations in the DPD gene. Clin. Cancer Res. 2000, 6, 4705–4712. [Google Scholar]
- Van Kuilenburg, A.B.; Muller, E.W.; Haasjes, J.; Meinsma, R.; Zoetekouw, L.; Waterham, H.R.; Baas, F.; Richel, D.J.; Van Gennip, A.H. Lethal outcome of a patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluorouracil: Frequency of the common IVS14+1G>A mutation causing DPD deficiency. Clin. Cancer Res. 2001, 7, 1149–1153. [Google Scholar] [PubMed]
- Wei, X.; McLeod, H.L.; McMurrough, J.; Gonzalez, F.J.; Fernandez-Salguero, P. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J. Clin. Investig. 1996, 98, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boige, V.; Vincent, M.; Alexandre, P.; Tejpar, S.; Landolfi, S.; Le Malicot, K.; Greil, R.; Cuyle, P.J.; Yilmaz, M.; Faroux, R.; et al. DPYDGenotyping to Predict Adverse Events Following Treatment With Fluorouracil-Based Adjuvant Chemotherapy in Patients With Stage III Colon Cancer. JAMA Oncol. 2016, 2, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Meulendijks, D.; Henricks, L.; Sonke, G.; Deenen, M.J.; Froehlich, T.K.; Amstutz, U.; Largiader, C.; Jennings, B.; Marinaki, A.M.; Sanderson, J.D.; et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: A systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015, 16, 1639–1650. [Google Scholar] [CrossRef]
- Offer, S.M.; Fossum, C.C.; Wegner, N.J.; Stuflesser, A.J.; Butterfield, G.L.; Diasio, R.B. Comparative Functional Analysis of DPYD Variants of Potential Clinical Relevance to Dihydropyrimidine Dehydrogenase Activity. Cancer Res. 2014, 74, 2545–2554. [Google Scholar] [CrossRef] [Green Version]
- Rosmarin, D.; Palles, C.; Church, D.; Domingo, E.; Jones, A.; Johnstone, E.; Wang, H.; Love, S.; Julier, P.; Scudder, C.; et al. Genetic Markers of Toxicity From Capecitabine and Other Fluorouracil-Based Regimens: Investigation in the QUASAR2 Study, Systematic Review, and Meta-Analysis. J. Clin. Oncol. 2014, 32, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Milano, G.; Etienne, M.C.; Pierrefite, V.; Barberi-Heyob, M.; Deporte-Fety, R.; Renée, N. Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br. J. Cancer 1999, 79, 627–630. [Google Scholar] [CrossRef] [Green Version]
- Van Kuilenburg, A.; Vreken, P.; Beex, L.; Meinsma, R.; Van Lenthe, H.; De Abreu, R.; Van Gennip, A. Heterozygosity for a point mutation in an invariant splice donor site of dihydropyrimidine dehydrogenase and severe 5-fluorouracil related toxicity. Eur. J. Cancer 1997, 33, 2258–2264. [Google Scholar] [CrossRef] [Green Version]
- Van Kuilenburg, A.B.; Meinsma, R.; Zoetekouw, L.; Van Gennip, A.H. Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: High prevalence of the IVS14+1g>a mutation. Int. J. Cancer 2002, 101, 253–258. [Google Scholar] [CrossRef]
- Amstutz, U.; Froehlich, T.K.; Largiadèr, C.R. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 2011, 12, 1321–1336. [Google Scholar] [CrossRef]
