The Price of Success: Immune-Related Adverse Events from Immunotherapy in Lung Cancer
Abstract
:1. Introduction
2. Overview of Mechanisms of Action
3. Immune-Related Adverse Events
4. How Do ICIs Cause Toxicity?
5. Organ-Specific ICIs
5.1. Dermatologic
5.2. Endocrine
5.3. Gastrointestinal
5.4. Lung
5.5. Renal
5.6. Neurologic
5.7. Cardiac
6. Efficacy of Immunotherapy after Treatment with Corticosteroids for Any Reason
7. Re-Challenge with ICI after Interruption Due to irAE
8. Hyper-Progression
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sanmamed, M.F.; Chen, L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 2018, 175, 313–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Casals, M.; Brahmer, J.R.; Callahan, M.K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M.A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M.E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 2020, 6, 1–21. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, S.; Labarriere, N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? OncoImmunology 2018, 7, e1364828. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, Y.; Du, X.-J.; Liu, J.-Q.; Huang, C.-L.; Chen, L.; Zhou, G.-Q.; Li, W.-F.; Mao, Y.-P.; Hsu, C.; et al. Comparative safety of immune checkpoint inhibitors in cancer: Systematic review and network meta-analysis. BMJ 2018, 363, k4226. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Grizzi, G.; Ghidini, M.; Ghidini, A.; Ratti, M.; Panni, S.; Cabiddu, M.; Ghilardi, M.; Borgonovo, K.; Parati, M.C.; et al. Immune-related Adverse Events and Survival in Solid Tumors Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. J. Immunother. 2020, 43, 1–7. [Google Scholar] [CrossRef]
- Yoest, J.M. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: A short review. ImmunoTargets Ther. 2017, 6, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parakh, S.; Cebon, J.; Klein, O. Delayed Autoimmune Toxicity Occurring Several Months After Cessation of Anti-PD-1 Therapy. Oncologist 2018, 23, 849–851. [Google Scholar] [CrossRef] [Green Version]
- Pauken, K.E.; Dougan, M.; Rose, N.R.; Lichtman, A.H.; Sharpe, A.H. Adverse Events Following Cancer Immunotherapy: Obstacles and Opportunities. Trends Immunol. 2019, 40, 511–523. [Google Scholar] [CrossRef]
- Khoja, L.; Day, D.; Chen, T.W.-W.; Siu, L.L.; Hansen, A.R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Ann. Oncol. 2017, 28, 2377–2385. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Saito, Y.; Okamoto, K.; Narumi, K.; Furugen, A.; Takekuma, Y.; Sugawara, M.; Kobayashi, M. Preexisting autoimmune disease is a risk factor for immune-related adverse events: A meta-analysis. Support. Care Cancer 2021, 29, 7747–7753. [Google Scholar] [CrossRef]
- Kartolo, A.; Sattar, J.; Sahai, V.; Baetz, T.; Lakoff, J.M. Predictors of Immunotherapy-Induced Immune-Related Adverse Events. Curr. Oncol. 2018, 25, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eun, Y.; Kim, I.Y.; Sun, J.-M.; Lee, J.; Cha, H.-S.; Koh, E.-M.; Kim, H.; Lee, J. Risk factors for immune-related adverse events associated with anti-PD-1 pembrolizumab. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, C.; Garcia-Diaz, D.; Codner, E.; Salas-Pérez, F.; Carrasco, E.; Pérez-Bravo, F. PD-L1 gene polymorphisms and low serum level of PD-L1 protein are associated to type 1 diabetes in Chile. Diabetes/Metab. Res. Rev. 2014, 30, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, B.; Pearce, S.H.S.; Charlton, S.; Marshall, N.; Rowan, A.D.; Griffiths, I.D.; Kendall-Taylor, P.; Cawston, T.E.; Young-Min, S. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology 2002, 41, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Klocke, K.; Sakaguchi, S.; Holmdahl, R.; Wing, K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl. Acad. Sci. USA 2016, 113, E2383–E2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, Z.; Nomura, T.; Sakaguchi, S. CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science 2008, 322, 271–275. [Google Scholar] [CrossRef]
