Quantitative Analysis of SARS-CoV-2 Antibody Levels in Cancer Patients Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of the Study Cohort
3.2. Characteristics of the Breakthrough Cases
3.3. Antibody Concentration after Different Doses of the Vaccine in Cancer Patients
3.4. Vaccine-Specific Serological Responses and Comparison with Antibody Levels Prior to Breakthrough Infections
3.5. Comparison of Hematological and Solid Cancer Types on Antibody Production
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics and Research Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 3 August 2022).
- Health Canada, “Approved COVID-19 Vaccines”. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/covid19-industry/drugs-vaccines-treatments/vaccines.html (accessed on 3 August 2022).
- Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 2020, 21, 335–337. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Ali, H.; Alahmad, B.; Al-Shammari, A.A.; Alterki, A.; Hammad, M.; Cherian, P.; Alkhairi, I.; Sindhu, S.; Thanaraj, T.A.; Mohammad, A.; et al. Previous COVID-19 Infection and Antibody Levels After Vaccination. Front. Public Health 2021, 9, 1964. [Google Scholar] [CrossRef]
- Robinson, A.; Mazurek, A.; Xu, M.; Gong, Y. Quantitative Analysis of SARS-CoV-2 Antibody Status between Patients with Cancer and Healthy Individuals with Extended Vaccination Dosing Intervals in Canada. Curr. Oncol. 2021, 29, 68–76. [Google Scholar] [CrossRef]
- Monin, L.; Laing, A.G.; Muñoz-Ruiz, M.; McKenzie, D.R.; del Molino del Barrio, I.; Alaguthurai, T.; Domingo-Vila, C.; Hayday, T.S.; Graham, C.; Seow, J.; et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: Interim analysis of a prospective observational study. Lancet Oncol. 2021, 22, 765–778. [Google Scholar] [CrossRef]
- Fendler, A.; de Vries, E.G.E.; GeurtsvanKessel, C.H.; Haanen, J.B.; Wörmann, B.; Turajlic, S.; von Lilienfeld-Toal, M. COVID-19 vaccines in patients with cancer: Immunogenicity, efficacy and safety. Nat. Rev. Clin. Oncol. 2022, 19, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Correlates of Protection Induced by Vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef]
- National Committee of Clinical Laboratory Scientists (NCCLS). Evaluation and Performance Criteria for Multiple Component Test Products Intended for the Detection and Quantification of Rubella IgG Antibody, I/LA6-T, Tentative Guidline; National Committee of Clinical Laboratory Scientists (NCCLS): Wayne, PA, USA, 1985. [Google Scholar]
- National Committee of Clinical Laboratory Scientists (NCCLS). Detection and Quantitation of Rubella IgG Antibody in the Clinical Laboratory; Approved Guideline; National Committee of Clinical Laboratory Scientists (NCCLS): Wayne, PA, USA, 1997. [Google Scholar]
- Buske, C.; Dreyling, M.; Alvarez-Larrán, A.; Apperley, J.; Arcaini, L.; Besson, C.; Bullinger, L.; Corradini, P.; Della Porta, M.G.; Dimopoulos, M.; et al. Managing hematological cancer patients during the COVID-19 pandemic: An ESMO-EHA Interdisciplinary Expert Consensus. ESMO Open 2022, 7, 100403. [Google Scholar] [CrossRef] [PubMed]
- Phylogenetic Analysis of SARS-CoV-2 in Ontario. Available online: https://nextstrain.publichealthontario.ca/ncov (accessed on 23 August 2022).
