Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report
Abstract
:1. Introduction
2. Case Presentation
3. Biochemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tousimis, E. Synchronous bilateral invasive breast cancer. Breast Cancer Online 2005, 8, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Mejdahl, M.K.; Wohlfahrt, J.; Holm, M.; Balslev, E.; Knoop, A.S.; Tjønneland, A.; Melbye, M.; Kroman, N. Breast cancer mortality in synchronous bilateral breast cancer patients. Br. J. Cancer 2019, 120, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, N.; Subramanyan, A.; Radhakrishna, S. Synchronous bilateral breast cancers. J. Clin. Diagn. Res. 2015, 9, XC10–XC13. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, Y.; Xue, J.Y.; Chen, Y.; Chen, Y.L.; Xiao, Q.; Yang, W.T.; Shao, Z.; Wu, J. A clinicopathological study of early-stage synchronous bilateral breast cancer: A retrospective evaluation and prospective validation of potential risk factors. PLoS ONE 2014, 9, e0095185. [Google Scholar] [CrossRef]
- Ibrahim, N.Y.; Sroor, M.Y.; Darwish, D.O. Impact of bilateral breast cancer on prognosis: Synchronous versus metachronous tumors. Asian Pac. J. Cancer Prev. 2015, 16, 1007–1010. [Google Scholar] [CrossRef] [Green Version]
- Marpeau, O.; Ancel, P.Y.; Antoine, M.; Uzan, S.; Barranger, E. Synchronous bilateral breast cancer: Risk factors, diagnosis, histology and treatment. Gynecol. Obs. Fertil. 2008, 36, 35–44. [Google Scholar] [CrossRef]
- Beckmann, K.R.; Buckingham, J.; Craft, P.; Dahlstrom, J.E.; Zhang, Y.; Roder, D.; Stuart-Harris, R. Clinical characteristics and outcomes of bilateral breast cancer in an Australian cohort. Breast 2011, 20, 158–164. [Google Scholar] [CrossRef]
- Pinheiro, J.; Rodrigues, D.; Fernandes, P.; Pereira, A.; Trigo, L. Synchronous bilateral breast cancer patients submitted to conservative treatment and brachytherapy—The experience of a service. Rep. Pract. Oncol. Radiother. 2018, 23, 322–330. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Q.; Lang, G.T.; Cao, A.Y.; Shao, Z.M. Concordance of Hormone Receptor Status and BRCA1/2 Mutation among Women with Synchronous Bilateral Breast Cancer. Front. Oncol. 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Mejdahl, M.K.; Wohlfahrt, J.; Holm, M.; Knoop, A.S.; Tjønneland, A.; Melbye, M.; Kroman, N.; Balslev, E. Synchronous bilateral breast cancer: A nationwide study on histopathology and etiology. Breast Cancer Res. Treat. 2020, 182, 229–238. [Google Scholar] [CrossRef]
- Holm, M.; Tjønneland, A.; Balslev, E.; Kroman, N. Prognosis of synchronous bilateral breast cancer: A review and meta-analysis of observational studies. Breast Cancer Res. Treat. 2014, 146, 461–475. [Google Scholar] [CrossRef]
- Irvine, T.; Allen, D.S.; Gillett, C.; Hamed, H.; Fentiman, I.S. Prognosis of synchronous bilateral breast cancer. Br. J. Surg. 2009, 96, 376–380. [Google Scholar] [CrossRef]
