Clinicopathologic Features and Molecular Biomarkers as Predictors of Epidermal Growth Factor Receptor Gene Mutation in Non-Small Cell Lung Cancer Patients
Abstract
:1. Introduction
2. Demographics
2.1. Gender and Smoking History
2.2. Age
3. Pathological Features
3.1. Pathological Types
3.2. Lymph Node Metastasis
3.3. Degree of Differentiation
3.4. Tumor Mutation Burden
3.5. Immunohistochemistry
3.5.1. Thyroid Transcription Factor-1
3.5.2. Napsin A
4. Serum Tumor Markers
4.1. Carcinoembryonic Antigen
4.2. Cytokeratin 19 Fragment
4.3. Squamous Cell Carcinoma Associated Antigen
4.4. Serum Ferritin
5. Liquid Biopsy
5.1. Pleural Effusion
5.2. Circulating Tumor DNA
5.3. Circulating Tumor Cells
5.4. Non-Coding RNAs
5.4.1. Long Non-Coding RNAs
5.4.2. Micro RNAs
6. Combined Prediction Models
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.; Wang, R.; Qian, K.; Lu, J.; Zhang, H.; Zhang, Y. Clinical and radiological predictors of epidermal growth factor receptor mutation in nonsmall cell lung cancer. J. Appl. Clin. Med. Phys. 2021, 22, 271–280. [Google Scholar] [CrossRef]
- Gahr, S.; Stoehr, R.; Geissinger, E.; Ficker, J.H.; Brueckl, W.; Gschwendtner, A.; Gattenloehner, S.; Fuchs, F.S.; Schulz, C.; Rieker, R.J.; et al. EGFR mutational status in a large series of Caucasian European NSCLC patients: Data from daily practice. Br. J. Cancer 2013, 109, 1821–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Wei, C.; Zhang, R.; Cai, Q.; He, Y.; Tong, F.; Dong, J.; Wu, G.; Dong, X. 18F-FDG PET/CT SUVmax and serum CEA levels as predictors for EGFR mutation state in Chinese patients with non-small cell lung cancer. Oncol. Lett. 2020, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Melosky, B.; Kambartel, K.; Häntschel, M.; Bennetts, M.; Nickens, D.J.; Brinkmann, J.; Kayser, A.; Moran, M.; Cappuzzo, F. Worldwide Prevalence of Epidermal Growth Factor Receptor Mutations in Non-Small Cell Lung Cancer: A Meta-Analysis. Mol. Diagn. Ther. 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Wang, S.; Xu, W.; Xu, X.; Li, M.; Zhang, Y.; Du, X.; Liu, S. Value of serum tumor markers for predicting EGFR mutations in non-small cell lung cancer patients. Ann. Diagn. Pathol. 2020, 49, 151633. [Google Scholar] [CrossRef]
- Li, D.; Ding, L.; Ran, W.; Huang, Y.; Li, G.; Wang, C.; Xiao, Y.; Wang, X.; Lin, D.; Xing, X. Status of 10 targeted genes of non-small cell lung cancer in eastern China: A study of 884 patients based on NGS in a single institution. Thorac. Cancer 2020, 11, 2580–2589. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-M.; Ding, X.-P.; Pen, L.; Mei, L.; Liu, T. Analysis of CEA expression and EGFR mutation status in non-small cell lung cancers. Asian Pac. J. Cancer Prev. 2014, 15, 3451–3455. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ma, P.; Ma, G.; Lv, Z.; Wu, F.; Guo, M.; Li, Y.; Tan, Q.; Song, S.; Zhou, E.; et al. Value of serum tumor markers for predicting EGFR mutations and positive ALK expression in 1089 Chinese non-small-cell lung cancer patients: A retrospective analysis. Eur. J. Cancer 2020, 124, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ess, S.; Herrmann, C.; Frick, H.; Krapf, M.; Cerny, T.; Jochum, W.; Früh, M. Epidermal growth factor receptor and anaplastic lymphoma kinase testing and mutation prevalence in patients with advanced non-small cell lung cancer in Switzerland: A comprehensive evaluation of real world practices. Eur. J. Cancer Care 2017, 26, e12721. [Google Scholar] [CrossRef]
- Zhang, Y.; He, D.; Fang, W.; Kang, S.; Chen, G.; Hong, S.; Sheng, J.; Zhan, J.; Chen, N.; Hu, Z.; et al. The Difference of Clinical Characteristics Between Patients with Exon 19 Deletion and Those with L858R Mutation in Nonsmall Cell Lung Cancer. Medicine 2015, 94, e1949. [Google Scholar] [CrossRef]
- Wei, W.-E.; Mao, N.-Q.; Ning, S.-F.; Li, J.-L.; Liu, H.-Z.; Xie, T.; Zhong, J.-H.; Feng, Y.; Wei, C.-H.; Zhang, L.-T. An Analysis of EGFR Mutations among 1506 Cases of Non-Small Cell Lung Cancer Patients in Guangxi, China. PLoS ONE 2016, 11, e0168795. [Google Scholar] [CrossRef]
- Shim, H.S.; Lee, D.H.; Park, E.J.; Kim, S.H. Histopathologic characteristics of lung adenocarcinomas with epidermal growth factor re-ceptor mutations in the International Association for the Study of Lung Cancer/American Thoracic Society/European Respir-atory Society lung adenocarcinoma classification. Arch. Pathol. Lab. Med. 2011, 135, 1329–1334. [Google Scholar]