- Naaber, P.; Tserel, L.; Kangro, K.; Sepp, E.; Jürjenson, V.; Adamson, A.; Haljasmägi, L.; Rumm, A.P.; Maruste, R.; Kärner, J.; et al. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. Lancet Reg. Health-Eur. 2021, 10, 100208. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.E.; Shurin, G.V.; Yost, M.; Anderson, A.; Pinto, L.; Wells, A.; Shurin, M.R. Differential Antibody Response to mRNA COVID-19 Vaccines in Healthy Subjects. Microbiol. Spectr. 2021, 9, e0034121. [Google Scholar] [CrossRef]
- Lustig, Y.; Sapir, E.; Regev-Yochay, G.; Cohen, C.; Fluss, R.; Olmer, L.; Indenbaum, V.; Mandelboim, M.; Doolman, R.; Amit, S.; et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: A prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir. Med. 2021, 9, 999–1009. [Google Scholar] [CrossRef]
- Belik, M.; Jalkanen, P.; Lundberg, R.; Reinholm, A.; Laine, L.; Väisänen, E.; Skön, M.; Tähtinen, P.A.; Ivaska, L.; Pakkanen, S.H.; et al. Comparative analysis of COVID-19 vaccine responses and third booster dose-induced neutralizing antibodies against Delta and Omicron variants. Nat. Commun. 2022, 13, 2476. [Google Scholar] [CrossRef]
- Eliakim-Raz, N.; Leibovici-Weisman, Y.; Stemmer, A.; Ness, A.; Awwad, M.; Ghantous, N.; Stemmer, S.M. Antibody Titers Before and After a Third Dose of the SARS-CoV-2 BNT162b2 Vaccine in Adults Aged ≥60 Years. JAMA 2021, 326, 2203. [Google Scholar] [CrossRef]
- Mattiuzzo, G.; Bentley, E.; Hassallet, M.; Routleyal, S. Establishment of the WHO International Standard and Reference Panel for anti-SARS-CoV-2 Antibody. 2020. Available online: https://www.who.int/publications/m/item/WHO-BS-2020.2403 (accessed on 27 September 2022).
- Barin, B.; Kasap, U.; Selçuk, F.; Volkan, E.; Uluçkan, Ö. Comparison of SARS-CoV-2 anti-spike receptor binding domain IgG antibody responses after CoronaVac, BNT162b2, ChAdOx1 COVID-19 vaccines, and a single booster dose: A prospective, longitudinal population-based study. Lancet Microbe 2022, 3, e274–e283. [Google Scholar] [CrossRef]
- COVID-19 Vaccine: Canadian Immunization Guide—Canada.ca. Available online: https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-26-covid-19-vaccine.html (accessed on 28 July 2022).
- Coronavirus (COVID-19) Update: FDA Authorizes Second Booster Dose of Two COVID-19 Vaccines for Older and Immunocompromised Individuals|FDA. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-second-booster-dose-two-covid-19-vaccines-older-and (accessed on 28 July 2022).
- Fenioux, C.; Teixeira, L.; Fourati, S.; Melica, G.; Lelievre, J.D.; Gallien, S.; Zalcman, G.; Pawlotsky, J.M.; Tournigand, C. SARS-CoV-2 Antibody Response to 2 or 3 Doses of the BNT162b2 Vaccine in Patients Treated With Anticancer Agents. JAMA Oncol. 2022, 8, 612. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Feng, S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): A multicentre, blinded, phase 2, randomised trial. Lancet Infect. Dis. 2022, 22, 1131–1141. [Google Scholar] [CrossRef]
- Sridhar, S.; Begom, S.; Bermingham, A.; Hoschler, K.; Adamson, W.; Carman, W.; Bean, T.; Barclay, W.; Deeks, J.; Lalvani, A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 2013, 19, 1305–1312. [Google Scholar] [CrossRef]
- Terada, K.; Itoh, Y.; Wakabayashi, T.; Teranishi, H.; Akaike, H.; Ogita, S.; Ouchi, K. Rubella specific cell-mediated and humoral immunity following vaccination in college students with low antibody titers. Vaccine 2015, 33, 6093–6098. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L. SARS-CoV-2: Virus dynamics and host response. Lancet Infect. Dis. 2020, 20, 515–516. [Google Scholar] [CrossRef]
- Hoffmann, M.; Krüger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.-S.; Winkler, M.S.; et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022, 185, 447–456.e11. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Swift, M.D.; E Breeher, L.; Tande, A.J.; Tommaso, C.P.; Hainy, C.M.; Chu, H.; Murad, M.H.; Berbari, E.F.; Virk, A. Effectiveness of Messenger RNA Coronavirus Disease 2019 (COVID-19) Vaccines Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in a Cohort of Healthcare Personnel. Clin. Infect. Dis. 2021, 73, e1376–e1379. [Google Scholar] [CrossRef]
- Tande, A.J.; Pollock, B.D.; Shah, N.D.; Farrugia, G.; Virk, A.; Swift, M.; Breeher, L.; Binnicker, M.; Berbari, E.F. Impact of the Coronavirus Disease 2019 (COVID-19) Vaccine on Asymptomatic Infection Among Patients Undergoing Preprocedural COVID-19 Molecular Screening. Clin. Infect. Dis. 2021, 74, ciab229. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dorabawila, V.; Easton, D.; Bauer, U.E.; Kumar, J.; Hoen, R.; Hoefer, D.; Wu, M.; Lutterloh, E.; Conroy, M.B.; et al. Covid-19 Vaccine Effectiveness in New York State. N. Engl. J. Med. 2022, 386, 116–127. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention: COVID Data Tracker—Wastewater Suveillance. 2021. Available online: https://covid.cdc.gov/covid-data-tracker/#wastewdatatracker-home (accessed on 11 April 2022).
