The Nephrotoxicity of Drugs Used in Causal Oncological Therapies
Abstract
1. Introduction
2. Materials and Methods
3. Chemotherapy
3.1. Nephrotoxicity of Chemotherapy—Risk Factors
3.2. The Assessment of Renal Function in Cancer Patients
3.3. Chemotherapeutics
3.3.1. Group of Alkylating Agents
Platinum-Based Chemotherapeutic Drugs
Nitrogen Mustards
Nitrosourea Derivatives
3.3.2. Cytotoxic Antibiotics
3.3.3. Antimetabolites
Methotrexate (4-amino-4-deoxy-N10-methylfolic acid)
Pemetrexed
Gemcitabine
5-Fluorouracil
4. Immunotherapy as a New Method of Cancer Treatment
4.1. Nephrotoxicity of Immunotherapy
4.2. Types and Epidemiology of Immune-Related Nephrotoxicity
4.3. Mechanism of Nephrotoxicity
4.4. Diagnosis of Nephrotoxicity
4.5. Treatment
5. Conclusions
- adequate monitoring of kidney function in cancer patients
- application of available preventive measures reducing the risk of kidney damage
- appropriate treatment of renal complications.
Author Contributions
Funding
Conflicts of Interest
References
- Capasso, A.; Benigni, A.; Capitanio, U.; Danesh, F.R.; Di Marzo, V.; Gesualdo, L.; Grandaliano, G.; Jaimes, E.A.; Malyszko, J.; Perazella, M.A.; et al. Summary of the International Conference on Onco-Nephrology: An emerging field in medicine. Kidney Int. 2019, 96, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 2019, 54, 407. [Google Scholar] [PubMed]
- Perazella, M.A. Renal vulnerability to drug toxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, A.; Endou, H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin. Exp. Nephrol. 2005, 9, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Ciarimboli, G.; Holle, S.K.; Vollenbröcker, B.; Hagos, Y.; Reuter, S.; Burckhardt, G.; Bierer, S.; Herrmann, E.; Pavenstädt, H.; Rossi, R.; et al. New clues for nephrotoxicity induced by ifosfamide: Preferential renal uptake via the human organic cation transporter 2. Mol. Pharm. 2011, 8, 270–279. [Google Scholar] [CrossRef]
- Perazella, M.A. Onco-nephrology: Renal toxicities of chemotherapeutic agents. Clin. J. Am. Soc. Nephrol. 2012, 7, 1713–1721. [Google Scholar] [CrossRef]
- Torres da Costa e Silva, V.; Costalonga, E.C.; Coelho, F.O.; Caires, R.A.; Burdmann, E.A. Assessment of Kidney Function in Patients with Cancer. Adv. Chronic Kidney Dis. 2018, 25, 49–56. [Google Scholar] [CrossRef]
- McMahon, B.A.; Rosner, M.H. GFR Measurement and Chemotherapy Dosing in Patients with Kidney Disease and Cancer. Kidney360 2020, 1, 141–150. [Google Scholar] [CrossRef]
- Stevens, L.A.; Schmid, C.H.; Greene, T.; Li, L.; Beck, G.J.; Joffe, M.M.; Froissart, M.; Kusek, J.W.; Zhang, Y.; Coresh, J.; et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009, 75, 652–660. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Inker, L.A.; Eckfeldt, J.; Levey, A.S.; Leiendecker-Foster, C.; Rynders, G.; Manzi, J.; Waheed, S.; Coresh, J. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am. J. Kidney Dis. 2011, 58, 682–684. [Google Scholar] [CrossRef]
- Solomon, R.; Goldstein, S. Real-time measurement of glomerular filtration rate. Curr. Opin. Crit. Care 2017, 23, 470–474. [Google Scholar] [CrossRef]
- Rizk, D.V.; Meier, D.; Sandoval, R.M.; Chacana, T.; Reilly, E.S.; Seegmiller, J.C.; DeNoia, E.; Strickland, J.S.; Muldoon, J.; Molitoris, B.A. A Novel Method for Rapid Bedside Measurement of GFR. J. Am. Soc. Nephrol. 2018, 29, 1609–1613. [Google Scholar] [CrossRef]