- Nguy, S.; Gerber, N.K. Synchronous Bilateral Breast Cancer: Implications for Adjuvant Radiation. Glob. Clin. Case Rep. 2019, 1–3. [Google Scholar] [CrossRef]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- Hassan, M.; Watari, H.; Abualmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. Biomed Res. Int. 2014, 2014, 150845. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 2000, 256, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.; Bloukh, S.; Carpenter, V.J.; Alwohoush, E.; Bakeer, J.; Darwish, S.; Azab, B.; Gewirtz, D.A. Therapy-Induced Senescence: An “Old” Friend Becomes the Enemy. Cancers 2020, 12, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demaria, M.; Leary, M.N.O.; Chang, J.; Shao, L.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A.M.; et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017, 7, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkland, J.L.; Tchkonia, T.; Zhu, Y.; Niedernhofer, L.J.; Robbins, P.D. The Clinical Potential of Senolytic Drugs. J. Am. Geriatr. Soc. 2017, 65, 2297–2301. [Google Scholar] [CrossRef]
- Zhu, Y.; Tchkonia, T.; Fuhrmann-Stroissnigg, H.; Dai, H.M.; Ling, Y.Y.; Stout, M.B.; Pirtskhalava, T.; Giorgadze, N.; Johnson, K.O.; Giles, C.B.; et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016, 15, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Wang, Y.; Shao, L.; Laberge, R.; Demaria, M.; Campisi, J.; Janakiraman, K.; Sharpless, N.E.; Ding, S.; Feng, W.; et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 2016, 22, 78–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, T.; Alhesa, A.; Al-Balas, M.; Abuelaish, O.; Mansour, A.; Awad, H.; El-Sadoni, M.; Carpenter, V.J.; Azab, B. Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Biosci. Rep. 2021, 41, BSR20210079. [Google Scholar] [CrossRef]
- Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018, 28, 436–453. [Google Scholar] [CrossRef] [PubMed]
- Delbridge, A.R.D.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015, 22, 1071–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senkus, E.; Szade, J.; Pieczyńska, B.; Żaczek, A.; Pikiel, J.; Sosińska-Mielcarek, K.; Karpińska, A.; Jassem, J. Are synchronous and metachronous bilateral breast cancers different? An immunohistochemical analysis focused on cell cycle regulation. Histol. Histopathol. 2018, 33, 55–64. [Google Scholar] [CrossRef]
- Febres-Aldana, C.A.; Kuritzky, N.; Krishnamurthy, K.; Poppiti, R.; Howard, L. Evaluation of the expression of P16INK4A by immunohistochemistry in post-neoadjuvant chemotherapy hormone receptor negative breast cancer specimens. Breast Dis. 2020, 39, 51–59. [Google Scholar] [CrossRef]
- De Carne, S.; Guillemin, Y.; Be, A.; Ravon, E.; Gamelin, E.; Juin, P.; Barre, B.; Coqueret, O. Escape from p21-mediated Oncogene-induced Senescence Leads to Cell Dedifferentiation and Dependence on Anti-apoptotic Bcl-xL and MCL1 Proteins. J. Biol. Chem. 2011, 286, 12825–12838. [Google Scholar] [CrossRef] [Green Version]
- Saleh, T.; Carpenter, V.; Tyutyunyk-Massey, L.; Murray, G.; Leverson, J.; Souers, A.; Alotaibi, M.; Faber, A.; Reed, J.; Harada, H.; et al. Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-X L -BAX Interaction. Mol. Oncol. 2020, 14, 2504–2519. [Google Scholar] [CrossRef]
- Ryu, S.J.; Oh, Y.S.; Park, S.C. Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death Differ. 2007, 14, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Oakes, S.R.; Vaillant, F.; Lim, E.; Lee, L.; Breslin, K.; Feleppa, F.; Smyth, G.K.; Strasser, A.; Huang, D.C.S.; Visvader, J.E.; et al. Sensitization of BCL-2–expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc. Natl. Acad. Sci. USA 2012, 109, 2766–2771. [Google Scholar] [CrossRef] [Green Version]