- Girard, N.; Sima, C.S.; Jackman, D.M.; Sequist, L.V.; Chen, H.; Yang, J.C.-H.; Ji, H.; Waltman, B.; Rosell, R.; Taron, M.; et al. Nomogram to predict the presence of EGFR activating mutation in lung adenocarci-noma. Eur. Respir. J. 2012, 39, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lei, J.; Wang, Q.; Wu, L. Clinical characteristics of patients with non-small cell lung cancers harboring anaplastic lymphoma kinase rearrangements and primary lung adenocarcinoma harboring epidermal growth factor receptor mutations. Genet. Mol. Res. 2015, 14, 12973–12983. [Google Scholar] [CrossRef]
- Dong, Y.-J.; Cai, Y.-R.; Zhou, L.-J.; Su, D.; Mu, J.; Chen, X.-J.; Zhang, L. Association between the histological subtype of lung adenocarcinoma, EGFR/KRAS mutation status and the ALK rearrangement according to the novel IASLC/ATS/ERS classification. Oncol. Lett. 2016, 11, 2552–2558. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.-Y.; Li, H.-F.; Fang, K.-X.; Zhang, B.-J.; Zhou, S.-Q.; Zhang, Y.-K.; Le, H.-B.; Hu, X.-F. Epidermal Growth Factor Receptor Mutations and Their Prognostic Value with Carcinoembryonic Antigen in Pathological T1 Lung Adenocarcinoma. Dis. Markers 2018, 2018, 29426. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Xu, S.; Huang, L.; Li, S.; Wu, J.; Xu, J.; Feng, J.; Liu, B.; Zhou, Y. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer. J. Thorac. Dis. 2018, 10, 723–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosse, A.; Grosse, C.; Rechsteiner, M.; Soltermann, A. Analysis of the frequency of oncogenic driver mutations and correlation with clinicopathological characteristics in patients with lung adenocarcinoma from Northeastern Switzerland. Diagn. Pathol. 2019, 14, 1–14. [Google Scholar] [CrossRef]
- Sow, M.L.; El Yacoubi, H.; Moukafih, B.; Balde, S.; Akimana, G.; Najem, S.; El Khoyaali, S.; Abahssain, H.; Chaibi, A.; Khan, S.Z.; et al. Frequency and types of EGFR mutations in Moroccan patients with non–small cell lung cancer. Tumori J. 2021, 107, 335–340. [Google Scholar] [CrossRef]
- Nakra, T.; Singh, V.; Nambirajan, A.; Malik, P.S.; Mohan, A.; Jain, D. Correlation of TTF-1 immunoexpression and EGFR mutation spectrum in non-small cell lung carcinoma. J. Pathol. Transl. Med. 2021, 55, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Suda, K.; Mitsudomi, T.; Shintani, Y.; Okami, J.; Ito, H.; Ohtsuka, T.; Toyooka, S.; Mori, T.; Watanabe, S.-I.; Asamura, H.; et al. Clinical Impacts of EGFR Mutation Status: Analysis of 5780 Surgically Resected Lung Cancer Cases. Ann. Thorac. Surg. 2021, 111, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, J.; Shao, D.; Deng, Q.; Tang, H.; Liu, Z.; Chen, X.; Guo, F.; Lin, Y.; Mao, M.; et al. Comprehensive genomic profiling of lung cancer using a validated panel to explore therapeutic targets in East Asian patients. Cancer Sci. 2017, 108, 2487–2494. [Google Scholar] [CrossRef] [PubMed]
- Vallee, A.; Sagan, C.; Le Loupp, A.G.; Bach, K.; Dejoie, T.; Denis, M.G. Detection of EGFR gene mutations in non-small cell lung cancer: Lessons from a sin-gle-institution routine analysis of 1,403 tumor samples. Int. J. Oncol. 2013, 43, 1045–1051. [Google Scholar] [CrossRef]
- Cai, Z. Relationship between serum carcinoembryonic antigen level and epidermal growth factor receptor mutations with the influence on the prognosis of non-small-cell lung cancer patients. OncoTargets Ther. 2016, 9, 3873–3878. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Dai, Y.; Chen, L.-A. The Prediction Of Epidermal Growth Factor Receptor Mutation and Prognosis Of EGFR Tyrosine Kinase Inhibitor by Serum Ferritin In Advanced NSCLC. Cancer Manag. Res. 2019, 11, 8835–8843. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Zhang, Z.; Li, J.; Sun, D.; Zhou, Y.; Jiang, T.; Han, Y.; Huang, L.; Zhu, Y.; Li, X.; et al. EGFR Mutations in Surgically Resected Fresh Specimens from 697 Consecutive Chinese Patients with Non-Small Cell Lung Cancer and Their Relationships with Clinical Features. Int. J. Mol. Sci. 2013, 14, 24549–24559. [Google Scholar] [CrossRef]