- Schock-Kusch, D.; Sadick, M.; Henninger, N.; Kraenzlin, B.; Claus, G.; Kloetzer, H.M.; Weiß, C.; Pill, J.; Gretz, N. Transcutaneous measurement of glomerular filtration rate using FITC-sinistrin in rats. Nephrol. Dial. Transplant. 2009, 24, 2997–3001. [Google Scholar] [CrossRef]
- Florea, A.M.; Büsselberg, D. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers 2011, 3, 1351. [Google Scholar] [CrossRef]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364. [Google Scholar] [CrossRef]
- Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin Nephrotoxicity. Toxins 2010, 2, 2490. [Google Scholar] [CrossRef]
- Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008, 73, 994–1007. [Google Scholar] [CrossRef]
- Oronsky, B.; Caroen, S.; Oronsky, A.; Dobalian, V.E.; Oronsky, N.; Lybeck, M.; Reid, T.R.; Carter, C.A. Electrolyte disorders with platinum-based chemotherapy: Mechanisms, manifestations and management. Cancer Chemother. Pharmacol. 2017, 80, 895. [Google Scholar] [CrossRef]
- Lajer, H.; Daugaard, G. Cisplatin and hypomagnesemia. Cancer Treat. Rev. 1999, 25, 47–58. [Google Scholar] [CrossRef]
- Ludwig, T.; Riethmüller, C.; Gekle, M.; Schwerdt, G.; Oberleithner, H. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int. 2004, 66, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Kitada, N.; Takara, K.; Itoh, C.; Minegaki, T.; Tsujimoto, M.; Sakaeda, T.; Yokoyama, T. Comparative analysis of cell injury after exposure to antitumor platinum derivatives in kidney tubular epithelial cells. Chemotherapy 2008, 54, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Małyszko, J.; Kozłowska, K.; Kozłowski, L.; Małyszko, J. Nephrotoxicity of anticancer treatment. Nephrol. Dial. Transplant. 2017, 32, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Gaughran, G.; Qayyum, K.; Smyth, L.; Davis, A. Carboplatin and hypomagnesemia: Is it really a problem? Asia. Pac. J. Clin. Oncol. 2021, 17, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Yaghobi Joybari, A.; Sarbaz, S.; Azadeh, P.; Mirafsharieh, S.A.; Rahbari, A.; Farasatinasab, M.; Mokhtari, M. Oxaliplatin-induced renal tubular vacuolization. Ann. Pharmacother. 2014, 48, 796–800. [Google Scholar] [CrossRef]
- Phan, N.T.; Heng, A.E.; Lautrette, A.; Kémény, J.L.; Souweine, B. Oxaliplatin-induced acute renal failure presenting clinically as thrombotic microangiopathy: Think of acute tubular necrosis. NDT Plus 2009, 2, 254. [Google Scholar] [CrossRef]
- Phull, P.; Quillen, K.; Hartshorn, K.L. Acute Oxaliplatin-induced Hemolytic Anemia, Thrombocytopenia, and Renal Failure: Case Report and a Literature Review. Clin. Color. Cancer 2017, 16, e105–e107. [Google Scholar] [CrossRef]
- Watanabe, D.; Fujii, H.; Yamada, Y.; Iihara, H.; Ishihara, T.; Matsuhashi, N.; Takahashi, T.; Yoshida, K.; Suzuki, A. Relationship Between Renal Function and the Incidence of Adverse Events in Patients with Colorectal Cancer Receiving Oxaliplatin. Anticancer Res. 2020, 40, 299–304. [Google Scholar] [CrossRef]
- Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Almalag, H.M.; Alasmari, S.S.; Alrayes, M.H.; Binhameed, M.A.; Alsudairi, R.A.; Alosaimi, M.M.; Alnasser, G.A.; Abuzaid, R.A.; Khalil, N.; Abouzaid, H.H.; et al. Incidence of hemorrhagic cystitis after cyclophosphamide therapy with or without mesna: A cohort study and comprehensive literature review. J. Oncol. Pharm. Pract. 2021, 27, 340–349. [Google Scholar] [CrossRef]
- Korkmaz, A.; Topal, T.; Oter, S. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol. Toxicol. 2007, 23, 303–312. [Google Scholar] [CrossRef]
