Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report
Abstract
1. Introduction
2. Case Presentation
3. Biochemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tousimis, E. Synchronous bilateral invasive breast cancer. Breast Cancer Online 2005, 8, 8–10. [Google Scholar] [CrossRef]
- Mejdahl, M.K.; Wohlfahrt, J.; Holm, M.; Balslev, E.; Knoop, A.S.; Tjønneland, A.; Melbye, M.; Kroman, N. Breast cancer mortality in synchronous bilateral breast cancer patients. Br. J. Cancer 2019, 120, 761–767. [Google Scholar] [CrossRef]
- Padmanabhan, N.; Subramanyan, A.; Radhakrishna, S. Synchronous bilateral breast cancers. J. Clin. Diagn. Res. 2015, 9, XC10–XC13. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, Y.; Xue, J.Y.; Chen, Y.; Chen, Y.L.; Xiao, Q.; Yang, W.T.; Shao, Z.; Wu, J. A clinicopathological study of early-stage synchronous bilateral breast cancer: A retrospective evaluation and prospective validation of potential risk factors. PLoS ONE 2014, 9, e0095185. [Google Scholar] [CrossRef]
- Ibrahim, N.Y.; Sroor, M.Y.; Darwish, D.O. Impact of bilateral breast cancer on prognosis: Synchronous versus metachronous tumors. Asian Pac. J. Cancer Prev. 2015, 16, 1007–1010. [Google Scholar] [CrossRef][Green Version]
- Marpeau, O.; Ancel, P.Y.; Antoine, M.; Uzan, S.; Barranger, E. Synchronous bilateral breast cancer: Risk factors, diagnosis, histology and treatment. Gynecol. Obs. Fertil. 2008, 36, 35–44. [Google Scholar] [CrossRef]
- Beckmann, K.R.; Buckingham, J.; Craft, P.; Dahlstrom, J.E.; Zhang, Y.; Roder, D.; Stuart-Harris, R. Clinical characteristics and outcomes of bilateral breast cancer in an Australian cohort. Breast 2011, 20, 158–164. [Google Scholar] [CrossRef]
- Pinheiro, J.; Rodrigues, D.; Fernandes, P.; Pereira, A.; Trigo, L. Synchronous bilateral breast cancer patients submitted to conservative treatment and brachytherapy—The experience of a service. Rep. Pract. Oncol. Radiother. 2018, 23, 322–330. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Q.; Lang, G.T.; Cao, A.Y.; Shao, Z.M. Concordance of Hormone Receptor Status and BRCA1/2 Mutation among Women with Synchronous Bilateral Breast Cancer. Front. Oncol. 2020, 10, 27. [Google Scholar] [CrossRef]
- Mejdahl, M.K.; Wohlfahrt, J.; Holm, M.; Knoop, A.S.; Tjønneland, A.; Melbye, M.; Kroman, N.; Balslev, E. Synchronous bilateral breast cancer: A nationwide study on histopathology and etiology. Breast Cancer Res. Treat. 2020, 182, 229–238. [Google Scholar] [CrossRef]
- Holm, M.; Tjønneland, A.; Balslev, E.; Kroman, N. Prognosis of synchronous bilateral breast cancer: A review and meta-analysis of observational studies. Breast Cancer Res. Treat. 2014, 146, 461–475. [Google Scholar] [CrossRef]
- Irvine, T.; Allen, D.S.; Gillett, C.; Hamed, H.; Fentiman, I.S. Prognosis of synchronous bilateral breast cancer. Br. J. Surg. 2009, 96, 376–380. [Google Scholar] [CrossRef]
- Nguy, S.; Gerber, N.K. Synchronous Bilateral Breast Cancer: Implications for Adjuvant Radiation. Glob. Clin. Case Rep. 2019, 1–3. [Google Scholar] [CrossRef]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- Hassan, M.; Watari, H.; Abualmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. Biomed Res. Int. 2014, 2014, 150845. [Google Scholar] [CrossRef]
- Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 2000, 256, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.; Bloukh, S.; Carpenter, V.J.; Alwohoush, E.; Bakeer, J.; Darwish, S.; Azab, B.; Gewirtz, D.A. Therapy-Induced Senescence: An “Old” Friend Becomes the Enemy. Cancers 2020, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Demaria, M.; Leary, M.N.O.; Chang, J.; Shao, L.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A.M.; et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017, 7, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, J.L.; Tchkonia, T.; Zhu, Y.; Niedernhofer, L.J.; Robbins, P.D. The Clinical Potential of Senolytic Drugs. J. Am. Geriatr. Soc. 2017, 65, 2297–2301. [Google Scholar] [CrossRef]
- Zhu, Y.; Tchkonia, T.; Fuhrmann-Stroissnigg, H.; Dai, H.M.; Ling, Y.Y.; Stout, M.B.; Pirtskhalava, T.; Giorgadze, N.; Johnson, K.O.; Giles, C.B.; et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016, 15, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Wang, Y.; Shao, L.; Laberge, R.; Demaria, M.; Campisi, J.; Janakiraman, K.; Sharpless, N.E.; Ding, S.; Feng, W.; et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 2016, 22, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.; Alhesa, A.; Al-Balas, M.; Abuelaish, O.; Mansour, A.; Awad, H.; El-Sadoni, M.; Carpenter, V.J.; Azab, B. Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Biosci. Rep. 2021, 41, BSR20210079. [Google Scholar] [CrossRef]
- Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018, 28, 436–453. [Google Scholar] [CrossRef] [PubMed]
- Delbridge, A.R.D.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015, 22, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Senkus, E.; Szade, J.; Pieczyńska, B.; Żaczek, A.; Pikiel, J.; Sosińska-Mielcarek, K.; Karpińska, A.; Jassem, J. Are synchronous and metachronous bilateral breast cancers different? An immunohistochemical analysis focused on cell cycle regulation. Histol. Histopathol. 2018, 33, 55–64. [Google Scholar] [CrossRef]
- Febres-Aldana, C.A.; Kuritzky, N.; Krishnamurthy, K.; Poppiti, R.; Howard, L. Evaluation of the expression of P16INK4A by immunohistochemistry in post-neoadjuvant chemotherapy hormone receptor negative breast cancer specimens. Breast Dis. 2020, 39, 51–59. [Google Scholar] [CrossRef]
- De Carne, S.; Guillemin, Y.; Be, A.; Ravon, E.; Gamelin, E.; Juin, P.; Barre, B.; Coqueret, O. Escape from p21-mediated Oncogene-induced Senescence Leads to Cell Dedifferentiation and Dependence on Anti-apoptotic Bcl-xL and MCL1 Proteins. J. Biol. Chem. 2011, 286, 12825–12838. [Google Scholar] [CrossRef]
- Saleh, T.; Carpenter, V.; Tyutyunyk-Massey, L.; Murray, G.; Leverson, J.; Souers, A.; Alotaibi, M.; Faber, A.; Reed, J.; Harada, H.; et al. Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-X L -BAX Interaction. Mol. Oncol. 2020, 14, 2504–2519. [Google Scholar] [CrossRef]
- Ryu, S.J.; Oh, Y.S.; Park, S.C. Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death Differ. 2007, 14, 1020–1028. [Google Scholar] [CrossRef]
- Oakes, S.R.; Vaillant, F.; Lim, E.; Lee, L.; Breslin, K.; Feleppa, F.; Smyth, G.K.; Strasser, A.; Huang, D.C.S.; Visvader, J.E.; et al. Sensitization of BCL-2–expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc. Natl. Acad. Sci. USA 2012, 109, 2766–2771. [Google Scholar] [CrossRef]