- Lo, B.; Fritz, J.M.; Su, H.C.; Uzel, G.; Jordan, M.B.; Lenardo, M.J. CHAI and LATAIE: New genetic diseases of CTLA-4 checkpoint insufficiency. Blood 2016, 128, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Selby, M.J.; Engelhardt, J.J.; Quigley, M.; Henning, K.A.; Chen, T.; Srinivasan, M.; Korman, A.J. Anti-CTLA-4 Antibodies of IgG2a Isotype Enhance Antitumor Activity through Reduction of Intratumoral Regulatory T Cells. Cancer Immunol. Res. 2013, 1, 32–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knochelmann, H.M.; Dwyer, C.; Bailey, S.; Amaya, S.M.; Elston, D.M.; Mazza-McCrann, J.M.; Paulos, C.M. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell. Mol. Immunol. 2018, 15, 458–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Euw, E.; Chodon, T.; Attar, N.; Jalil, J.; Koya, R.C.; Comin-Anduix, B.; Ribas, A. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J. Transl. Med. 2009, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Latchman, Y.E.; Liang, S.C.; Wu, Y.; Chernova, T.; Sobel, R.A.; Klemm, M.; Kuchroo, V.K.; Freeman, G.J.; Sharpe, A.H. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. USA 2004, 101, 10691–10696. [Google Scholar] [CrossRef] [Green Version]
- Gianchecchi, E.; Fierabracci, A. Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Front. Immunol. 2018, 9, 2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, T.; Tanaka, Y.; Nishio, R.; Mitsuiye, T.; Mizoguchi, A.; Wang, J.; Ishida, M.; Hiai, H.; Matsumori, A.; Minato, N.; et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 2003, 9, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of Lupus-like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity 1999, 11, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, T.; Otaka, Y.; Wang, J.; Hiai, H.; Takai, T.; Ravetch, J.V.; Honjo, T. Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b−/−Pdcd1−/− mice. J. Exp. Med. 2005, 202, 1643–1648. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Bar, N.; Ferreira, M.; Newman, A.; Zhang, L.; Bailur, J.K.; Bacchiocchi, A.; Kluger, H.; Wei, W.; Halaban, R.; et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Investig. 2018, 128, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Michot, J.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Msc, E.H.B.; Fisher, D.E. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer 2017, 123, 2143–2153. [Google Scholar] [CrossRef] [Green Version]
- Sandigursky, S.; Mor, A. Immune-Related Adverse Events in Cancer Patients Treated with Immune Checkpoint Inhibitors. Curr. Rheumatol. Rep. 2018, 20, 65. [Google Scholar] [CrossRef]
- Cheng, F.; Loscalzo, J. Autoimmune Cardiotoxicity of Cancer Immunotherapy. Trends Immunol. 2017, 38, 77–78. [Google Scholar] [CrossRef]
- Cancer Care Ontario Clinical Practice Guideline—Immune Checkpoint Inhibitor Toxicity Management 2018. Available online: https://www.cancercareontario.ca/sites/ccocancercare/files/guidelines/full/ImmuneCheckpointInhibitor.pdf (accessed on 22 September 2021).
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. Am. Soc. Clin. Oncol. J. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Chaudhary, N.; Garg, M.; Floudas, C.S.; Soni, P.; Chandra, A.B. Current Diagnosis and Management of Immune Related Adverse Events (irAEs) Induced by Immune Checkpoint Inhibitor Therapy. Front. Pharmacol. 2017, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntyanu, A.; Netchiporouk, E.; Gerstein, W.; Gniadecki, R.; Litvinov, I.V. Cutaneous Immune-Related Adverse Events (irAEs) to Immune Checkpoint Inhibitors: A Dermatology Perspective on Management. J. Cutan. Med. Surg. 2021, 25, 59–76. [Google Scholar] [CrossRef]