- Ezzeldin, H.; Diasio, R. Dihydropyrimidine Dehydrogenase Deficiency, a Pharmacogenetic Syndrome Associated with Potentially Life-Threatening Toxicity Following 5-Fluorouracil Administration. Clin. Color. Cancer 2004, 4, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.M.; Shi, Q.; Pavey, E.; Alberts, S.R.; Sargent, D.J.; Sinicrope, F.A.; Berenberg, J.L.; Goldberg, R.M.; Diasio, R.B. DPYD Variants as Predictors of 5-fluorouracil Toxicity in Adjuvant Colon Cancer Treatment (NCCTG N0147). J. Natl. Cancer Inst. 2014, 106, dju298. [Google Scholar] [CrossRef]
- Terrazzino, S.; Cargnin, S.; Del Re, M.; Danesi, R.; Canonico, P.L.; Genazzani, A.A. DPYD IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: A meta-analysis. Pharmacogenomics 2013, 14, 1255–1272. [Google Scholar] [CrossRef]
- Lawrence, T.S. Fluoropyrimidine-Radiation Interactions in Cells and Tumors. Semin. Radiat. Oncol. 1997, 7, 260–266. [Google Scholar] [CrossRef]
- Adelstein, D.J.; Li, Y.; Adams, G.L.; Wagner, H., Jr.; Kish, J.A.; Ensley, J.F.; Schuller, D.E.; Forastiere, A.A. An Intergroup Phase III Comparison of Standard Radiation Therapy and Two Schedules of Concurrent Chemoradiotherapy in Patients With Unresectable Squamous Cell Head and Neck Cancer. J. Clin. Oncol. 2003, 21, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Forastiere, A.A.; Goepfert, H.; Maor, M.; Pajak, T.F.; Weber, R.; Morrison, W.; Glisson, B.; Trotti, A.; Ridge, J.A.; Chao, C.; et al. Concurrent Chemotherapy and Radiotherapy for Organ Preservation in Advanced Laryngeal Cancer. N. Engl. J. Med. 2003, 349, 2091–2098. [Google Scholar] [CrossRef] [Green Version]
- Calais, G.; Alfonsi, M.; Bardet, E.; Sire, C.; Germain, T.; Bergerot, P.; Rhein, B.; Tortochaux, J.; Oudinot, P.; Bertrand, P. Randomized Trial of Radiation Therapy Versus Concomitant Chemotherapy and Radiation Therapy for Advanced-Stage Oropharynx Carcinoma. JNCI J. Natl. Cancer Inst. 1999, 91, 2081–2086. [Google Scholar] [CrossRef] [Green Version]
- Barkati, M.; Fortin, B.; Soulières, D.; Clavel, S.; Després, P.; Charpentier, D.; Tabet, J.-C.; Guertin, L.; Olivier, M.-J.; Coulombe, G.; et al. Concurrent Chemoradiation With Carboplatin–5-Fluorouracil Versus Cisplatin in Locally Advanced Oropharyngeal Cancers: Is More Always Better? Int. J. Radiat. Oncol. 2010, 76, 410–416. [Google Scholar] [CrossRef]
- Browman, G.P.; Hodson, D.I.; MacKenzie, R.J.; Bestic, N.; Zuraw, L. Cancer Care Ontario Practice Guideline Initiative Head and Neck Cancer Disease Site Group Choosing a concomitant chemotherapy and radiotherapy regimen for squamous cell head and neck cancer: A systematic review of the published literature with subgroup analysis. Head Neck 2001, 23, 579–589. [Google Scholar] [CrossRef]
- Hochster, H.S.; Hart, L.L.; Ramanathan, R.K.; Childs, B.H.; Hainsworth, J.D.; Cohn, A.L.; Wong, L.; Fehrenbacher, L.; Abubakr, Y.; Saif, M.W.; et al. Safety and Efficacy of Oxaliplatin and Fluoropyrimidine Regimens With or Without Bevacizumab As First-Line Treatment of Metastatic Colorectal Cancer: Results of the TREE Study. J. Clin. Oncol. 2008, 26, 3523–3529. [Google Scholar] [CrossRef] [PubMed]
