Proton Pump Inhibitors and Oncologic Treatment Efficacy: A Practical Review of the Literature for Oncologists
Abstract
:1. Introduction
2. Tyrosine Kinase Inhibitors
2.1. EGFR TKIs
2.2. Anti-VEGF Inhibitors
2.3. mTOR Inhibitors
2.4. BRAF Inhibitors/MEK Inhibitors
2.5. MET Inhibitors
2.6. ALK Inhibitors
2.7. TRK Inhibitors
2.8. HER2 Inhibitors
2.9. Phosphatidylinositol 3-Kinase Inhibitors
2.10. KIT Inhibitors
3. Monoclonal Antibodies
3.1. Anti-EGFR Monoclonal Antibodies
3.2. Anti-Angiogenic Monoclonal Antibodies
3.3. Anti-HER2 Monoclonal Antibodies
4. Anti-Hormonal Agents
4.1. Estrogen Receptor Inhibitors
4.2. Androgen Receptor Inhibitors
5. Immunotherapy
6. Cycline Inhibitors
7. PARP Inhibitors
8. Oral Chemotherapeutic Agents
9. Parenteral Chemotherapeutic Agents
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, J.Q.; Hunt, R.H. pH, healing rate and symptom relief in acid-related diseases. Yale J. Biol. Med. 1996, 69, 159–174. [Google Scholar] [PubMed]
- Sachs, G.; Shin, J.M.; Howden, C.W. Review article: The clinical pharmacology of proton pump inhibitors. Aliment. Pharm. 2006, 23, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Farley, A.; Wruble, L.D.; Humphries, T.J. Rabeprazole versus ranitidine for the treatment of erosive gastroesophageal reflux disease: A double-blind, randomized clinical trial. Raberprazole Study Group. Am. J. Gastroenterol. 2000, 95, 1894–1899. [Google Scholar] [CrossRef] [PubMed]
- Strand, D.S.; Kim, D.; Peura, D.A. 25 Years of Proton Pump Inhibitors: A Comprehensive Review. Gut Liver 2017, 11, 27–37. [Google Scholar] [CrossRef]
- Savarino, V.; Dulbecco, P.; de Bortoli, N.; Ottonello, A.; Savarino, E. The appropriate use of proton pump inhibitors (PPIs): Need for a reappraisal. Eur. J. Intern. Med. 2017, 37, 19–24. [Google Scholar] [CrossRef]
- Johnson, D.A.; Katz, P.O.; Armstrong, D.; Cohen, H.; Delaney, B.C.; Howden, C.W.; Ketelaris, P.; Tutuian, R.I.; Castell, D.O. The safety of appropriate use of over-the-counter proton pump inhibitors: An evidence-based review and delphi consensus. Drugs 2017, 77, 547–561. [Google Scholar] [CrossRef]
- Smelick, G.S.; Heffron, T.P.; Chu, L.; Dean, B.; West, D.A.; Duvall, S.L.; Lum, B.L.; Budha, N.; Holden, S.N.; Benet, L.Z.; et al. Prevalence of acid-reducing agents (ARA) in cancer populations and ARA drug-drug interaction potential for molecular targeted agents in clinical development. Mol. Pharm. 2013, 10, 4055–4062. [Google Scholar] [CrossRef]
- McLeod, H.L.; Evans, W.E. Oral cancer chemotherapy: The promise and the pitfalls. Clin. Cancer Res. 1999, 5, 2669–2671. [Google Scholar]
- Budha, N.R.; Frymoyer, A.; Smelick, G.S.; Jin, J.Y.; Yago, M.R.; Dresser, M.J.; Holden, S.N.; Benet, L.Z.; Ware, J.A. Drug absorption interactions between oral targeted anticancer agents and PPIs: Is pH-dependent solubility the Achilles heel of targeted therapy? Clin Pharm. 2012, 92, 203–213. [Google Scholar] [CrossRef]
- Blume, H.; Donath, F.; Warnke, A.; Schug, B.S. Pharmacokinetic drug interaction profiles of proton pump inhibitors. Drug Saf. 2006, 29, 769–784. [Google Scholar] [CrossRef]
- Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solassol, I.; Pinguet, F.; Quantin, X. FDA-and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management. Biomolecules 2019, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.; Zimmermann, S.; Adjei, A.A. Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: Comparative pharmacokinetics and drug-drug interactions. Cancer Treat. Rev. 2014, 40, 917–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarceva. Available online: https://www.gene.com/download/pdf/tarceva_prescribing.pdf (accessed on 22 October 2020).
