The Role of Farnesoid X Receptor in Accelerated Liver Regeneration in Rats Subjected to ALPPS
Abstract
:1. Introduction
2. Methods
2.1. Animals and Operative Procedures
2.2. Sample Extraction
2.3. Quantification of Liver Regeneration
2.4. Histology
2.5. Assessment of Hepatic Microcirculation
2.6. Assessment of Portal Pressure
2.7. Quantification of Total Bile Acid Concentration
2.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.9. Statistical Analysis
3. Results
3.1. Accelerated Liver Growth and Cell Proliferation following ALPPS
3.2. Lobular Microcirculation Decreases after ALPPS in the Ligated Lobes
3.3. Increased Portal Pressure following ALPPS
3.4. Increased Systemic and Portal Bile Acid Concentration following ALPPS
3.5. Changes in the Expression of Bile Acid Transporters and Production Enzymes Following ALPPS
3.6. Hepatic Fxr Signaling Is Downmodulated after PVL and ALPPS
3.7. ALPPS Induces Upregulation of Ileal Fxr and Fgf15 and Hepatic Fgfr4 mRNA Levels
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Zhu, S. Present status and future perspectives of preoperative portal vein embolization. Am. J. Surg. 2009, 197, 686–690. [Google Scholar] [CrossRef]
- Guglielmi, A.; Ruzzenente, A.; Conci, S.; Valdegamberi, A.; Iacono, C. How much remnant is enough in liver resection? Dig. Surg. 2012, 29, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Narula, N.; Aloia, T.A. Portal vein embolization in extended liver resection. Langenbeck’s Arch. Surg. 2017, 402, 727–735. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Raptis, D.A.; Linecker, M.; Wirsching, A.; Lesurtel, M.; Clavien, P.-A. Meta-analysis of associating liver partition with portal vein ligation and portal vein occlusion for two-stage hepatectomy. Br. J. Surg. 2016, 103, 1768–1782. [Google Scholar] [CrossRef]
- Schnitzbauer, A.A.; Lang, S.A.; Goessmann, H.; Nadalin, S.; Baumgart, J.; Farkas, S.A.; Fichtner-Feigl, S.; Lorf, T.; Goralcyk, A.; Hörbelt, R.; et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann. Surg. 2012, 255, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Takamoto, T.; Sugawara, Y.; Hashimoto, T.; Makuuchi, M. Associating liver partition and portal vein ligation (ALPPS): Taking a view of trails. Biosci. Trends. 2015, 9, 280–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Santibañes, M.; Boccalatte, L.; de Santibañes, E. A literature review of associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): So far, so good. Updates Surg. 2017, 69, 9–19. [Google Scholar] [CrossRef]
- de Haan, L.; van der Lely, S.J.; Warps, A.-L.K.; Hofsink, Q.; Olthof, P.B.; de Keijzer, M.J.; Lionarons, D.A.; Mendes-Dias, L.; Bruinsma, B.G.; Uygun, K.; et al. Post-hepatectomy liver regeneration in the context of bile acid homeostasis and the gut-liver signaling axis. J. Clin. Transl. Res. 2018, 4, 1–46. [Google Scholar]
- Huang, W.; Ma, K.; Zhang, J.; Qatanani, M.; Cuvillier, J.; Liu, J.; Dong, B.; Huang, X.; Moore, D.D. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 2006, 312, 233–236. [Google Scholar] [CrossRef]
- Geier, A.; Trautwein, C. Bile Acids Are “Homeotrophic” Sensors of the Functional Hepatic Capacity and Regulate Adaptive Growth during Liver Regeneration. Available online: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.21521 (accessed on 24 June 2021).