- Denis, F.; Garaud, P.; Bardet, E.; Alfonsi, M.; Sire, C.; Germain, T.; Bergerot, P.; Rhein, B.; Tortochaux, J.; Oudinot, P.; et al. Late toxicity results of the GORTEC 94-01 randomized trial comparing radiotherapy with concomitant radiochemotherapy for advanced-stage oropharynx carcinoma: Comparison of LENT/SOMA, RTOG/EORTC, and NCI-CTC scoring systems. Int. J. Radiat. Oncol. 2003, 55, 93–98. [Google Scholar] [CrossRef]
- Institut National D’excellence en Santé et Services Sociaux (INESSS). Traitements à Base de Fluoropyrimidines: Meilleures Stratégies Pour Réduire le Risque de Toxicités Sévères Causées par une Déficience en Dihydropyrimidine Déhydrogénase; Gouvernement du Québec: Quebec, QC, Canada, 2019. [Google Scholar]
- Henricks, L.; Lunenburg, C.A.T.C.; de Man, F.; Meulendijks, D.; Frederix, G.W.J.; Kienhuis, E.; Creemers, G.-J.; Baars, A.; Dezentjé, V.O.; Imholz, A.L.T.; et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: A prospective safety analysis. Lancet Oncol. 2018, 19, 1459–1467. [Google Scholar] [CrossRef]
- Amstutz, U.; Henricks, L.; Offer, S.M.; Barbarino, J.; Schellens, J.H.; Swen, J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 103, 210–216. [Google Scholar] [CrossRef]
- Deenen, M.J.; Meulendijks, D.; Cats, A.; Sechterberger, M.K.; Severens, J.L.; Boot, H.; Smits, P.H.; Rosing, H.; Mandigers, C.M.; Soesan, M.; et al. Upfront Genotyping of DPYD*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis. J. Clin. Oncol. 2016, 34, 227–234. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, B.; Huang, S.H.; Su, J.; Garden, A.; Sturgis, E.M.; Dahlstrom, K.; Lee, N.; Riaz, N.; Pei, X.; A Koyfman, S.; et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): A multicentre cohort study. Lancet Oncol. 2016, 17, 440–451. [Google Scholar] [CrossRef]
- American Joint Committee on Cancer (AJCC). Staging Manual, 7th ed.; American Joint Committee on Cancer: Chicago, IL, USA, 2010. [Google Scholar]
- Lunenburg, C.A.T.C.; Henricks, L.M.; Van Kuilenburg, A.B.P.; Mathijssen, R.H.J.; Schellens, J.H.M.; Gelderblom, H.; Guchelaar, H.-J.; Swen, J.J. Diagnostic and Therapeutic Strategies for Fluoropyrimidine Treatment of Patients Carrying Multiple DPYD Variants. Genes 2018, 9, 585. [Google Scholar] [CrossRef] [Green Version]
- Henricks, L.M.; Van Merendonk, L.N.; Meulendijks, D.; Deenen, M.J.; Beijnen, J.H.; De Boer, A.; Cats, A.; Schellens, J.H. Effectiveness and safety of reduced-dose fluoropyrimidine therapy in patients carrying the DPYD *2A variant: A matched pair analysis. Int. J. Cancer 2018, 144, 2347–2354. [Google Scholar] [CrossRef]
- Jolivet, C.; Amireault, C.; Ayoub, J.-P.M.; Beauregard, P.; Blais, N.; Carrier, C.; Cloutier, A.-S.; Desnoyers, A.; Jolivet, J.; Lemay, A.-S.; et al. Implementing DPYD*2A genotyping in clinical practice, the Quebec experience. J. Clin. Oncol. 2019, 37, 650. [Google Scholar] [CrossRef]