- Coleman, E.; Ko, C.; Dai, F.; Tomayko, M.M.; Kluger, H.; Leventhal, J.S. Inflammatory eruptions associated with immune checkpoint inhibitor therapy: A single-institution retrospective analysis with stratification of reactions by toxicity and implications for management. J. Am. Acad. Dermatol. 2019, 80, 990–997. [Google Scholar] [CrossRef]
- Sibaud, V. Dermatologic Reactions to Immune Checkpoint Inhibitors. Am. J. Clin. Dermatol. 2018, 19, 345–361. [Google Scholar] [CrossRef]
- Freeman-Keller, M.; Kim, Y.; Cronin, H.; Richards, A.; Gibney, G.T.; Weber, J. Nivolumab in Resected and Unresectable Metastatic Melanoma: Characteristics of Immune-Related Adverse Events and Association with Outcomes. Clin. Cancer Res. 2016, 22, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.M.; Li, S.; Tran, D.C.; Zhu, G.; Kim, J.; Kwong, B.Y.; Chang, A.L.S. Characterization of dermatitis after PD-1/PD-L1 inhibitor therapy and association with multiple oncologic outcomes: A retrospective case-control study. J. Am. Acad. Dermatol. 2018, 79, 1047–1052. [Google Scholar] [CrossRef]
- Sanlorenzo, M.; Vujic, I.; Daud, A.; Algazi, A.; Gubens, M.A.; Luna, S.A.; Lin, K.; Quaglino, P.; Rappersberger, K.; Ortiz-Urda, S. Pembrolizumab Cutaneous Adverse Events and Their Association with Disease Progression. JAMA Dermatol. 2015, 151, 1206–1212. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef]
- Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M. Cancer immunotherapy—immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.-S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr. Rev. 2019, 40, 17–65. [Google Scholar] [CrossRef] [Green Version]
- Del Rivero, J.; Cordes, L.M.; Klubo-Gwiezdzinska, J.; Madan, R.A.; Nieman, L.K.; Gulley, J.L. Endocrine-Related Adverse Events Related to Immune Checkpoint Inhibitors: Proposed Algorithms for Management. Oncologist 2019, 25, 290–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brancatella, A.; Lupi, I.; Montanelli, L.; Ricci, D.; Viola, N.; Sgro, D.; Antonangeli, L.; Sardella, C.; Aragona, M.; Antonuzzo, A.; et al. Management of thyrotoxicosis induced by PD1 and PD-L1 blockade. J. Endocr. Soc. 2021, 5, bvab093. [Google Scholar] [CrossRef] [PubMed]
- de Filette, J.; Jansen, Y.; Schreuer, M.; Everaert, H.; Velkeniers, B.; Neyns, B.; Bravenboer, B. Incidence of Thyroid-Related Adverse Events in Melanoma Patients Treated with Pembrolizumab. J. Clin. Endocrinol. Metab. 2016, 101, 4431–4439. [Google Scholar] [CrossRef] [PubMed]
- Delivanis, D.A.; Gustafson, M.; Bornschlegl, S.; Merten, A.M.M.; Kottschade, A.L.; Withers, S.; Dietz, P.A.B.; Ryder, M. Pembrolizumab-Induced Thyroiditis: Comprehensive Clinical Review and Insights into Underlying Involved Mechanisms. J. Clin. Endocrinol. Metab. 2017, 102, 2770–2780. [Google Scholar] [CrossRef]
- Castinetti, F.; Albarel, F.; Archambeaud, F.; Bertherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; et al. French Endocrine Society Guidance on endocrine side effects of immunotherapy. Endocr.-Relat. Cancer 2018, 26, G1–G18. [Google Scholar] [CrossRef] [Green Version]
- El Sabbagh, R.; Azar, N.S.; Eid, A.A.; Azar, S.T. Thyroid Dysfunctions Due to Immune Checkpoint Inhibitors: A Review. Int. J. Gen. Med. 2020, 13, 1003–1009. [Google Scholar] [CrossRef]
- Marrone, K.A.; Ying, W.; Naidoo, J. Immune-Related Adverse Events from Immune Checkpoint Inhibitors. Clin. Pharmacol. Ther. 2016, 100, 242–251. [Google Scholar] [CrossRef]
- Fay, A.P.; Moreira, R.B.; Filho, P.R.S.N.; Albuquerque, C.; Barrios, C.H. The management of immune-related adverse events associated with immune checkpoint blockade. Expert Rev. Qual. Life Cancer Care 2016, 1, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Grouthier, V.; Lebrun-Vignes, B.; Moey, M.; Johnson, D.B.; Moslehi, J.J.; Salem, J.-E.; Bachelot, A. Immune Checkpoint Inhibitor-Associated Primary Adrenal Insufficiency: WHO VigiBase Report Analysis. Oncologist 2020, 25, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Lacchetti, C.; Thompson, J.A. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline Summary. J. Oncol. Pr. 2018, 14, 247–249. [Google Scholar] [CrossRef] [PubMed]