- Osterholm, M.T.; Kelley, N.S.; Sommer, A.; Belongia, E.A. Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 36–44. [Google Scholar] [CrossRef]
- Goyal, A.; Reeves, D.B.; Thakkar, N.; Famulare, M.; Cardozo-Ojeda, E.F.; Mayer, B.T.; Schiffer, J.T. Slight reduction in SARS-CoV-2 exposure viral load due to masking results in a significant reduction in transmission with widespread implementation. Sci. Rep. 2021, 11, 11838. [Google Scholar] [CrossRef]
- Olson, S.M.; Newhams, M.M.; Halasa, N.B.; Price, A.M.; Boom, J.A.; Sahni, L.C.; Pannaraj, P.S.; Irby, K.; Walker, T.C.; Schwartz, S.P.; et al. Effectiveness of BNT162b2 Vaccine against Critical Covid-19 in Adolescents. N. Engl. J. Med. 2022, 386, 713–723. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Self, W.H.; Adams, K.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity. JAMA J. Am. Med. Assoc. 2021, 326, 2043. [Google Scholar] [CrossRef]
- Castro, R.; Luz, P.M.; Wakimoto, M.D.; Veloso, V.G.; Grinsztejn, B.; Perazzo, H. COVID-19: A meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Braz. J. Infect. Dis. 2020, 24, 180–187. [Google Scholar] [CrossRef]
- Alter, G.; Yu, J.; Liu, J.; Chandrashekar, A.; Borducchi, E.N.; Tostanoski, L.H.; McMahan, K.; Jacob-Dolan, C.; Martinez, D.R.; Chang, A.; et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature 2021, 596, 268–272. [Google Scholar] [CrossRef]
Characteristic | No. (%) | Antibody Concentration, BAU/mL, Mean (SD) |
---|---|---|
Age, median (age range) | 68 (26–93) | |
Sex (n) | ||
Male (%) | 68 (37.9) | |
Female (%) | 117 (62.1) | |
Solid Tumors | 109 (48.9) | |
Gastrointestinal | 27 (13.2) | |
Breast | 25 (11.1) | |
Genitourinary | 17 (6.3) | |
Gynecologic | 12 (5.8) | |
Lung | 10 (5.3) | |
Melanoma | 8 (4.2) | |
Head and Neck | 5 (2.6) | |
Other | 5 (2.6) | |
Hematologic Malignancy | 61 (24.7) | |
Lymphoma | 22 (11.6) | |
Leukemia | 17 (5.8) | |
Multiple Myeloma | 15 (2.6) | |
Other | 7 (4.7) | |
Vaccine Received (n) | ||
FIRST DOSE | ||
BNT162b2 | 27 | 125.5 (298.5) |
AZD1222 | 3 | 33.65 (38.1) |
mRNA-1273 | 4 | 803.8 (607.8) |
Total and mean | 34 | 197.2 (393.9) |
Days between 1st dose and blood collection, mean (SD) | 48.2 (±25.8) | |
Days between 1st and 2nd dose, mean (SD) | 50.9 (±23.2) | |
SECOND DOSE | ||
BNT162b2 | 114 | 1169.3 (2924.2) |
Mixed | 38 | 1839.7 (4645.6) |
AZD1222 | 8 | 229.6 (290.1) |
mRNA-1273 | 7 | 2577.7 (2906.0) |
Total and mean | 167 | 1335.9 (3337.8) |
Days between 2nd dose and blood collection, mean (SD) | 55.4 (±33.8) | |
Days between 2nd and 3rd dose, mean (SD) | 183.1 (±80.0) | |
THIRD DOSE | ||