- Nakamura, H.; Saji, H.; Shinmyo, T.; Tagaya, R.; Kurimoto, N.; Koizumi, H.; Takagi, M. Association of IASLC/ATS/ERS histologic subtypes of lung adenocarcinoma with epidermal growth factor receptor mutations in 320 resected cases. Clin. Lung Cancer 2015, 16, 209–215. [Google Scholar] [CrossRef]
- Li, P.; Gao, Q.; Jiang, X.; Zhan, Z.; Yan, Q.; Li, Z.; Huang, C. Comparison of Clinicopathological Features and Prognosis between ALK Rearrangements and EGFR Mutations in Surgically Resected Early-stage Lung Adenocarcinoma. J. Cancer 2019, 10, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Phruttinarakorn, B.; Reungwetwattana, T.; Incharoen, P. Association of histologic subtypes with genetic alteration and PD-L1 expression in pulmonary adenocarcinoma. Mol. Clin. Oncol. 2020, 13, 1. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, X.; Shi, X.; Hong, W.; Zhao, J.; Shi, L. Correlation of survival and EGFR mutation with predominant histologic subtype according to the new lung adenocarcinoma classification in stage IB patients. World J. Surg. Oncol. 2014, 12, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Mino-Kenudson, M.; Roden, A.C.; Rosell, R.; Molina, M.Á.; Flores, R.M.; Pilz, L.R.; Brunelli, A.; Venuta, F.; He, J.; et al. Association between the novel classification of lung adenocarcinoma subtypes and EGFR/KRAS mutation status: A systematic literature review and pooled-data analysis. Eur. J. Surg. Oncol. 2019, 45, 870–876. [Google Scholar] [CrossRef]
- Motono, N.; Funasaki, A.; Sekimura, A.; Usuda, K.; Uramoto, H. Prognostic value of epidermal growth factor receptor mutations and histologic subtypes with lung adenocarcinoma. Med. Oncol. 2018, 35, 22. [Google Scholar] [CrossRef]
- Hu, H.; Chen, H.; Pan, Y.; Li, Y.; Wang, L.; Wang, R.; Zhang, Y.; Li, H.; Ye, T.; Zhang, Y.; et al. Oncogenic mutations are associated with histological subtypes but do not have an independent prognostic value in lung adenocarcinoma. OncoTargets Ther. 2014, 7, 1423–1437. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Fan, J.; Li, Y.; Cao, Y.; Gu, J.; Jia, X.; Wang, Y.; Shi, H. Value of CT features for predicting EGFR mutations and ALK positivity in patients with lung adenocarcinoma. Sci. Rep. 2021, 11, 5679. [Google Scholar] [CrossRef]
- Isaka, T.; Yokose, T.; Ito, H.; Nagata, M.; Furumoto, H.; Nishii, T.; Katayama, K.; Yamada, K.; Nakayama, H.; Masuda, M. Correlations Between the EGFR Mutation Status and Clinicopathological Features of Clinical Stage I Lung Adenocarcinoma. Medicine 2015, 94, e1784. [Google Scholar] [CrossRef]
- Levy, M.; Lyon, L.; Barbero, E.; Wong, J.; Suga, J.M.; Sam, D.; Pan, M. Histologic Grade Is Predictive of Incidence of Epidermal Growth Factor Receptor Mutations in Metastatic Lung Adenocarcinoma. Med. Sci. 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Ren, W.; Qi, J.; Jin, B.; Li, Y.; Tao, H.; Xu, R.; Li, Y.; Zhang, Q.; Han, B. EGFR, ALK, RET, KRAS and BRAF alterations in never-smokers with non-small cell lung cancer. Oncol. Lett. 2016, 11, 2371–2378. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, X.; Zhu, H.; Liu, C.; Zhou, X.; Zhao, B.; Duan, H.; Yang, J.; Gu, G.; Zhan, Y.; et al. Epidermal growth factor receptor gene mutations in patients with lung adenocarcinoma differ by frequency and type between Uighur and Han ethnic groups in Xinjiang Autonomous Region. BMC Genet. 2015, 16, 20. [Google Scholar] [CrossRef] [Green Version]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
- Yan, D.; Chen, Y. Tumor mutation burden (TMB)-associated signature constructed to predict survival of lung squamous cell carcinoma patients. Sci. Rep. 2021, 11, 9020. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Schrock, A.B.; Fabrizio, D.; Frampton, G.M.; Sun, J.; He, J.; Gowen, K.; Johnson, M.L.; Bauer, T.M.; Kalemkerian, G.P.; et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-LI targeted therapies. J. Clin. Oncol. 2016, 34, 9017. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Meng, D.; Wu, C.; Zhu, J.; Jiang, M.; Ning, J.; Wu, S.; Wu, L.; Li, J.; et al. Tumor Mutation Burden and Differentially Mutated Genes Among Immune Phenotypes in Patients with Lung Adenocarcinoma. Onco Targets Ther. 2021, 14, 2953–2965. [Google Scholar] [CrossRef] [PubMed]