- González-Rodríguez, E.; Rodríguez-Abreu, D.; on behalf of the Spanish Group for Cancer. Immuno-Biotherapy (GETICA) Immune Checkpoint Inhibitors: Review and Management of Endocrine Adverse Events. Oncologist 2016, 21, 804–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foppen, M.H.G.; Rozeman, E.A.; van Wilpe, S.; Postma, C.; Snaebjornsson, P.; van Thienen, J.V.; van Leerdam, M.E.; Heuvel, M.V.D.; Blank, C.U.; van Dieren, J.; et al. Immune checkpoint inhibition-related colitis: Symptoms, endoscopic features, histology and response to management. ESMO Open 2018, 3, e000278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassel, J.C.; Heinzerling, L.; Aberle, J.; Bähr, O.; Eigentler, T.K.; Grimm, M.-O.; Grünwald, V.; Leipe, J.; Reinmuth, N.; Tietze, J.K.; et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): Evaluation and management of adverse drug reactions. Cancer Treat. Rev. 2017, 57, 36–49. [Google Scholar] [CrossRef]
- Friedman, C.; Proverbs-Singh, T.A.; Postow, M.A. Treatment of the Immune-Related Adverse Effects of Immune Checkpoint Inhibitors. JAMA Oncol. 2016, 2, 1346–1353. [Google Scholar] [CrossRef]
- Larkin, J.; Sileni, V.C.; Gonzalez, R.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Schachter, J.; Long, G.; Arance, A.; Grob, J.-J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Haanen, J.; Carbonnel, F.; Robert, C.; Kerr, K.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef]
- Tabchi, S.; Messier, C.; Blais, N. Immune-mediated respiratory adverse events of checkpoint inhibitors. Curr. Opin. Oncol. 2016, 28, 269–277. [Google Scholar] [CrossRef]
- Sise, M.E.; Seethapathy, H.; Reynolds, K.L. Diagnosis and Management of Immune Checkpoint Inhibitor-Associated Renal Toxicity: Illustrative Case and Review. Oncologist 2019, 24, 735–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espi, M.; Teuma, C.; Novel-Catin, E.; Maillet, D.; Souquet, P.; Dalle, S.; Koppe, L.; Fouque, D. Renal adverse effects of immune checkpoints inhibitors in clinical practice: ImmuNoTox study. Eur. J. Cancer 2021, 147, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, F.B.; Marrone, K.A.; Troxell, M.L.; Ralto, K.M.; Hoenig, M.P.; Brahmer, J.R.; Le, D.T.; Lipson, E.J.; Glezerman, I.G.; Wolchok, J.; et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016, 90, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Cuzzubbo, S.; Javeri, F.; Tissier, M.; Roumi, A.; Barlog, C.; Doridam, J.; Lebbe, C.; Belin, C.; Ursu, R.; Carpentier, A. Neurological adverse events associated with immune checkpoint inhibitors: Review of the literature. Eur. J. Cancer 2017, 73, 1–8. [Google Scholar] [CrossRef]
- Marini, A.; Bernardini, A.; Gigli, G.L.; Valente, M.; Muniz-Castrillo, S.; Honnorat, J.; Vogrig, A. Neurologic adverse events of immune checkpoint inhibitors: A systematic review. Neurology 2021, 96, 754–766. [Google Scholar] [CrossRef]
- Arbour, K.C.; Mezquita, L.; Long, N.; Rizvi, H.; Auclin, E.; Ni, A.; Martínez-Bernal, G.; Ferrara, R.; Lai, W.V.; Hendriks, L.E.L.; et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients with Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 2872–2878. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Huang, X.; Li, J.; Ma, H.; Zeng, R. Impact of corticosteroid use on outcomes of non–small-cell lung cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2021, 46, 927–935. [Google Scholar] [CrossRef]