- Uriarte, I.; Fernandez-Barrena, M.G.; Monte, M.J.; Latasa, M.U.; Chang, H.C.Y.; Carotti, S.; Vespasiani-Gentilucci, U.; Morini, S.; Vicente, E.; Concepcion, A.R.; et al. Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut 2013, 62, 899–910. [Google Scholar] [CrossRef]
- Péan, N.; Doignon, I.; Garcin, I.; Besnard, A.; Julien, B.; Liu, B.; Branchereau, S.; Spraul, A.; Guettier, C.; Humbert, L.; et al. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 2013, 58, 1451–1460. [Google Scholar] [CrossRef]
- Borude, P.; Edwards, G.; Walesky, C.; Li, F.; Ma, X.; Kong, B.; Guo, G.L.; Apte, U. Hepatocyte-specific deletion of farnesoid X receptor delays but does not inhibit liver regeneration after partial hepatectomy in mice. Hepatology 2012, 56, 2344–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wang, Y.-D.; Chen, W.-D.; Wang, X.; Lou, G.; Liu, N.; Lin, M.; Forman, B.M.; Huang, W. Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice. Hepatology 2012, 56, 2336–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, B.; Huang, J.; Zhu, Y.; Li, G.; Williams, J.; Shen, S.; Aleksunes, L.M.; Richardson, J.R.; Apte, U.; Rudnick, D.A. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice. Am. J. Physiol. Gastrointest. Liver. Physiol. 2014, 306, G893–G902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olthof, P.B.; Huisman, F.; Schaap, F.G.; van Lienden, K.P.; Bennink, R.J.; van Golen, R.F.; Heger, M.; Verheij, J.; Jansen, P.L.; Olde Damink, S.W. Effect of obeticholic acid on liver regeneration following portal vein embolization in an experimental model. Br. J. Surg. 2017, 104, 590–599. [Google Scholar] [CrossRef]
- van Golen, R.F.; Olthof, P.B.; Lionarons, D.A.; Reiniers, M.J.; Alles, L.K.; Uz, Z.; de Haan, L.; Ergin, B.; de Waart, D.R.; Maas, A.; et al. FXR agonist obeticholic acid induces liver growth but exacerbates biliary injury in rats with obstructive cholestasis. Sci. Rep. 2018, 8, 16529. [Google Scholar] [CrossRef]
- Ren, W.; Chen, G.; Wang, X.; Zhang, A.; Li, C.; Lv, W.; Pan, K.; Dong, J.-H. Simultaneous bile duct and portal vein ligation induces faster atrophy/hypertrophy complex than portal vein ligation: Role of bile acids. Sci. Rep. 2015, 5, 8455. [Google Scholar] [CrossRef] [Green Version]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Budai, A.; Fulop, A.; Hahn, O.; Onody, P.; Kovacs, T.; Nemeth, T.; Dunay, M.; Szijarto, A. Animal Models for Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS): Achievements and Future Perspectives. Eur. Surg. Res. 2017, 58, 140–157. [Google Scholar] [CrossRef]
- Naugler, W.E. Bile acid flux is necessary for normal liver regeneration. PLoS ONE. 2014, 9, e97426. [Google Scholar] [CrossRef] [Green Version]
- de Haan, L.R.; Verheij, J.; van Golen, R.F.; Horneffer-van der Sluis, V.; Lewis, M.R.; Beuers, U.H.W.; van Gulik, T.M.; Olde Damink, S.W.M.; Schaap, F.G.; Heger, M. Unaltered Liver Regeneration in Post-Cholestatic Rats Treated with the FXR Agonist Obeticholic Acid. Biomolecules 2021, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Hammarström, C.; Grzyb, K.; Line, P.D. Experimental evaluation of liver regeneration patterns and liver function following ALPPS. BJS Open 2017, 1, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.S.; Low, J.K.; Shelat, V.G. Associated liver partition and portal vein ligation for staged hepatectomy: A review. Transl. Gastroenterol. Hepatol. 2020, 5, 37. [Google Scholar] [CrossRef]