- Hastings, K.; Yu, H.; Wei, W.; Sanchez-Vega, F.; DeVeaux, M.; Choi, J.; Rizvi, H.; Lisberg, A.; Truini, A.; Lydon, C.; et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann. Oncol. 2019, 30, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- Offin, M.; Rizvi, H.; Tenet, M.; Ni, A.; Sanchez-Vega, F.; Li, B.T.; Drilon, A.; Kris, M.G.; Rudin, C.M.; Schultz, N.; et al. Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Lung Cancers. Clin. Cancer Res. 2019, 25, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Warth, A.; Muley, T.; Herpel, E.; Meister, M.; Herth, F.J.F.; Schirmacher, P.; Weichert, W.; Hoffmann, H.; Schnabel, P.A. Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology 2012, 61, 1017–1025. [Google Scholar] [CrossRef]
- Somaiah, N.; Garrett-Mayer, E.; Huang, X.; Wahlquist, A.E.; Danenberg, K.; Simon, G.R. Use of negative thyroid transcription factor (TTF-1) status to predict for negative epidermal growth factor receptor (EGFR) mutations (Mts) status with a high negative predictive value (NPV) in patients (pts) with adenocarcinomas (AC) of the lung. J. Clin. Oncol. 2011, 29, 7530. [Google Scholar] [CrossRef]
- Chen, C.; Shen, D.; Li, J.; Sun, Y.; Wang, J. TTF-1 and EGFR expression are related to EGFR mutation in lung adenocarcinoma. Int. J. Clin. Exp. Pathol. 2018, 11, 4650–4656. [Google Scholar]
- Kim, H.S.; Kim, J.H.; Han, B.; Choi, D.R. Correlation of Thyroid Transcription Factor-1 Expression with EGFR Mutations in Non-Small-Cell Lung Cancer: A Meta-Analysis. Medicina 2019, 55, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zyl, A.; Schubert, P.T.; Koegelenberg, C.F.N. The utility of TTF-1, napsin A, CK5 and p63 staining in the sub-classification of non-small cell carcinoma of the lung. Cytopathology 2019, 30, 586–591. [Google Scholar]
- Que, D.; Xiao, H.; Zhao, B.; Zhang, X.; Wang, Q.; Xiao, H.; Wang, G. EGFR mutation status in plasma and tumor tissues in non-small cell lung cancer serves as a predictor of response to EGFR-TKI treatment. Cancer Biol. Ther. 2016, 17, 320–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.X.; Wang, J.; Yu, Z.; Song, S.A.; Zhai, W.X.; Dong, S.H.; Yu, H.S.; Zhang, Y. Clinical significance of serum EGFR gene mutation and serum tumor markers in predicting tyrosine kinase inhibitor efficacy in lung adenocarcinoma. Clin. Transl. Oncol. 2019, 21, 1005–1013. [Google Scholar] [CrossRef]
- Jin, B.; Dong, Y.; Wang, H.-M.; Huang, J.-S.; Han, B.-H. Correlation between serum CEA levels and EGFR mutations in Chinese nonsmokers with lung adenocarcinoma. Acta Pharmacol. Sin. 2014, 35, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Hui, J.; Wang, H.; Lan, C.; Huang, J.; Zhao, C.; Zheng, L.; Fang, S.; Chen, M.; Lu, C.; et al. Radiomic Feature-Based Nomogram: A Novel Technique to Predict EGFR-Activating Mutations for EGFR Tyrosin Kinase Inhibitor Therapy. Front. Oncol. 2021, 11, 59093. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, X.; Li, K. Predictive and prognostic value of preoperative serum tumor markers is EGFR mutation-specific in resectable non-small-cell lung cancer. Oncotarget 2016, 7, 26823–26836. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Kim, S.H.; Hong, S.; Kang, Y.A.; Chang, J.; Rha, S.Y.; Kim, J.H.; Kim, D.J.; Cho, B.C.; Kim, S.K. Prognostic and Predictive Value of Carcinoembryonic Antigen and Cytokeratin-19 Fragments Levels in Advanced Non-Small Cell Lung Cancer Patients Treated with Gefitinib or Erlotinib. Yonsei Med. J. 2012, 53, 931–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, A.; Hur, J.; Moon, Y.W.; Hong, S.R.; Suh, Y.J.; Kim, Y.J.; Im, D.J.; Hong, Y.J.; Lee, H.-J.; Kim, Y.J.; et al. Correlation between EGFR gene mutation, cytologic tumor markers, 18F-FDG uptake in non-small cell lung cancer. BMC Cancer 2016, 16, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, F.; Li, S.; Dong, B.; Zhang, S.; Lv, C.; Yang, Y. Identification of lung adenocarcinoma mutation status based on histologic subtype: Retrospective analysis of 269 patients. Thorac. Cancer 2016, 7, 17–23. [Google Scholar] [CrossRef]
- Abdurahman, A.; Anwar, J.; Turghun, A.; Niyaz, M.; Zhang, L.; Awut, I. Epidermal growth factor receptor gene mutation status and its association with clinical characteristics and tumor markers in non-small-cell lung cancer patients in Northwest China. Mol. Clin. Oncol. 2015, 3, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Fiala, O.; Pesek, M.; Finek, J.; Benesova, L.; Minarik, M.; Bortlicek, Z.; Topolcan, O. Predictive role of CEA and CYFRA 21-1 in patients with advanced-stage NSCLC treated with erlotinib. Anticancer Res. 2014, 34, 3205–3210. [Google Scholar]