- Li, J.; Yang, K.; Zhao, L.; Bai, C.; Sun, Z. Impact of corticosteroids use on efficacy of immune checkpoint inhibitors in cancer patients: A meta-analysis. J. Clin. Oncol. 2020, 38, e15234. [Google Scholar] [CrossRef]
- Pinato, D.J.; Kaseb, A.; Wang, Y.; Saeed, A.; Szafron, D.; Jun, T.; Dharmapuri, S.; Naqash, A.R.; Muzaffar, M.; Navaid, M.; et al. Impact of corticosteroid therapy on the outcomes of hepatocellular carcinoma treated with immune checkpoint inhibitor therapy. J. Immunother. Cancer 2020, 8, e000726. [Google Scholar] [CrossRef] [PubMed]
- Santini, F.C.; Rizvi, H.; Plodkowski, A.J.; Ni, A.; Lacouture, M.E.; Gambarin-Gelwan, M.; Wilkins, O.; Panora, E.; Halpenny, D.F.; Long, N.M.; et al. Safety and Efficacy of Re-treating with Immunotherapy after Immune-Related Adverse Events in Patients with NSCLC. Cancer Immunol. Res. 2018, 6, 1093–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolladille, C.; Ederhy, S.; Sassier, M.; Cautela, J.; Thuny, F.; Cohen, A.A.; Fedrizzi, S.; Chrétien, B.; DA Silva, A.; Plane, A.-F.; et al. Immune Checkpoint Inhibitor Rechallenge After Immune-Related Adverse Events in Patients with Cancer. JAMA Oncol. 2020, 6, 865–871. [Google Scholar] [CrossRef]
- Abu-Sbeih, H.; Ali, F.S.; Naqash, A.R.; Owen, D.; Patel, S.; Otterson, G.A.; Kendra, K.; Ricciuti, B.; Chiari, R.; De Giglio, A.; et al. Resumption of Immune Checkpoint Inhibitor Therapy After Immune-Mediated Colitis. J. Clin. Oncol. 2019, 37, 2738–2745. [Google Scholar] [CrossRef] [PubMed]
- Pollack, M.; Betof, A.; Dearden, H.; Rapazzo, K.; Valentine, I.; Brohl, A.; Ancell, K.; Long, G.; Menzies, A.; Eroglu, Z.; et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann. Oncol. 2018, 29, 250–255. [Google Scholar] [CrossRef]
- Simonaggio, A.; Michot, J.M.; Voisin, A.L.; Le Pavec, J.; Collins, M.; Lallart, A.; Cengizalp, G.; Vozy, A.; Laparra, A.; Varga, A.; et al. Evaluation of Readministration of Immune Checkpoint Inhibitors After Immune-Related Adverse Events in Patients with Cancer. JAMA Oncol. 2019, 5, 1310–1317. [Google Scholar] [CrossRef]
- Laurie, S.A.; Banerji, S.; Blais, N.; Brule, S.; Cheema, P.K.; Cheung, P.; Daaboul, N.; Hao, D.; Hirsh, V.; Juergens, R.; et al. Canadian Consensus: Oligoprogressive, Pseudoprogressive, and Oligometastatic Non-Small-Cell Lung Cancer. Curr. Oncol. 2019, 26, 81–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
irAE | Management | Corticosteroid/Other Medication Dosages |
---|---|---|
Dermatitis | G1/2—supportive care (e.g., thick emollients); monitor and continue ICI G2—topical steroids; can continue ICI as long as symptoms are tolerable, else hold until resolution to G0/1 G3/4—dermatology consultation G3—oral prednisone with taper, possible abx; hold ICI until G0/1 sx and consider re-challenge G4—longer term IV steroids with slow taper, hospital admission, discontinue the ICI | G1—emollients (e.g., urea-based cream, oatmeal baths, cool compress) G2—Topical steroids (e.g., 1% hydrocortisone cream, 0.1% betamethasone cream; Anti-histamines (e.g., diphenhydramine, hydroxyzine, rupatadine) G3—prednisone 0.5–1 mg/kg/d until symptoms resolve to G0/1, then taper over 2–4 wks if 0.5 mg/kg/d OR over 4 wks if 1 mg/kg/d G4—methylprednisolone 1–2 mg/kg/d IV, then taper over ≥4 wks once resolved to G0/1 |
Hypothyroidism | G1—monitor TSH G2—monitor TSH and fT4; levothyroxine; hold ICI until stable on hormone replacement G3/4—steroids, hospitalization for supportive management G3—hold ICI until stable on hormone replacement AND steroids tapered to <7.5 mg/d prednisone equivalents G4—hold ICI until stable on hormone replacement AND steroids tapered to <7.5 mg/d prednisone equivalents; consider discontinuation | G2—levothyroxine 0.5–1.5 mcg/kg if no heart disease or severe comorbidities; if severe heart disease or comorbidities levothyroxine 12–25 mcg daily and increase every 4–6 wks as indicated ** if pt has hypothyroidism AND adrenal insufficiency then start steroid 2–3 d before starting levothyroxine G3/4—methylprednisolone 1–2 mg/kg/d IV until G0/1 sx or patient baseline and taper over at least 4 wks |