- Campbell, K.J.; Dhayade, S.; Ferrari, N.; Sims, A.H.; Johnson, E.; Mason, S.M.; Dickson, A.; Ryan, K.M.; Kalna, G.; Edwards, J.; et al. MCL-1 is a prognostic indicator and drug target in breast cancer article. Cell Death Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, J.; Cardin, G.; Malaquin, N.; Boisvert, J.-S.; Rodier, F.; Wong, P. Senolytic Targeting of Bcl-2 Anti-Apoptotic Family Increases Cell Death in Irradiated Sarcoma Cells. Cancers 2021, 13, 386. [Google Scholar] [CrossRef] [PubMed]
- Shahbandi, A.; Rao, S.G.; Anderson, A.Y.; Frey, W.D.; Olayiwola, J.O.; Ungerleider, N.A.; Jackson, J.G. BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death Differ. 2020. [Google Scholar] [CrossRef] [PubMed]
Case 1 | Case 2 | |||
---|---|---|---|---|
Right | Left | Right | Left | |
BI-RADS | 4 | 5 | 5 | 5 |
Diagnosis | IDC | IDC | IDC | IDC |
Grade | G1 | G3 | G1 | G3 |
TNM Staging | T2N0M0 | T4bN1M0 | T2N0M0 | T2N2M0 |
Receptor Status | ER+, PR+, HER2+ | ER+, PR+, HER2- | ER+, PR+, HER2+ | ER+, PR+, HER2- |
NAC Regimen | A+C (4 cycles) followed by D+T+ P | A+C (4 cycles) followed by D+T+ P | ||
Surgical Intervention | Bilateral MRM + axillary lymph nodes dissection | Bilateral MRM + axillary lymph nodes dissection | ||
ypTNM Staging | ypT1c ypN0 | ypT1a ypN1a | ypT1a ypN0 | pT1b ypN2a |
Adjuvant therapy | Radiotherapy 50 Gy over 25 fractions trastuzumab and tamoxifen | Radiotherapy 50 Gy over 25 fractions trastuzumab and tamoxifen |
Case 1 | Case 2 | |||||||
---|---|---|---|---|---|---|---|---|
T | N | T | N | |||||
Left | Right | Left | Right | Left | Right | Left | Right | |
p16INK4a | − | − | − | 1% | 2% | − | − | − |
p21Cip1 | 5% | 60% | 50% | 80% | 70% | 90% | 70% | 60% |
Ki67 | 65% | 35% | − | − | 70% | 5% | − | − |
Lamin B1 | 50% | 60% | 10% | 80% | 90% | 90% | − | 90% |
H3K9Me3 | <10% | 60% | 70% | 90% | 90% | 90% | 95% | 85% |
VEGF | − | 60% | − | 25% | − | − | − | − |
p53 | 75% | 45% | − | <1% | 1% | 1% | − | − |
NOXA | 60% | 40% | 5% | 5% | 90% | 80% | 1% | − |
MCL-1 | 50% | 80% | − | − | 50% | 70% | 80% | 50% |
BAX | 70% | <10% | − | 10% | 90% | 90% | 30% | 10% |
BCL-XL | 30% | 40% | 5% | <1% | <5% | <5% | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, T.; El-Sadoni, M.; Alhesa, A.; Awad, H.; Jaradat, M.; Al-Hazaimeh, M.; Dawoud, R.; Mryyian, A.; Azab, B. Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report. Curr. Oncol. 2021, 28, 3836-3845. https://doi.org/10.3390/curroncol28050327
Saleh T, El-Sadoni M, Alhesa A, Awad H, Jaradat M, Al-Hazaimeh M, Dawoud R, Mryyian A, Azab B. Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report. Current Oncology. 2021; 28(5):3836-3845. https://doi.org/10.3390/curroncol28050327
Chicago/Turabian StyleSaleh, Tareq, Mohammed El-Sadoni, Ahmad Alhesa, Heyam Awad, Mahmoud Jaradat, Mohammad Al-Hazaimeh, Rand Dawoud, Amel Mryyian, and Bilal Azab. 2021. "Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report" Current Oncology 28, no. 5: 3836-3845. https://doi.org/10.3390/curroncol28050327
APA StyleSaleh, T., El-Sadoni, M., Alhesa, A., Awad, H., Jaradat, M., Al-Hazaimeh, M., Dawoud, R., Mryyian, A., & Azab, B. (2021). Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report. Current Oncology, 28(5), 3836-3845. https://doi.org/10.3390/curroncol28050327