- Tanaka, K.; Hata, A.; Kaji, R.; Fujita, S.; Otoshi, T.; Fujimoto, D.; Kawamura, T.; Tamai, K.; Takeshita, J.; Matsumoto, T.; et al. Cytokeratin 19 Fragment Predicts the Efficacy of Epidermal Growth Factor Receptor–Tyrosine Kinase Inhibitor in Non–Small-Cell Lung Cancer Harboring EGFR Mutation. J. Thorac. Oncol. 2013, 8, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Tong, S.; Shi, X.; Wang, C.; Xiao, X.; Ji, W.; Sun, Y. Progastrin-Releasing Peptide Precursor and Neuron-Specific Enolase Predict the Efficacy of First-Line Treatment with Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors Among Non-Small-Cell Lung Cancer Patients Harboring EGFR Mutations. Cancer Manag. Res. 2021, 12, 13607–13616. [Google Scholar] [CrossRef] [PubMed]
- Bian, N.-N.; Shi, X.-Y.; Qi, H.-Y.; Hu, X.; Ge, Y.; An, G.-Y.; Feng, G.-S. The relationship of plasma fibrinogen with clinicopathological stages and tumor markers in patients with non-small cell lung cancer. Medicine 2019, 98, e16764. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, S. Serum EGFR gene mutation status via second-generation sequencing and clinical features of patients with advanced lung cancer. Int. J. Clin. Exp. Pathol. 2018, 11, 3551–3558. [Google Scholar]
- Wu, Y.-B.; Xu, L.-L.; Wang, X.-J.; Wang, Z.; Zhang, J.; Tong, Z.-H.; Shi, H.-Z. Diagnostic value of medical thoracoscopy in malignant pleural effusion. BMC Pulm. Med. 2017, 17, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Thoracic Society. Management of malignant pleural effusions. Am. J. Respir. Crit. Care Med. 2000, 162, 1987–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Sun, R.-Z.; Du, J.; Dong, Q.-Z.; Fan, C.-F.; Li, Q.-C.; Wang, E.-H.; Liu, Y. Comparison of Epidermal Growth Factor Receptor Gene Mutations Identified Using Pleural Effusion and Primary Tumor Tissue Samples in Non–Small Cell Lung Cancer. Appl. Immunohistochem. Mol. Morphol. 2018, 26, e44–e51. [Google Scholar] [CrossRef]
- Pang, C.; Ma, H.; Qin, J.; Wang, S.; Wan, C.; Yang, T.; Shen, Y.; Wang, D. Pleural effusion as a substitute for tumor tissue in detecting EGFR/ALK mutations in non-small cell lung cancer: A systematic review and meta-analysis. Medicine 2019, 98, e15450. [Google Scholar] [CrossRef]
- Song, Z.; Wang, W.; Li, M.; Liu, J.; Zhang, Y. Cytological-negative pleural effusion can be an alternative liquid biopsy media for detection of EGFR mutation in NSCLC patients. Lung Cancer 2019, 136, 23–29. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Zhong, J.; Qin, H.; Bai, H.; Zhao, J.; Wang, J. Comparative study of EGFR mutations detected in malignant pleural effusion, plasma and tumor tissue in patients with adenocarcinoma of the lung. Lung Cancer 2019, 135, 116–122. [Google Scholar] [CrossRef]
- Filipska, M.; Rosell, R. Mutated circulating tumor DNA as a liquid biopsy in lung cancer detection and treatment. Mol. Oncol. 2021, 15, 1667–1682. [Google Scholar] [CrossRef]
- Guo, K.; Shao, C.; Han, L.; Liu, H.; Ma, Z.; Yang, Y.; Feng, Y.; Pan, M.; Santarpia, M.; Carmo-Fonseca, M.; et al. Detection of epidermal growth factor receptor (EGFR) mutations from preoperative circulating tumor DNA (ctDNA) as a prognostic predictor for stage I–III non-small cell lung cancer (NSCLC) patients with baseline tissue EGFR mutations. Transl. Lung Cancer Res. 2021, 10, 3213–3225. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Hagiwara, K.; Han, B.; Tjulandin, S.; Grohé, C.; Yokoi, T.; Morabito, A.; Novello, S.; Arriola, E.; Molinier, O.; et al. ctDNA Determination of EGFR Mutation Status in European and Japanese Patients with Advanced NSCLC: The ASSESS Study. J. Thorac. Oncol. 2016, 11, 1682–1689. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.C.; Yee, S.S.; Troxel, A.B.; Savitch, S.L.; Fan, R.; Balli, D.; Lieberman, D.B.; Morrissette, J.D.; Evans, T.L.; Bauml, J.M.; et al. Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA. Clin. Cancer Res. 2016, 22, 5772–5782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, T.; Wu, Y.-L.; Lee, J.S.; Yu, C.-J.; Sriuranpong, V.; Sandoval-Tan, J.; Ladrera, G.; Thongprasert, S.; Srimuninnimit, V.; Liao, M.; et al. Detection and Dynamic Changes of EGFR Mutations from Circulating Tumor DNA as a Predictor of Survival Outcomes in NSCLC Patients Treated with First-line Intercalated Erlotinib and Chemotherapy. Clin. Cancer Res. 2015, 21, 3196–3203. [Google Scholar] [CrossRef] [Green Version]