Hyperthyroidism | G1—monitor TSH G2—monitor TSH and fT4; beta blocker and hydration for symptom management G3/4—possible hospitalization for supportive management +/− methimazole/PTU for diagnosed Grave’s disease G3—hold ICI until stable on hormone replacement G4—hold ICI until stable on hormone replacement | G2/3/4—propranolol 10–40 mg QID/atenolol 25–50 mg/d; if Graves’ disease—methimazole (20–30 mg/d reduced after 4–6 wks to maintenance dose of 5–15 mg/d)/PTU (200–300 mg/d reduced to maintenance dose of 50–150 mg/d ** if pt becomes hypothyroid, initiate thyroid replacement as with hypothyroidism |
Hypophysitis | G1—monitor, supportive therapy if sx G2—supportive therapy if sx, add steroid, withhold ICI until G0/1 and re-challenge once stable on hormone replacement and asx G3/4—mgmt. as with G2, and consider discontinuing the ICI if irAE was severe/life-threatening | G1/2—if AM cortisol <250 nM or random cortisol <150 nM, then hydrocortisone TID (e.g., 20 mg QAM, 10 mg QPM + QHS); consider thyroid hormone replacement if falling TSH +/− low fT4 and ** always replace cortisol for ~1 wk prior to initiating thyroxine G3/4—if residual toxicity (≤ G2) and pt on <10 mg prednisone/d, then consider restarting ICI |
Adrenal Insufficiency | G1/2—consult endocrinology; monitor labs (e.g., cortisol, ACTH, aldosterone, renin) and determine if primary or secondary based on ACTH; if G1 continue ICI G2/3—initiate hormone replacement if needed and start corticosteroid; hold ICI until G0/1 sx and stable on hormone replacement after tapering G3/4—treat as G1/2 AND hospitalization, IV corticosteroids after ruling out sepsis; hold ICI until G0/1 sx and stable on hormone replacement after tapering G4—2–3 L of isotonic saline or 5% dextrose in isotonic saline immediately ** recommend a medic alert bracelet | G2—prednisone 60–80 mg PO daily tapering over 1 mos G3/4—IV stress dose corticosteroids (4 mg dexamethasone Q12H if dx unclear, or 100 mg hydrocortisone IV ×1 then 50 mg IV Q6H if primary AI) and taper to maintenance doses over 2 weeks upon discharge ** if primary AI consider whether mineralocorticoid replacement (e.g., fludrocortisone) is needed |
Diarrhea/Colitis | G1—supportive (e.g., loperamide); consider steroids if no improvement after 24 h G2—supportive (e.g., loperamide, IV hydration, electrolyte optimization), steroids; hold ICI until G0 and pt is on <7.5 mg/d prednisone equivalents on anti-CTLA-4, or <10 mg/d prednisone equivalents on anti-PD-1; if no improvement in 72 h, treat as G3/4 G3/4—higher dose steroids +/− abx, and hospital admission for supportive care; discontinue ICI; consider infliximab | G1/2—Loperamide (2 tabs at onset of diarrhea with 1 tab at each subsequent episode, no more than 10 tabs/day; discontinue when diarrhea stops); prednisone 0.5–1 mg/kg/d until G0/1 then taper over 2–4 wks if 0.5 mg/kg/d OR over 4 wks if 1 mg/kg/d G3/4—methylprednisolone 1–2 mg/kg/d IV until improvement then slow taper over ≥4 wks; if no response after 3 d, start infliximab 5 mg/kg IV Q2 wks (caution with G4 due to perforation risk) |
Hepatitis | G1—monitor G2—prednisone until transaminases normalize, with slow taper and re-challenge once on ≤10 mg/d prednisone equivalents; increase to higher dose if no response G3/4—consult specialist; consider biopsy; initiate high dose IV steroids with long taper; if no response by 3 days, initiate MMF, and if no response by 7 days, initiate another immunosuppressant | G2—prednisone 0.5–1 mg/kg/d until transaminases normalize, taper over 2–4 wks if at 0.5 mg/kg/d, OR over 4 wks if at 1 mg/kg/d G3/4—methylprednisolone 1–2 mg/kg/d until transaminases normalize, then taper with prednisone at 1–2 mg/kg/d over ≥ 4 wks; MMF 500–1000 mg BID and discontinue once prednisone at 10 mg/d; add other immunosuppressant if no response ¥ |