- Ulinski, T.; Aoun, B. Pediatric Idiopathic Nephrotic Syndrome: Treatment Strategies in Steroid Dependent and Steroid Resistant Forms. Curr. Med. Chem. 2010, 17, 847–853. [Google Scholar] [CrossRef]
- Salido, M.; Macarron, P.; Hernández-García, C.; D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R.V. Water intoxication induced by low-dose cyclophosphamide in two patients with systemic lupus erythematosus. Lupus 2003, 12, 636–639. [Google Scholar] [CrossRef]
- Ensergueix, G.; Pallet, N.; Joly, D.; Levi, C.; Chauvet, S.; Trivin, C.; Augusto, J.F.; Boudet, R.; Aboudagga, H.; Touchard, G.; et al. Ifosfamide nephrotoxicity in adult patients. Clin. Kidney J. 2019, 13, 660–665. [Google Scholar] [CrossRef]
- Springate, J.; Chan, K.; Lu, H.; Davies, S.; Taub, M. Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. Vitro Cell. Dev. Biol. Anim. 1999, 35, 314–317. [Google Scholar] [CrossRef]
- Yilmaz, N.; Emmungil, H.; Gucenmez, S.; Ozen, G.; Yildiz, F.; Balkarli, A.; Kimyon, G.; Coskun, B.N.; Dogan, I.; Pamuk, O.N.; et al. Incidence of Cyclophosphamide-induced Urotoxicity and Protective Effect of Mesna in Rheumatic Diseases. J. Rheumatol. 2015, 42, 1661–1666. [Google Scholar] [CrossRef]
- Matz, E.L.; Hsieh, M.H. Review of Advances in Uroprotective Agents for Cyclophosphamide- and Ifosfamide-induced Hemorrhagic Cystitis. Urology 2017, 100, 16–19. [Google Scholar] [CrossRef]
- Nikolova, T.; Roos, W.P.; Krämer, O.H.; Strik, H.M.; Kaina, B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 29–39. [Google Scholar] [CrossRef]
- Irfan, N.; Samuel, E.; Ranjha, F.R.; Waheed, A.; Bakar, M.A.; Usman, S.; Butt, S.; Rashid, A.; Yousaf, I. Toxicity Profile of Procarbazine Lomustine and Vincristine Chemotherapy in Low-Grade Glioma—Retrospective Review. Cureus 2020, 12, e11070. [Google Scholar] [CrossRef]
- Bass, P.D.; Gubler, D.A.; Judd, T.C.; Williams, R.M. The Mitomycinoid Alkaloids: Mechanism of Action, Biosynthesis, Total Syntheses and Synthetic Approaches. Chem. Rev. 2013, 113, 6816. [Google Scholar] [CrossRef]
- Giroux, L.; Bettez, P.; Giroux, L. Mitomycin-C nephrotoxicity: A clinico-pathologic study of 17 cases. Am. J. Kidney Dis. 1985, 6, 28–39. [Google Scholar] [CrossRef] [PubMed]
- El-Ghazal, R.; Podoltsev, N.; Marks, P.; Chu, E.; Wasif Saif, M. Mitomycin—C-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: Cumulative toxicity of an old drug in a new era. Clin. Color. Cancer 2011, 10, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Chenn Wu, D.; Liu, J.M.; Chen, Y.M.; Yang, S.; Liu, S.M.; Chen, L.T.; Whang-Peng, J. Mitomycin-C Induced Hemolytic Uremic Syndrome: A Case Report and Literature Review. Jpn. J. Clin. Oncol. 1997, 27, 115–118. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shah, R.; Beem, E.; Sautina, L.; Zharikov, S.I.; Segal, M.S. Mitomycin- and calcineurin-associated HUS, endothelial dysfunction and endothelial repair: A new paradigm for the puzzle? Nephrol. Dial. Transplant. 2007, 22, 617–620. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gundappa, R.K.; Sud, K.; Kohli, H.S.; Gupta, K.L.; Joshi, K.; Sakhuja, V. Mitomycin-C induced hemolytic uremic syndrome: A case report. Ren. Fail. 2002, 24, 373–377. [Google Scholar] [CrossRef]
- Koźmiński, P.; Halik, P.K.; Chesori, R.; Gniazdowska, E. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers. Int. J. Mol. Sci. 2020, 21, 3483. [Google Scholar] [CrossRef]
- Ramalanjaona, B.; Hevroni, G.; Cham, S.; Page, C.; Salifu, M.O.; McFarlane, S.I. Nephrotoxicity Associated with Low-dose Methotrexate and Outpatient Parenteral Microbial Therapy: A Case Report, Review of the Literature and Pathophysiologic Insights. Am. J. Med. Case Rep. 2020, 8, 400–404. [Google Scholar] [CrossRef]