- Ding, P.; Becker, T.; Bray, V.; Chua, W.; Ma, Y.; Lynch, D.; Po, J.; Luk, A.; Caixeiro, N.; de Souza, P.; et al. The predictive and prognostic significance of liquid biopsy in advanced epidermal growth factor receptor-mutated non-small cell lung cancer: A prospective study. Lung Cancer 2019, 134, 187–193. [Google Scholar] [CrossRef]
- Kok, P.-S.; Lee, K.; Lord, S.; Yang, J.C.-H.; Rosell, R.; Goto, K.; John, T.; Wu, Y.-L.; Mok, T.S.; Lee, C.K. Clinical utility of plasma EGFR mutation detection with quantitative PCR in advanced lung cancer: A meta-analysis. Lung Cancer 2021, 154, 113–117. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, R.; Cao, Y. Detection of epidermal growth factor receptor mutations in peripheral blood circulating tumor DNA in patients with advanced non-small cell lung cancer: A PRISMA-compliant meta-analysis and systematic review. Medicine 2020, 99, e21965. [Google Scholar] [CrossRef]
- Xu, J.; Wu, W.; Wu, C.; Mao, Y.; Qi, X.; Guo, L.; Lu, R.; Xie, S.; Lou, J.; Zhang, Y.; et al. A large-scale, multicentered trial evaluating the sensitivity and specificity of digital PCR versus ARMS-PCR for detecting ctDNA-based EGFR p.T790M in non-small-cell lung cancer patients. Transl. Lung Cancer Res. 2021, 10, 3888–3901. [Google Scholar] [CrossRef] [PubMed]
- Papadimitrakopoulou, V.A.; Han, J.; Ahn, M.; Ramalingam, S.S.; Delmonte, A.; Hsia, T.; Laskin, J.; Kim, S.; He, Y.; Tsai, C.; et al. Epidermal growth factor receptor mutation analysis in tissue and plasma from the AURA3 trial: Osimertinib versus platinum-pemetrexed for T790M mutation-positive advanced non–small cell lung cancer. Cancer 2020, 126, 373–380. [Google Scholar] [CrossRef]
- Cho, M.-S.; Park, C.H.; Lee, S.; Park, H.S. Clinicopathological parameters for circulating tumor DNA shedding in surgically resected non-small cell lung cancer with EGFR or KRAS mutation. PLoS ONE 2020, 15, e0230622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Han, J.; Choi, Y.-L. Real-World Analysis of the EGFR Mutation Test in Tissue and Plasma Samples from Non-Small Cell Lung Cancer. Diagnostics 2021, 11, 1695. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Liu, Q.; Liang, D.; Guo, Y.; Liu, G.; Ren, J.; He, Y.; Shan, B. Circulating Tumor Cell and Metabolites as Novel Biomarkers for Early-Stage Lung Cancer Diagnosis. Front. Oncol. 2021, 11, 630672. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, M.; Messaritakis, I.; Fiste, O.; Souglakos, J.; Politaki, E.; Kotsakis, A.; Georgoulias, V.; Mavroudis, D.; Agelaki, S. Assessment of the Efficacy and Clinical Utility of Different Circulating Tumor Cell (CTC) Detection Assays in Patients with Chemotherapy-Naïve Advanced or Metastatic Non-Small Cell Lung Cancer (NSCLC). Int. J. Mol. Sci. 2021, 22, 925. [Google Scholar] [CrossRef]
- Beck, T.N.; Boumber, Y.A.; Aggarwal, C.; Pei, J.; Thrash-Bingham, C.; Fittipaldi, P.; Vlasenkova, R.; Rao, C.; Borghaei, H.; Cristofanilli, M.; et al. Circulating tumor cell and cell-free RNA capture and expression analysis identify platelet-associated genes in metastatic lung cancer. BMC Cancer 2019, 19, 603. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Zhao, J.; Zhao, C.; Li, X.; Shen, J.; Zhou, J.; Ren, S.; Su, C.; Zhou, C.; O’Brien, M. Dynamic Monitoring and Predictive Value of Circulating Tumor Cells in EGFR-Mutated Advanced Non–Small-Cell Lung Cancer Patients Treated With First-Line EGFR Tyrosine Kinase Inhibitors. Clin. Lung Cancer 2019, 20, 124–133.e2. [Google Scholar] [CrossRef]
- Wei, T.; Zhu, D.; Yang, Y.; Yuan, G.; Xie, H.; Shen, R. The application of nano-enrichment in CTC detection and the clinical significance of CTCs in non-small cell lung cancer (NSCLC) treatment. PLoS ONE 2019, 14, e0219129. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, A.; Del Grammastro, M.; Felicioni, L.; Malatesta, S.; Filice, G.; Centi, I.; De Pas, T.; Santoro, A.; Chella, A.; Brandes, A.A.; et al. Assessment of EGFR Mutations in Circulating Tumor Cell Preparations from NSCLC Patients by Next Generation Sequencing: Toward a Real-Time Liquid Biopsy for Treatment. PLoS ONE 2014, 9, e103883. [Google Scholar] [CrossRef]