Pneumonitis | G1—monitor, supportive, initiate SaO2 and CXR/CT with each cycle prior to proceeding; consider steroid G2—specialist consult (respirology, ID); prednisone with long taper once G0/1; if no improvement by 72 h treat as G3/4; hold ICI until G0/1 and pt on <10 mg/d prednisone equivalents; can re-challenge but if toxicity recurs discontinue ICI; empiric abx if any suspicion of infection G3/4—specialist consult (respirology, ID) and consider bx; prophylactic abx for opportunistic infections, high dose steroids with long taper once G0/1; if no improvement by 48 h add additional immunosuppression with infliximab; supportive care with O2 as indicated, permanently discontinue ICI | G2—prednisone (or IV equivalents) 1 mg/kg/d and taper over ≥4 wks G3/4—methylprednisolone 2–4 mg/kg/d IV and taper over ≥6 wks; infliximab 5 mg/kg IV Q2 wks (if contraindicated due to risk of perforation, sepsis, TB, NYHA 3/4 CHF) then consider MMF (500–1000 mg PO BID) or another immunosuppressive agent) |
Nephritis | G1—monitor, supportive care, discontinue nephrotoxic medications, correct electrolyte imbalances; continue ICI G2/3/4—r/o other causes of elevated Cr with urine microscopy, U/S +/− bx, and consider specialist consultation; MMF in refractory cases, possible need for hemodialysis G2—prednisone with taper once G0/1; hold ICI until G0/1 and pt is on <10 mg/d prednisone equivalents; if Cr is increased for >7 d or sx worsen, then treat as G3/4 G3/4—methylprednisolone with long taper once G0/1; discontinue ICI | G2—prednisone 0.5–1 mg/kg/d and taper over 2–4 wks if 0.5 mg/kg/d OR over 4 wks if 1 mg/kg/d; if no response treat as G3/4 G3/4—methylprednisolone 1–2 mg/kg/d IV and taper over ≥4 wks once G0/1 |
Neurotoxicity | G1—monitor G2/3/4—specialist consultation, sx-directed investigations (MRI, LP, NCS, EMG); consider adjunct immunosuppressive agent if no improvement on prednisone (e.g., MMF, infliximab) and other supportive approaches (e.g., IVIG, plasmapheresis) G2—steroids, hold ICI, re-challenge when G0/1 and with multidisciplinary input G3/4—higher dose steroid, discontinue ICI | G2—prednisone 0.5–1 mg/kg/d and taper over 2–4 wks if 0.5 mg/kg/d OR over 4 wks if 1 mg/kg/d; if no response treat as G3/4 G3/4—prednisone 1–2 mg/kg/d IV and taper over ≥4 wks once resolution to G0/1; MMF 500 mg BID; infliximab 5 mg/kg |
Cardiotoxicity | G1/2/3/4—hold ICI; admit the patient and start high dose corticosteroids and obtain cardiology consult for sx management appropriateness of re-challenge is unknown, though consider discontinuation at G2/3/4 | G1/2/3/4—prednisone 1–2 mg/kg daily and switch to methylprednisolone 1 g daily if prednisone ineffective; if refractory also consider other immunosuppressive agents (e.g., MMF, infliximab, ATG) ** Infliximab is contraindicated in patients with mod–severe HF as it is associated with HF itself |
irAE | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|---|
Dermatitis | Macules/papules covering <10% BSA +/− associated symptoms (e.g., pruritis, burning, tightness) | Macules/papules covering 10–30% BSA +/− associated symptoms (e.g., pruritis, burning, tightness) AND limiting ADLs | Macules/papules covering >30% BSA +/− associated symptoms (e.g., pruritis, burning, tightness) AND limiting self-care ADLs AND local superinfection | Life-threatening; SJS or widespread mucosal ulcerations (complicated rash with full-thickness dermal ulceration or necrosis) |
Hypothyroidism | Asymptomatic; fT4 normal AND TSH >10 mUI/L | Moderate sx (e.g., fatigue, constipation, weight gain, loss of appetite, dry skin, eyelid edema, puffy face, hair loss); Low fT4 +/− TSH >10 mUI/L | Severe sx (e.g., bradycardia, hypotension, pericardial effusion, depression, hypoventilation, stupor, lethargy); very low fT4 and very high TSH | Life-threatening; extremely low fT4 and extremely high TSH (myxedema coma) |