- Taylor, Z.L.; Vang, J.; Lopez-Lopez, E.; Oosterom, N.; Mikkelsen, T.; Ramsey, L.B. Systematic Review of Pharmacogenetic Factors That Influence High-Dose Methotrexate Pharmacokinetics in Pediatric Malignancies. Cancers 2021, 13, 2837. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Tian, J.; Wang, Z. Renal Function and Plasma Methotrexate Concentrations Predict Toxicities in Adults Receiving High-Dose Methotrexate. Med. Sci. Monit. 2018, 24, 7719–7726. [Google Scholar] [CrossRef]
- May, J.; Carson, K.R.; Butler, S.; Liu, W.; Bartlett, N.L.; Wagner-Johnston, N.D. High Incidence of Methotrexate Associated Renal Toxicity in Patients with Lymphoma: A Retrospective Analysis. Leuk. Lymphoma 2014, 55, 1345. [Google Scholar] [CrossRef]
- Sharbaf, F.G.; Farhangi, H.; Assadi, F. Prevention of Chemotherapy-Induced Nephrotoxicity in Children with Cancer. Int. J. Prev. Med. 2017, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Widemann, B.C.; Adamson, P.C. Understanding and managing methotrexate nephrotoxicity. Oncologist 2006, 11, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Adjei, A.A. Pharmacology and mechanism of action of pemetrexed. Clin. Lung Cancer 2004, 5, S51–S55. [Google Scholar] [CrossRef] [PubMed]
- Kutuk, T.; Appel, H.; Avendano, M.C.; Albrecht, F.; Kaywin, P.; Ramos, S.; Suarez-Murias, M.E.; Mehta, M.P.; Kotecha, R. Feasibility of Tumor Treating Fields with Pemetrexed and Platinum-Based Chemotherapy for Unresectable Malignant Pleural Mesothelioma: Single-Center, Real-World Data. Cancers 2022, 14, 2020. [Google Scholar] [CrossRef] [PubMed]
- Zattera, T.; Londrino, F.; Trezzi, M.; Palumbo, R.; Granata, A.; Tatangelo, P.; Corbani, V.; Falqui, V.; Chiappini, N.; Mathiasen, L.; et al. Pemetrexed-induced acute kidney failure following irreversible renal damage: Two case reports and literature review. J. Nephropathol. 2017, 6, 43. [Google Scholar] [CrossRef][Green Version]
- Zajjari, Y.; Azizi, M.; Sbitti, Y.; El Kabbaj, D. Nephrotoxicity in a Patient Treated with Pemetrexed. Indian J. Nephrol. 2017, 27, 243. [Google Scholar] [CrossRef]
- Assayag, M.; Rouvier, P.; Gauthier, M.; Costel, G.; Cluzel, P.; Mercadal, L.; Deray, G.; Isnard Bagnis, C. Renal failure during chemotherapy: Renal biopsy for assessing subacute nephrotoxicity of pemetrexed. BMC Cancer 2017, 17, 770. [Google Scholar] [CrossRef]
- Muraki, K.; Koyama, R.; Honma, Y.; Yagishita, S.; Shukuya, T.; Ohashi, R.; Takahashi, F.; Kido, K.; Iwakami, S.I.; Sasaki, S.; et al. Hydration with magnesium and mannitol without furosemide prevents the nephrotoxicity induced by cisplatin and pemetrexed in patients with advanced non-small cell lung cancer. J. Thorac. Dis. 2012, 4, 562–568. [Google Scholar] [CrossRef]
- Perazella, M.A.; Izzedine, H. New drug toxicities in the onco-nephrology world. Kidney Int. 2015, 87, 909–917. [Google Scholar] [CrossRef]
- Samodelov, S.L.; Gai, Z.; Kullak-Ublick, G.A.; Visentin, M. Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots. Nutrients 2019, 11, 2353. [Google Scholar] [CrossRef]
- Koimtzis, G.; Alexandrou, V.; Chalklin, C.G.; Carrington-Windo, E.; Ramsden, M.; Karakasis, N.; Lam, K.W.; Tsakaldimis, G. The Role of Adjuvant Single Postoperative Instillation of Gemcitabine for Non-Muscle-Invasive Bladder Cancer: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 1154. [Google Scholar] [CrossRef]