- Campbell, K.J.; Dhayade, S.; Ferrari, N.; Sims, A.H.; Johnson, E.; Mason, S.M.; Dickson, A.; Ryan, K.M.; Kalna, G.; Edwards, J.; et al. MCL-1 is a prognostic indicator and drug target in breast cancer article. Cell Death Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, J.; Cardin, G.; Malaquin, N.; Boisvert, J.-S.; Rodier, F.; Wong, P. Senolytic Targeting of Bcl-2 Anti-Apoptotic Family Increases Cell Death in Irradiated Sarcoma Cells. Cancers 2021, 13, 386. [Google Scholar] [CrossRef] [PubMed]
- Shahbandi, A.; Rao, S.G.; Anderson, A.Y.; Frey, W.D.; Olayiwola, J.O.; Ungerleider, N.A.; Jackson, J.G. BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death Differ. 2020. [Google Scholar] [CrossRef] [PubMed]
Case 1 | Case 2 | |||
---|---|---|---|---|
Right | Left | Right | Left | |
BI-RADS | 4 | 5 | 5 | 5 |
Diagnosis | IDC | IDC | IDC | IDC |
Grade | G1 | G3 | G1 | G3 |
TNM Staging | T2N0M0 | T4bN1M0 | T2N0M0 | T2N2M0 |
Receptor Status | ER+, PR+, HER2+ | ER+, PR+, HER2- | ER+, PR+, HER2+ | ER+, PR+, HER2- |
NAC Regimen | A+C (4 cycles) followed by D+T+ P | A+C (4 cycles) followed by D+T+ P | ||
Surgical Intervention | Bilateral MRM + axillary lymph nodes dissection | Bilateral MRM + axillary lymph nodes dissection | ||
ypTNM Staging | ypT1c ypN0 | ypT1a ypN1a | ypT1a ypN0 | pT1b ypN2a |
Adjuvant therapy | Radiotherapy 50 Gy over 25 fractions trastuzumab and tamoxifen | Radiotherapy 50 Gy over 25 fractions trastuzumab and tamoxifen |
Case 1 | Case 2 | |||||||
---|---|---|---|---|---|---|---|---|
T | N | T | N | |||||
Left | Right | Left | Right | Left | Right | Left | Right | |
p16INK4a | − | − | − | 1% | 2% | − | − | − |
p21Cip1 | 5% | 60% | 50% | 80% | 70% | 90% | 70% | 60% |
Ki67 | 65% | 35% | − | − | 70% | 5% | − | − |
Lamin B1 | 50% | 60% | 10% | 80% | 90% | 90% | − | 90% |
H3K9Me3 | <10% | 60% | 70% | 90% | 90% | 90% | 95% | 85% |
VEGF | − | 60% | − | 25% | − | − | − | − |
p53 | 75% | 45% | − | <1% | 1% | 1% | − | − |
NOXA | 60% | 40% | 5% | 5% | 90% | 80% | 1% | − |
MCL-1 | 50% | 80% | − | − | 50% | 70% | 80% | 50% |
BAX | 70% | <10% | − | 10% | 90% | 90% | 30% | 10% |
BCL-XL | 30% | 40% | 5% | <1% | <5% | <5% | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, T.; El-Sadoni, M.; Alhesa, A.; Awad, H.; Jaradat, M.; Al-Hazaimeh, M.; Dawoud, R.; Mryyian, A.; Azab, B. Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report. Curr. Oncol. 2021, 28, 3836-3845. https://doi.org/10.3390/curroncol28050327
Saleh T, El-Sadoni M, Alhesa A, Awad H, Jaradat M, Al-Hazaimeh M, Dawoud R, Mryyian A, Azab B. Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report. Current Oncology. 2021; 28(5):3836-3845. https://doi.org/10.3390/curroncol28050327
Chicago/Turabian StyleSaleh, Tareq, Mohammed El-Sadoni, Ahmad Alhesa, Heyam Awad, Mahmoud Jaradat, Mohammad Al-Hazaimeh, Rand Dawoud, Amel Mryyian, and Bilal Azab. 2021. "Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report" Current Oncology 28, no. 5: 3836-3845. https://doi.org/10.3390/curroncol28050327
APA StyleSaleh, T., El-Sadoni, M., Alhesa, A., Awad, H., Jaradat, M., Al-Hazaimeh, M., Dawoud, R., Mryyian, A., & Azab, B. (2021). Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report. Current Oncology, 28(5), 3836-3845. https://doi.org/10.3390/curroncol28050327