BNT162b2 | 49 | 3918.9 (7869.2) |
Mixed | 29 | 1890.7 (2718.1) |
AZD1222 | 0 | NA |
mRNA-1273 | 0 | NA |
Total and mean | 78 | 3164.8 (6500.9) |
Days between 3rd dose and blood collection, mean (SD) | 106.48 (±50.4) | |
p value | <0.001 |
Age | 69 | 58 | 58 | 56 | 57 | 70 | 49 | 81 |
Sex | Female | Male | Female | Female | Female | Female | Female | Female |
Cancer Type | Breast | Pulmonary | Pulmonary | Colorectal | Breast | Breast | Polycythemia | Cholangio |
FIRST DOSE | ||||||||
Days between blood collection and 1st dose (days) | N/A | N/A | 57 | 57 | N/A | N/A | N/A | N/A |
Antibody (BAU/mL) | N/A | N/A | 549.9 | 3.2 | N/A | N/A | N/A | N/A |
Interval between 1st and 2nd dose (days) | 33 | 42 | 80 | 61 | 54 | N/A | 25 | 24 |
SECOND DOSE | ||||||||
Interval between blood collection and 2nd dose (days) | 15 | 41 | 61 | 68 | 47 | 34 | 22 | 70 |
Antibody (BAU/mL) | 3.2 | 1365.3 | 5640.3 | 1492.2 | 5700.9 | 2754.9 | 139.2 | 1010.7 |
Interval between 2nd and 3rd dose (days) | N/A | 213 | 87 | 173 | 210 | 208 | 119 | 205 |
THIRD DOSE | ||||||||
Interval between blood collection and 3rd dose (days) | N/A | 160 | 17 | 96 | 165 | 163 | 77 | 145 |
3rd dose Antibody Result (BAU/mL) | 44.8 | 1339.8 | 9107.4 | 3344.7 | 3921.3 | 9113.1 | 6117.9 | 2667.0 |
Interval between blood collection and infection (days) | 49 | 289 | 177 | 2 | 296 | 186 | 39 | 229 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macrae, K.; Martinez-Cajas, J.; Bessai, K.; Abdulhamed, A.; Gong, Y. Quantitative Analysis of SARS-CoV-2 Antibody Levels in Cancer Patients Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections. Curr. Oncol. 2022, 29, 7059-7071. https://doi.org/10.3390/curroncol29100554
Macrae K, Martinez-Cajas J, Bessai K, Abdulhamed A, Gong Y. Quantitative Analysis of SARS-CoV-2 Antibody Levels in Cancer Patients Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections. Current Oncology. 2022; 29(10):7059-7071. https://doi.org/10.3390/curroncol29100554
Chicago/Turabian StyleMacrae, Kathryn, Jorge Martinez-Cajas, Kristin Bessai, Abulhameed Abdulhamed, and Yanping Gong. 2022. "Quantitative Analysis of SARS-CoV-2 Antibody Levels in Cancer Patients Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections" Current Oncology 29, no. 10: 7059-7071. https://doi.org/10.3390/curroncol29100554
APA StyleMacrae, K., Martinez-Cajas, J., Bessai, K., Abdulhamed, A., & Gong, Y. (2022). Quantitative Analysis of SARS-CoV-2 Antibody Levels in Cancer Patients Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections. Current Oncology, 29(10), 7059-7071. https://doi.org/10.3390/curroncol29100554