- Amrutkar, M.; Gladhaug, I.P. Pancreatic Cancer Chemoresistance to Gemcitabine. Cancers 2017, 9, 157. [Google Scholar] [CrossRef]
- Garrido, M.P.; Fredes, A.N.; Lobos-González, L.; Valenzuela-Valderrama, M.; Vera, D.B.; Romero, C. Current Treatments and New Possible Complementary Therapies for Epithelial Ovarian Cancer. Biomedicines 2021, 10, 770. [Google Scholar] [CrossRef]
- Hayashi, H.; Kurata, T.; Nakagawa, K. Gemcitabine: Efficacy in the Treatment of Advanced Stage Nonsquamous Non-Small Cell Lung Cancer. Clin. Med. Insights. Oncol. 2011, 5, 177. [Google Scholar] [CrossRef]
- Lee, H.W.; Chung, M.J.; Kang, H.; Choi, H.; Choi, Y.J.; Lee, K.J.; Lee, S.W.; Han, S.H.; Kim, J.S.; Song, S.Y. Gemcitabine-Induced Hemolytic Uremic Syndrome in Pancreatic Cancer: A Case Report and Review of the Literature. Gut Liver 2014, 8, 109. [Google Scholar] [CrossRef]
- Hertig, A.; Ridel, C.; Rondeau, É. [Hemolytic uremic syndrome in adults]. Nephrol. Ther. 2010, 6, 258–271. [Google Scholar] [CrossRef]
- Kakishita, E. Pathophysiology and treatment of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS). Int. J. Hematol. 2000, 71, 320–327. [Google Scholar]
- Liu, X.Y.; Zhang, F.R.; Shang, J.Y.; Liu, Y.Y.; Lv, X.F.; Yuan, J.N.; Zhang, T.T.; Li, K.; Lin, X.C.; Liu, X.; et al. Renal inhibition of miR-181a ameliorates 5-fluorouracil-induced mesangial cell apoptosis and nephrotoxicity. Cell Death Dis. 2018, 9, 610. [Google Scholar] [CrossRef]
- Rashid, S.; Ali, N.; Nafees, S.; Hasan, S.K.; Sultana, S. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem. Toxicol. 2014, 66, 185–193. [Google Scholar] [CrossRef]
- Badawoud, M.H.; Elshal, E.B.; Zaki, A.I.; Amin, H.A. The possible protective effect of L-arginine against 5-fluorouracil-induced nephrotoxicity in male albino rats. Folia Morphol. 2017, 76, 608–619. [Google Scholar] [CrossRef]
- Akindele, A.J.; Oludadepo, G.O.; Amagon, K.I.; Singh, D.; Osiagwu, D.D. Protective effect of carvedilol alone and coadministered with diltiazem and prednisolone on doxorubicin and 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Pharmacol. Res. Perspect. 2018, 6, e00381. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Dobosz, P.; Dzieciątkowski, T. The Intriguing History of Cancer Immunotherapy. Front. Immunol. 2019, 10, 2965. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef]
- Lameire, N. Nephrotoxicity of recent anti-cancer agents. Clin. Kidney J. 2014, 7, 11. [Google Scholar] [CrossRef]
- Jhaveri, K.D.; Wanchoo, R.; Sakhiya, V.; Ross, D.W.; Fishbane, S. Adverse Renal Effects of Novel Molecular Oncologic Targeted Therapies: A Narrative Review. Kidney Int. Rep. 2017, 2, 108. [Google Scholar] [CrossRef]
- McSweeney, K.R.; Gadanec, L.K.; Qaradakhi, T.; Ali, B.A.; Zulli, A.; Apostolopoulos, V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers 2021, 13, 1572. [Google Scholar] [CrossRef]
- Patschan, D.; Müller, G.A. Acute kidney injury. J. Inj. Violence Res. 2015, 7, 19. [Google Scholar]
- Cruz-Whitley, J.; Giehl, N.; Jen, K.Y.; Young, B. Membranoproliferative Glomerulonephritis Associated with Nivolumab Therapy. Case Rep. Nephrol. 2020, 2020, 2638283. [Google Scholar] [CrossRef]
- Mamlouk, O.; Abudayyeh, A. Cancer immunotherapy and its renal effects. J. Onco-Nephrol. 2019, 3, 151–159. [Google Scholar] [CrossRef]
- Shirali, A.C.; Perazella, M.A.; Gettinger, S. Association of Acute Interstitial Nephritis with Programmed Cell Death 1 Inhibitor Therapy in Lung Cancer Patients. Am. J. Kidney Dis. 2016, 68, 287–291. [Google Scholar] [CrossRef]