- Glinka, J.; Ardiles, V.; Pekolj, J.; de Santibañes, E.; de Santibañes, M. The role of associating liver partition and portal vein ligation for staged hepatectomy in the management of patients with colorectal liver metastasis. Hepatobiliary Surg. Nutr. 2020, 9, 694–704. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Tschuor, C.; Raptis, D.A.; Boss, A.; Wurnig, M.C.; Sergeant, G.; Schadde, E.; Clavien, P.-A. Rapid liver volume increase induced by associating liver partition with portal vein ligation for staged hepatectomy (ALPPS): Is it edema, steatosis, or true proliferation? Surgery 2017, 161, 1549–1552. [Google Scholar] [CrossRef]
- Szijártó, A.; Fülöp, A. Triggered liver regeneration: From experimental model to clinical implications. Eur. Surg. Res. 2015, 54, 148–161. [Google Scholar] [CrossRef] [PubMed]
- de Santibañes, E.; Clavien, P.-A. Playing Play-Doh to prevent postoperative liver failure: The “ALPPS” approach. Ann. Surg. 2012, 255, 415–417. [Google Scholar] [CrossRef] [Green Version]
- Lainas, P.; Boudechiche, L.; Osorio, A.; Coulomb, A.; Weber, A.; Pariente, D.; Franco, D.; Dagher, I. Liver regeneration and recanalization time course following reversible portal vein embolization. J. Hepatol. 2008, 49, 354–362. [Google Scholar] [CrossRef]
- Schoen, J.M.; Wang, H.H.; Minuk, G.Y.; Lautt, W.W. Shear stress-induced nitric oxide release triggers the liver regeneration cascade. Nitric Oxide Biol. Chem. 2001, 5, 453–464. [Google Scholar] [CrossRef]
- Alvarez, F.A.; Ardiles, V.; Sanchez Claria, R.; Pekolj, J.; de Santibañes, E. Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS): Tips and Tricks. J. Gastrointest. Surg. 2013, 17, 814–821. [Google Scholar] [CrossRef]
- Simbrunner, B.; Mandorfer, M.; Trauner, M.; Reiberger, T. Gut-liver axis signaling in portal hypertension. World J. Gastroenterol. 2019, 25, 5897–5917. [Google Scholar] [CrossRef] [PubMed]
- Sorribas, M.; Jakob, M.O.; Yilmaz, B.; Li, H.; Stutz, D.; Noser, Y.; de Gottardi, A.; Moghadamrad, S.; Hassan, M.; Albillos, A. FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J. Hepatol. 2019, 71, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Monte, M.J.; Martinez-Diez, M.C.; El-Mir, M.Y.; Mendoza, M.E.; Bravo, P.; Bachs, O.; Marin, J.J.G. Changes in the pool of bile acids in hepatocyte nuclei during rat liver regeneration. J. Hepatol. 2002, 36, 534–542. [Google Scholar] [CrossRef]
- Doignon, I.; Julien, B.; Serrière-Lanneau, V.; Garcin, I.; Alonso, G.; Nicou, A.; Monnet, F.; Gigou, M.; Humbert, L.; Rainteau, D. Immediate neuroendocrine signaling after partial hepatectomy through acute portal hyperpressure and cholestasis. J. Hepatol. 2011, 54, 481–488. [Google Scholar] [CrossRef]
- Matsuo, K.; Hiroshima, Y.; Yamazaki, K.; Kasahara, K.; Kikuchi, Y.; Kawaguchi, D.; Murakami, T.; Ishida, Y.; Tanaka, K. Immaturity of Bile Canalicular–Ductule Networks in the Future Liver Remnant While Associating Liver Partition and Portal Vein Occlusion for Staged Hepatectomy (ALPPS). Ann. Surg. Oncol. 2017, 24, 2456–2464. [Google Scholar] [CrossRef]
- de Graaf, W.; Heger, M.; Spruijt, O.; Maas, A.; de Bruin, K.; Hoekstra, R.; Bennink, R.J.; van Gulik, T.M. Quantitative assessment of liver function after ischemia-reperfusion injury and partial hepatectomy in rats. J. Surg. Res. 2012, 172, 85–94. [Google Scholar] [CrossRef]