- Lyu, M.; Zhou, J.; Ning, K.; Ying, B. The diagnostic value of circulating tumor cells and ctDNA for gene mutations in lung cancer. OncoTargets Ther. 2019, 12, 2539–2552. [Google Scholar] [CrossRef] [Green Version]
- Sundaresan, T.K.; Sequist, L.V.; Heymach, J.V.; Riely, G.J.; Jänne, P.A.; Koch, W.H.; Sullivan, J.P.; Fox, D.B.; Maher, R.C.; Muzikansky, A.; et al. Detection of T790M, the Acquired Resistance EGFR Mutation, by Tumor Biopsy versus Noninvasive Blood-Based Analyses. Clin. Cancer Res. 2016, 22, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Nagasaka, M.; Uddin, M.H.; Al-Hallak, M.N.; Rahman, S.; Balasubramanian, S.; Sukari, A.; Azmi, A.S. Liquid biopsy for therapy monitoring in early-stage non-small cell lung cancer. Mol. Cancer 2021, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Han, C.; Fang, P.; Zhu, H.; Wang, S.; Ma, Z.; Zhang, Q.; Xia, W.; Wang, J.; Xu, L.; et al. Long non-coding RNAs in lung cancer: Implications for lineage plasticity-mediated TKI resistance. Cell. Mol. Life Sci. 2021, 78, 1983–2000. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Yang, S.; Liu, W.; Qin, H.; Tang, X.; Wu, F.; Liu, Z.; Gao, H.; Liu, X. Circulating plasma lncRNAs as novel markers ofEGFRmutation status and monitors of epidermal growth factor receptor-tyrosine kinase inhibitor therapy. Thorac. Cancer 2020, 11, 29–40. [Google Scholar] [CrossRef]
- Takamizawa, J.; Konishi, H.; Yanagisawa, K.; Tomida, S.; Osada, H.; Endoh, H.; Harano, T.; Yatabe, Y.; Nagino, M.; Nimura, Y.; et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64, 3753–3756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.-L.; Chen, H.-Y.; Chang, G.-C.; Chen, C.-Y.; Chen, H.-W.; Singh, S.; Cheng, C.-L.; Yu, C.-J.; Lee, Y.-C.; Chen, H.-S.; et al. MicroRNA Signature Predicts Survival and Relapse in Lung Cancer. Cancer Cell 2008, 13, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Luo, M.; Dai, L.; Wang, L.; Wang, L.; Zhu, J. Serum exosomal microRNAs as predictive markers for EGFR mutations in non–small-cell lung cancer. J. Clin. Lab. Anal. 2021, 35, e23743. [Google Scholar] [CrossRef]
- Shen, Y.; Tang, D.; Yao, R.; Wang, M.; Wang, Y.; Yao, Y.; Li, X.; Zhang, H. microRNA expression profiles associated with survival, disease progression, and response to gefitinib in completely resected non-small-cell lung cancer with EGFR mutation. Med. Oncol. 2013, 30, 750. [Google Scholar] [CrossRef]
- Szpechcinski, A.; Florczuk, M.; Duk, K.; Zdral, A.; Rudzinski, S.; Bryl, M.; Czyzewicz, G.; Rudzinski, P.; Kupis, W.; Wojda, E.; et al. The expression of circulating miR-504 in plasma is associated with EGFR mutation status in non-small-cell lung carcinoma patients. Cell. Mol. Life Sci. 2019, 76, 3641–3656. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, X.; Zhao, Y.; Zhang, J.; Zhang, Z.; Wang, J.; Wang, Y.; Dai, M.; Han, J. Value of pre-therapy 18F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1137–1146. [Google Scholar] [CrossRef]
- Wu, S.; Shen, G.; Mao, J.; Gao, B. CT Radiomics in Predicting EGFR Mutation in Non-small Cell Lung Cancer: A Single Institutional Study. Front. Oncol. 2020, 10, 542957. [Google Scholar] [CrossRef]
- Shi, Y.; Zha, Q.; Ye, Q.; Xue, S.; Wu, H.; Tang, D.; Qin, H.; Zou, J. Development and validation of a multivariable predictive model for EGFR gene mutation status in patients with lung adenocarcinoma. Neoplasma 2021, 68, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-Y.; Su, Y.-X.; Zhang, L.-H.; Fu, P. Prediction model based on 18F-FDG PET/CT radiomic features and clinical factors of EGFR mutations in lung adenocarcinoma. Neoplasma 2021. [Google Scholar] [CrossRef] [PubMed]
Reference | Country | Exons Analysed | Patients | EGFR Mutation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | Gender (%) | Smoking History (%) | |||||||||||
Median OR Mean Age | Never-Smoker | Smoker | p | ||||||||||
Mutant-Type | Wild-Type | p | Male | Female | p | Former | Current | ||||||
Shim [13] | Korea | Exon18–21 | ADC | 60.4 (42–80) | 62.2 (43–77) | 0.29 | 22 (42.3) | 32 (58.2) | 0.10 | 37 (56.9) | 12 (54.5) | 5 (25.0) | 0.04 |
Girard [14] | Non-Asian | Exon18–21 | ADC | 64 ± 12 | 64 ± 11 | 0.370 | 169 (19.9) | 435 (28.2) | <0.001 | 330 (49.8) | 274 (15.8) | <0.001 | |