Hyperthyroidism | Asymptomatic; fT4 normal AND TSH suppressed (<0.3 mUI/L) | Moderate sx (e.g., weight loss, increased appetite, anxiety and irritability, muscle weakness, menstrual irregularities, fatigue, tachycardia); fT4 high AND TSH suppressed (<0.1 mUI/L) | Severe sx (e.g., arrhythmia, tremor, sweating, insomnia, diarrhea); fT4 normal AND TSH suppressed (<0.1 mUI/L) | Life-threatening; fT4 high AND TSH suppressed (<0.1 mUI/L) |
Hypophysitis | Asymptomatic or mild sx (e.g., fatigue, weakness); clinical or diagnostic observations only | Moderate sx (e.g., headache, hypotension); limits IALDs | Severe or medically significant sx but not life-threatening; limiting self-care ADLs | Life-threatening consequences or any visual disturbances; urgent intervention indicated |
Adrenal Insufficiency | Asymptomatic or mild sx (e.g., fatigue); clinical or diagnostic observations only | Moderate sx requiring medical intervention | Severe sx requiring hospitalization | Life-threatening adrenal crisis requiring urgent intervention (e.g., severe hypotension or hypovolemic shock, acute abdominal pain, vomiting, fever) |
Diarrhea/colitis | <4 stools/day above pt baseline | 4–6 stools/day above pt baseline AND associated abdominal pain, mucus, or blood in the stool | ≥7 stools/day above pt baseline AND incontinence or need for hospitalization for IV fluids ≥24 h | Life-threatening; grade 3 sx plus fever or peritoneal signs consistent with perforation or ileus |
Hepatitis (these ranges may differ if the patient is receiving ICI for HCC) | AST/ALT up to 3× ULN or t-bili up to 1.5× ULN (or <2× baseline) | AST/ALT >3× ULN or t-bili >1.5–3× ULN (or >2× baseline) | AST/ALT >5–20× ULN or t-bili >3–10× ULN | AST/ALT >20× ULN or t-bili >10× ULN |
Pneumonitis | Asymptomatic, diagnosis is radiographic | Sx, medical intervention is indicated as it limits IADLs | Severe sx that limit self-care ADLs; supplemental O2 is indicated | Life-threatening respiratory compromise; urgent intervention indicated |
Nephritis | Serum Cr > ULN AND >1.5–2× pt baseline; 1+ proteinuria (<1 g/24 h) | Serum >2–3× pt baseline; 2+ proteinuria (<1.0–3.4 g/24 h) | Serum Cr >3× pt baseline; proteinuria >3.5 g/24 h | Life-threatening; serum Cr >6× ULN; dialysis indicated |
Neurotoxicity | Asymptomatic or mildly sx | New onset moderate sx limiting IALDs | New onset severe sx (e.g., vision changes, weakness, sensory deficits); affecting self-care ADLs; not life-threatening | Life-threatening; urgent intervention indicated |
Cardiotoxicity | Abnormal cardiac biomarkers or ECG | Abnormal screening tests with mild sx | Moderately abnormal testing or sx with mild activity | Life-threatening; moderate to severe decompensation, intervention required |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coschi, C.H.; Juergens, R.A. The Price of Success: Immune-Related Adverse Events from Immunotherapy in Lung Cancer. Curr. Oncol. 2021, 28, 4392-4407. https://doi.org/10.3390/curroncol28060373
Coschi CH, Juergens RA. The Price of Success: Immune-Related Adverse Events from Immunotherapy in Lung Cancer. Current Oncology. 2021; 28(6):4392-4407. https://doi.org/10.3390/curroncol28060373
Chicago/Turabian StyleCoschi, Courtney H., and Rosalyn A. Juergens. 2021. "The Price of Success: Immune-Related Adverse Events from Immunotherapy in Lung Cancer" Current Oncology 28, no. 6: 4392-4407. https://doi.org/10.3390/curroncol28060373
APA StyleCoschi, C. H., & Juergens, R. A. (2021). The Price of Success: Immune-Related Adverse Events from Immunotherapy in Lung Cancer. Current Oncology, 28(6), 4392-4407. https://doi.org/10.3390/curroncol28060373