- Saly, D.L.; Perazella, M.A. The adverse kidney effects of cancer immunotherapies. J. Onco-Nephrol. 2018, 2, 56–68. [Google Scholar] [CrossRef]
- Oleas, D.; Bolufer, M.; Agraz, I.; Felip, E.; Muñoz, E.; Gabaldón, A.; Bury, R.; Espinel, E.; Serón, D.; García-Carro, C.; et al. Acute interstitial nephritis associated with immune checkpoint inhibitors: A single-centre experience. Clin. Kidney J. 2020, 14, 1364–1370. [Google Scholar] [CrossRef]
- Spielbauer, K.; Cunningham, L.; Schmitt, N. PD-1 Inhibition Minimally Affects Cisplatin-Induced Toxicities in a Murine Model. Otolaryngol. Head. Neck Surg. 2018, 159, 343–346. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Perazella, M.A. Immune Checkpoint Inhibitors and Immune-Related Adverse Renal Events. Kidney Int. Rep. 2020, 5, 1139. [Google Scholar] [CrossRef]
- CA, C.; TJ, S.; JP, A. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997, 7, 885–895. [Google Scholar]
- Tucci, M.; Passarelli, A.; Todisco, A.; Mannavola, F.; Stucci, L.S.; D’Oronzo, S.; Rossini, M.; Taurisano, M.; Gesualdo, L.; Silvestris, F. The mechanisms of acute interstitial nephritis in the era of immune checkpoint inhibitors in melanoma. Ther. Adv. Med. Oncol. 2019, 11, 1758835919875549. [Google Scholar] [CrossRef]
- Murakami, N.; Borges, T.J.; Yamashita, M.; Riella, L.V. Severe acute interstitial nephritis after combination immune-checkpoint inhibitor therapy for metastatic melanoma. Clin. Kidney J. 2016, 9, 411–417. [Google Scholar] [CrossRef]
- Sampathkumar, K.; Ramalingam, R.; Prabakar, A.; Abraham, A. Acute interstitial nephritis due to proton pump inhibitors. Indian J. Nephrol. 2013, 23, 304. [Google Scholar] [CrossRef]
Name of Drug | Mechanism of Action | Indication |
---|---|---|
Ipilimumab | Anti CTLA-4 | Melanoma RCC Mesothelioma Renal cell carcinoma Colorectal cancer MSI-H HCC NSCLC Esophageal cancer |
Nivolumab | Anti PD1 | Melanoma RCC NSCLC and SCLC Head and neck cancer Hodgkin lymphoma HCC Colorectal cancer MSI-H Gastric, Gastroesophageal junction and esophageal cancers Mesothelioma Urothelial carcinoma |
Pembrolizumab | Anti PD1 | Melanoma NSCLC and SCLC Head and neck cancer Hodgkin lymphoma Primary Mediastinal Large B-Cell Lymphoma Urothelial Carcinoma MSI-H Cancer Gastric and Esophageal Cancer Cervical and Endometrial Cancer HCC Merkel cell carcinoma Breast cancer Cutaneous skin cancer MSI-H cancer RCC |
Avelumab | Anti PD1 | Merkel cell carcinoma Urothelial carcinoma RCC |
Atezolizumab | Anti PD-L1 | Urothelial Carcinoma NSCLC and SCLC Melanoma HCC |
Durvalumab | Anti PD-L1 | Urothelial Carcinoma NSCLC Biliary track cancer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hałka, J.; Spaleniak, S.; Kade, G.; Antosiewicz, S.; Sigorski, D. The Nephrotoxicity of Drugs Used in Causal Oncological Therapies. Curr. Oncol. 2022, 29, 9681-9694. https://doi.org/10.3390/curroncol29120760
Hałka J, Spaleniak S, Kade G, Antosiewicz S, Sigorski D. The Nephrotoxicity of Drugs Used in Causal Oncological Therapies. Current Oncology. 2022; 29(12):9681-9694. https://doi.org/10.3390/curroncol29120760
Chicago/Turabian StyleHałka, Janusz, Sebastian Spaleniak, Grzegorz Kade, Stefan Antosiewicz, and Dawid Sigorski. 2022. "The Nephrotoxicity of Drugs Used in Causal Oncological Therapies" Current Oncology 29, no. 12: 9681-9694. https://doi.org/10.3390/curroncol29120760
APA StyleHałka, J., Spaleniak, S., Kade, G., Antosiewicz, S., & Sigorski, D. (2022). The Nephrotoxicity of Drugs Used in Causal Oncological Therapies. Current Oncology, 29(12), 9681-9694. https://doi.org/10.3390/curroncol29120760