Girard [14] | Asian | Exon18–21 | ADC | 60 ± 11 | 61 ± 12 | 0.510 | 97 (50.0) | 188 (69.6) | <0.001 | 226 (68.9) | 59 (43.4) | <0.001 | |
Xu [15] | China | Exon18–21 | ADC | 55.6 ± 9.3 | 53.7 ± 9.9 | 0.192 | 45 (35.7) | 57 (59.4) | 0.000 | 74 (61.7) | 28 (27.5) | 0.000 | |
Dong [16] | China | Exon18–21 | ADC | 59 (28–76) | 57 (23–79) | 0.478 | 35 (36.8) | 57 (54.3) | 0.016 | 66 (47.5) | 26 (42.6) | 0.542 | |
Zhu [17] | China | Exon19,21 | ADC | 60.5 ± 10.0 | 55.0 ± 10.5 | <0.001 | 69 (39.4) | 151 (37.9) | 0.780 | 184 (39.3) | 36 (34.3) | 0.375 | |
Gu [18] | China | Exon18–21 | NSCLC | 58 (52–63) | 62 (54–69) | 0.064 | 25 (18.9) | 45 (57.7) | <0.001 | 57 (47.5) | 13 (14.4) | <0.001 | |
Grosse [19] | Northeastern Switzerland | Exon18–21 | ADC | 64.2 ± 13.1 | 64.1 ± 10.9 | 0.946 | 35 (14.9) | 55 (23.5) | 0.020 | 69 (60.0) | 10 (6.3) | 11 (5.7) | <0.001 |
Wang [9] | China | No data | NSCLC | 59 (29–85) | 60 (15–85) | 0.632 | 261 (40.9) | 284 (63.1) | <0.001 | 348 (59.7) | 133 (33.1) | 0.002 | |
Wang [9] | China | No data | ADC | 59 (29–85) | 59 (25–85) | 0.123 | 252 (45.5) | 277 (64.7) | <0.001 | 337 (62.3) | 128 (37.4) | <0.001 | |
Wen [6] | China | No data | NSCLC | 66 (59–73) | 64 (61–71) | 0.512 | 29 (34.9) | 34 (56.7) | 0.01 | 42 (55.3) | 21 (31.3) | 0.004 | |
Lemine [20] | Morocco | Exon18–21 | NSCLC | 61 | 62 | 0.041 | 35 (14.5) | 38 (41.4) | <0.0001 | 47 (354.8) | 23 (13.0) | <0.0001 | |
Nakra [21] | India | Exon18–21 | NSCLC | 55 ± 12.2 | 57 ± 12.4 | >0.05 | 148 (23.0) | 121 (45.7) | 0.001 | 103 (57.5) | 52 (28.4) | <0.001 | |
Suda [22] | Japan | Exon19 Del, L858R, or others | nonsquamous NSCLC | 67.7 (67.3–68.1) | 67.6 (67.2–67.9) | 0.612 | 826 (27.1) | 1584 (58.2) | <0.001 | 1552 (59.8) | 529 (30.2) | 262 (21.2) | <0.001 |
Reference | Exons Analysed | Patients | EGFR Mutation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CEA (%) | CYFRA21-1 (%) | NSE (%) | SCC-Ag (%) | |||||||||||
Negative | Positive | p | Negative | Positive | p | Negative | Positive | p | Negative | Positive | p | |||
Jin [53] | Exon18–21 | ADC | 24 (55.8) | 43 (78.2) | 0.018 | 52 (67.5) | 15 (71.4) | 0.734 | 59 (69.4) | 8 (61.5) | 0.570 | |||
Yang [8] | Exon19,21 | NSCLC | 27 (18.8) | 81 (47.4) | <0.05 | |||||||||
Abdurahman [59] | Exon18–21 | NSCLC | 5 (27.8) | 20 (60.6) | 0.025 | 10 (55.6) | 15 (45.5) | 0.346 | 23 (47.9) | 2 (66.7) | 0.610 | |||
Lu [58] | Exon18–21 | ADC | 84 (60.4) | 48 (60.0) | 1.000 | |||||||||
Cai [25] | No data | NSCLC | 35 (57.4) | 0.014 | 70 (43.5) | 32 (36.0) | 0.01 | 71 (43.0) | 31 (34.8) | 0.36 | 98 (44.7) | 4 (18.2) | <0.001 | |
Zhu [17] | Exon19,21 | ADC | 133 (35.2) | 87 (44.6) | ||||||||||
Wu [26] | No data | NSCLC | 49 (41.5) | 109 (59.6) | 0.002 | 76 (48.7) | 82 (56.6) | 0.204 | 93 (51.7) | 65 (53.7) | 0.408 | |||
Wen [6] | No data | NSCLC | 15 (34.1) | 48 (50.0) | 0.079 | 17 (38.6) | 46 (48.4) | 0.281 | 34 (44.2) | 29 (46.8) | 0.873 | 48 (51.1) | 6 (26.1) | 0.031 |
Wang [9] | No data | NSCLC | 211 (47.4) | 329 (52.6) | 0.092 | 172 (56.8) | 234 (46.6) | 0.005 | 187 (54.2) | 195 (69.6) | 0.214 | 388 (52.2) | 50 (33.6) | <0.001 |
Wang [9] | No data | ADC | 204 (53.7) | 321 (54.7) | 0.760 | 170 (60.7) | 222 (50.3) | 0.006 | 182 (58.0) | 184 (53.0) | 0.202 | 378 (55.4) | 46 (40.7) | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Xiong, X. Clinicopathologic Features and Molecular Biomarkers as Predictors of Epidermal Growth Factor Receptor Gene Mutation in Non-Small Cell Lung Cancer Patients. Curr. Oncol. 2022, 29, 77-93. https://doi.org/10.3390/curroncol29010007
Liu L, Xiong X. Clinicopathologic Features and Molecular Biomarkers as Predictors of Epidermal Growth Factor Receptor Gene Mutation in Non-Small Cell Lung Cancer Patients. Current Oncology. 2022; 29(1):77-93. https://doi.org/10.3390/curroncol29010007
Chicago/Turabian StyleLiu, Lanlan, and Xianzhi Xiong. 2022. "Clinicopathologic Features and Molecular Biomarkers as Predictors of Epidermal Growth Factor Receptor Gene Mutation in Non-Small Cell Lung Cancer Patients" Current Oncology 29, no. 1: 77-93. https://doi.org/10.3390/curroncol29010007
APA StyleLiu, L., & Xiong, X. (2022). Clinicopathologic Features and Molecular Biomarkers as Predictors of Epidermal Growth Factor Receptor Gene Mutation in Non-Small Cell Lung Cancer Patients. Current Oncology, 29(1), 77-93. https://doi.org/10.3390/curroncol29010007