- de Graaf, W.; Bennink, R.J.; Heger, M.; Maas, A.; de Bruin, K.; van Gulik, T.M. Quantitative assessment of hepatic function during liver regeneration in a standardized rat model. J. Nucl. Med. 2011, 52, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Olthof, P.B.; Tomassini, F.; Huespe, P.E.; Truant, S.; Pruvot, F.-R.; Troisi, R.I.; Castro, C.; Schadde, E.; Axelsson, R.; Sparrelid, E. Hepatobiliary scintigraphy to evaluate liver function in associating liver partition and portal vein ligation for staged hepatectomy: Liver volume overestimates liver function. Surgery 2017, 162, 775–783. [Google Scholar] [CrossRef]
- Xiong, H.; Yoshinari, K.; Brouwer, K.L.R.; Negishi, M. Role of constitutive androstane receptor in the in vivo induction of Mrp3 and CYP2B1/2 by phenobarbital. Drug. Metab. Dispos. 2002, 30, 918–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, M.; Fickert, P.; Zollner, G.; Fuchsbichler, A.; Silbert, D.; Tsybrovskyy, O.; Zatloukal, K.; Guo, G.L.; Schuetz, J.D.; Gonzalez, F.J. Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 2003, 125, 825–838. [Google Scholar] [CrossRef]
- Padrissa-Altés, S.; Bachofner, M.; Bogorad, R.L.; Pohlmeier, L.; Rossolini, T.; Böhm, F.; Liebisch, G.; Hellerbrand, C.; Koteliansky, V.; Speicher, T.; et al. Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut 2015, 64, 1444–1453. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, N.; Yoshioka, M.; Abe, Y.; Nakagawa, Y.; Uchinami, H.; Yamamoto, Y. Reg3α and Reg3β Expressions Followed by JAK2/STAT3 Activation Play a Pivotal Role in the Acceleration of Liver Hypertrophy in a Rat ALPPS Model. Int. J. Mol. Sci. 2020, 21, 4077. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yang, G.; Zheng, T.; Wang, J.; Li, L.; Liang, Y.; Xie, C.; Yin, D.; Sun, B.; Wang, H. A preliminary study of ALPPS procedure in a rat model. Sci. Rep. 2015, 5, 17567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, J.; Chijiiwa, K.; Nakano, K.; Zhao, G.; Tanaka, M. Lack of intestinal bile results in delayed liver regeneration of normal rat liver after hepatectomy accompanied by impaired cyclin E-associated kinase activity. Surgery 2002, 131, 564–573. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daradics, N.; Olthof, P.B.; Budai, A.; Heger, M.; van Gulik, T.M.; Fulop, A.; Szijarto, A. The Role of Farnesoid X Receptor in Accelerated Liver Regeneration in Rats Subjected to ALPPS. Curr. Oncol. 2021, 28, 5240-5254. https://doi.org/10.3390/curroncol28060438
Daradics N, Olthof PB, Budai A, Heger M, van Gulik TM, Fulop A, Szijarto A. The Role of Farnesoid X Receptor in Accelerated Liver Regeneration in Rats Subjected to ALPPS. Current Oncology. 2021; 28(6):5240-5254. https://doi.org/10.3390/curroncol28060438
Chicago/Turabian StyleDaradics, Noemi, Pim B. Olthof, Andras Budai, Michal Heger, Thomas M. van Gulik, Andras Fulop, and Attila Szijarto. 2021. "The Role of Farnesoid X Receptor in Accelerated Liver Regeneration in Rats Subjected to ALPPS" Current Oncology 28, no. 6: 5240-5254. https://doi.org/10.3390/curroncol28060438
APA StyleDaradics, N., Olthof, P. B., Budai, A., Heger, M., van Gulik, T. M., Fulop, A., & Szijarto, A. (2021). The Role of Farnesoid X Receptor in Accelerated Liver Regeneration in Rats Subjected to ALPPS. Current Oncology, 28(6), 5240-5254. https://doi.org/10.3390/curroncol28060438