Characteristics | Pre-DPYD*2A Genotyping Patients (n = 87) | Post-DPYD*2A Genotyping Patients (n = 94) | p |
---|---|---|---|
Age at diagnosis (years) | |||
Median | 62 | 60 | - |
<65 | 60% (n = 52) | 63% (n = 66) | 0.16 |
≥65 | 40% (n = 35) | 37% (n = 38) | |
Sex | |||
Male | 71% (n = 62) | 80% (n = 75) | 0.23 |
Female | 29% (n = 25) | 20% (n = 19) | |
Smoking history | |||
Yes | 80% (n = 70) | 78% (n = 73) | 0.47 |
Number of pack-years (median) | 34.5 | 30 | |
Active | 20% (n = 17) | 13% (n = 12) | |
Never | 20% (n = 17) | 22% (n = 21) | |
p16 antigen overexpression † | |||
Patients screened for p16 status | 74% (n = 64) | 89% (n = 84) | - |
p16-positive patients | 89% (n = 57) | 95% (n = 80) | 0.21 |
p16-negative patients | 11% (n = 7) | 5% (n = 4) | |
Herpes simplex virus (HSV) status ‡ | |||
Patients screened for HSV | 54% (n = 47) | 70% (n = 66) | 0.58 |
HSV-1- and/or HSV-2-positive | 89% (n = 42) | 85% (n = 56) | |
Staging (AJCC 7th edition §) | |||
III | 10% (n = 9) | 7% (n = 7) | 0.32 |
IVA | 69% (n = 60) | 79% (n = 74) | |
IVB | 21% (n = 18) | 14% (n = 13) | |
TNM descriptors | |||
Primary tumor | |||
Tx | 11% (n = 10) | 4% (n = 4) | 0.17 |
T1 | 9% (n = 8) | 19% (n = 18) | |
T2 | 32% (n = 28) | 33% (n = 31) | |
T3 | 24% (n = 21) | 23% (n = 22) | |
T4 | 23% (n = 20) | 20% (n = 19) | |
Lymph node status | |||
N0 | 7% (n = 6) | 2% (n = 2) | 0.38 |
N1 | 8% (n = 7) | 10% (n = 9) | |
N2 | 70% (n = 61) | 77% (n = 72) | |
N3 | 15% (n = 13) | 12% (n = 11) | |
First-line chemotherapy | |||
Induction chemotherapy | 0.68 | ||
Docetaxel, cisplatin and 5-FU (TCF) | 6% (n = 5) | 3% (n = 3) | |
Docetaxel and cisplatin | 15% (n = 13) | 14% (n = 13) | |
Carboplatin and 5-FU | 79% (n = 69) | 83% (n = 78) | |
Number of 5-FU cycles completed (for non-mutated DPYD*2A patients) | |||
1 | 2% (n = 2) | 2% (n = 2) | 0.88 |
2 | 52% (n = 45) | 55% (n = 51) | |
3 | 46% (n = 40) | 42% (n = 39) |
Characteristics | Genotyped Patients |
---|---|
First analysis: Prospective DPYD*2A genotyping (n = 94) | |
Patients initially screened for DPYD*2A | 91% (n = 86) |
DPYD*2A allele carriers | |
Heterozygote | 2% (n = 2) |
Homozygote | 0% (n = 0) |
Second analysis: Retrospective extended DPYD genotyping ‡ (n = 86) | |
Patients undergoing extended DPYD screening | 100% (n = 86) |
Non-DPYD*2A mutant alleles | |
c.2846A>T | 2% (n = 2) |
c.1679T>G | 0% (n = 0) |
c.1236G>A | 5% (n = 4) |
Combined analysis (n = 86) | |
Patients harboring any clinically significant DPYD mutant allele § | 9% (n = 8) |
Adverse Events | Post-DPYD*2A Genotyping Patients (n = 86) | p | ||
---|---|---|---|---|
DPYD-WT Patients (n = 78) | Non-DPYD*2A-Mutant Patients (n = 6) ‡ | RR (95% CI) | ||
Patients with available longitudinal toxicity data | 100% (n = 78) | 100% (n = 6) | N/A | N/A |
Mucositis | 42% (n = 33) | 100% (n = 6) | 2.36 (1.39–2.13) | 0.0063 |
Overall grade ≥3 toxicity | 59% (n = 46) | 100% (n = 6) | 1.70 (1.01–2.09) | 0.046 |
Other clinical toxicity (secondary endpoints) | ||||
Dysphagia | 23% (n = 18) | 66% (n = 4) | 2.89 (1.20–5.11) | 0.019 |
Pharyngolaryngeal pain | 12% (n = 9) | 50% (n = 3) | 4.33 (1.41–10.2) | 0.0095 |
Aspiration pneumonia | 3% (n = 2) | 33% (n = 2) | 13 (2.42–61.5) | 0.00065 |
Radiation-induced dermatitis | 14% (n = 11) | 0% (n = 0) | 0 (0–3.05) | 0.32 |
Xerostomia | 1% (n = 1) | 17% (n = 1) | 13 (1.39–110) | 0.017 |
Cellulitis | 1% (n = 1) | 17 (n = 1) | 13 (1.39–110) | 0.017 |
Laboratory toxicities | ||||
Neutropenia | 9% (n = 7) | 17 (n = 1) | 1.86 (0.31–8.23) | 0.54 |
Thrombocytopenia | 4% (n = 3) | 17% (n = 1) | 4.33 (0.64–24.0) | 0.16 |
Anemia | 3% (n = 2) | 0% (n = 0) | 0 (0–20.5) | 0.69 |
Adverse Events | Post-DPYD*2A Genotyping Patients (n = 86) | p | ||
---|---|---|---|---|
DPYD-WT Patients (n = 78) | Non-DPYD*2A-Mutant Patients (n = 6) † | RR (95% CI) | ||
Patients with available longitudinal toxicity data | 100% (n = 78) | 100% (n = 6) | N/A | N/A |
Patients requiring hospitalization | ||||
≥1 hospitalization | 23% (n = 18) | 33% (n = 2) | 0.69 (0.28–2.50) | 0.57 |
Median duration (days) | 7 | 4.5 | N/A | N/A |
Patients requiring special treatment | ||||
Enteral feeding | 32% (n = 25) | 50% (n = 3) | 1.56 (0.56–2.95) | 0.37 |
Antibiotics | 13% (n = 10) | 33% (n = 2) | 2.6 (0.69–7.2) | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desilets, A.; McCarvill, W.; Aubin, F.; Bahig, H.; Ballivy, O.; Charpentier, D.; Filion, É.; Jamal, R.; Lambert, L.; Nguyen-Tan, P.F.; et al. Upfront DPYD Genotyping and Toxicity Associated with Fluoropyrimidine-Based Concurrent Chemoradiotherapy for Oropharyngeal Carcinomas: A Work in Progress. Curr. Oncol. 2022, 29, 497-509. https://doi.org/10.3390/curroncol29020045
Desilets A, McCarvill W, Aubin F, Bahig H, Ballivy O, Charpentier D, Filion É, Jamal R, Lambert L, Nguyen-Tan PF, et al. Upfront DPYD Genotyping and Toxicity Associated with Fluoropyrimidine-Based Concurrent Chemoradiotherapy for Oropharyngeal Carcinomas: A Work in Progress. Current Oncology. 2022; 29(2):497-509. https://doi.org/10.3390/curroncol29020045
Chicago/Turabian StyleDesilets, Antoine, William McCarvill, Francine Aubin, Houda Bahig, Olivier Ballivy, Danielle Charpentier, Édith Filion, Rahima Jamal, Louise Lambert, Phuc Felix Nguyen-Tan, and et al. 2022. "Upfront DPYD Genotyping and Toxicity Associated with Fluoropyrimidine-Based Concurrent Chemoradiotherapy for Oropharyngeal Carcinomas: A Work in Progress" Current Oncology 29, no. 2: 497-509. https://doi.org/10.3390/curroncol29020045
APA StyleDesilets, A., McCarvill, W., Aubin, F., Bahig, H., Ballivy, O., Charpentier, D., Filion, É., Jamal, R., Lambert, L., Nguyen-Tan, P. F., Vadnais, C., Weng, X., & Soulières, D. (2022). Upfront DPYD Genotyping and Toxicity Associated with Fluoropyrimidine-Based Concurrent Chemoradiotherapy for Oropharyngeal Carcinomas: A Work in Progress. Current Oncology, 29(2), 497-509. https://doi.org/10.3390/curroncol29020045