- Chu, M.P.; Ghosh, S.; Chambers, C.R.; Basappa, N.; Butts, C.A.; Chu, Q.; Fenton, D.; Joy, A.A.; Sangha, R.; Smilyle, M.; et al. Gastric acid suppression is associated with decreased erlotinib efficacy in non–small-cell lung cancer. Clin. Lung Cancer 2015, 16, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.H.; Capparelli, E.V.; Kurzrock, R. Association of concurrent acid-suppression therapy with survival outcomes and adverse event incidence in oncology patients receiving erlotinib. Cancer Chemother. Pharm. 2016, 78, 427–432. [Google Scholar] [CrossRef]
- Sharma, M.; Holmes, H.M.; Mehta, H.B.; Chen, H.; Aparasu, R.R.; Shih, Y.-C.T.; Giordano, S.H.; Johnson, M.J. The concomitant use of tyrosine kinase inhibitors and proton pump inhibitors: Prevalence, predictors, and impact on survival and discontinuation of therapy in older adults with cancer. Cancer 2019, 125, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Hilton, J.F.; Tu, D.; Seymour, L.; Shepherd, F.A.; Bradbury, P.A. An evaluation of the possible interaction of gastric acid suppressing medication and the EGFR tyrosine kinase inhibitor erlotinib. Lung Cancer 2013, 82, 136–142. [Google Scholar] [CrossRef]
- Van Leeuwen, R.W.F.; Peric, R.; Hussaarts, K.G.A.M.; Kienhuis, E.; IJzerman, N.S.; de Bruijn, P.; Leest, C.V.; Codrington, H.; Kloover, J.S.; Holt, B.V.; et al. Influence of the acidic beverage cola on the absorption of erlotinib in patients with non-small-cell lung cancer. J. Clin. Oncol. 2016, 34, 1309–1314. [Google Scholar] [CrossRef]
- Yasumuro, O.; Uchida, S.; Kashiwagura, Y.; Suzuki, A.; Tanaka, S.; Inui, N.; Watanabe, H.; Namiki, N. Changes in gefitinib, erlotinib and osimertinib pharmacokinetics under various gastric pH levels following oral administration of omeprazole and vonoprazan in rats. Xenobiotica 2018, 48, 1106–1112. [Google Scholar] [CrossRef]
- Kumarakulasinghe, N.B.; Syn, N.; Soon, Y.Y.; Asmat, A.; Zheng, H.; Loy, E.Y.; Pang, B.; Soo, R.A. EGFR kinase inhibitors and gastric acid suppressants in EGFR-mutant NSCLC: A retrospective database analysis of potential drug interaction. Oncotarget 2016, 7, 85542–85550. [Google Scholar] [CrossRef] [Green Version]
- Zenke, Y.; Yoh, K.; Matsumoto, S.; Umemura, S.; Niho, S.; Ohmatsu, H.; Goto, K.; Ohe, Y. Clinical impact of gastric acid-suppressing medication use on the efficacy of erlotinib and gefitinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations. Clin. Lung Cancer 2016, 17, 412–418. [Google Scholar] [CrossRef]
- Wind, S.; Schmid, M.; Erhardt, J.; Goeldner, R.-G.; Stopfer, P. Pharmacokinetics of afatinib, a selective irreversible ErbB family blocker, in patients with advanced solid tumours. Clin. Pharm. 2013, 52, 1101–1109. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.-L.; Ahn, M.-J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with osimertinib in untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, K.; Dickinson, P.A.; Bui, K.; Cassier, P.A.; Greystoke, A.; Lisbon, E.; Moreno, V.; So, K.; Weilert, D.; Yap, T.A.; et al. The Effect of food or omeprazole on the pharmacokinetics of osimertinib in patients with non-small-cell lung cancer and in healthy volunteers. J. Clin. Pharm. 2018, 58, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Lexi-Interact Drug Interaction Checker in RxTx|College of Physicians and Surgeons of British Columbia. Available online: https://www.cpsbc.ca/for-physicians/college-connector/2018-V06-04/11 (accessed on 22 October 2020).
- Lalani, A.-K.A.; McKay, R.R.; Lin, X.; Simantov, R.; Kaymakcalan, M.D.; Choueiri, T.K. Proton pump inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. Clin. Genitourin. Cancer 2017, 15, 724–732. [Google Scholar] [CrossRef]
- Ha, V.H.; Ngo, M.; Chu, M.P.; Ghosh, S.; Sawyer, M.B.; Chambers, C.R. Does gastric acid suppression affect sunitinib efficacy in patients with advanced or metastatic renal cell cancer? J. Oncol. Pharm. Pract. 2015, 21, 194–200. [Google Scholar] [CrossRef]
- Mir, O.; Touati, N.; Lia, M.; Litière, S.; Cesne, A.L.; Sleijfer, S.; Blay, J.Y.; Leahy, M.; Young, R.; Mathijssen, R.H.J.; et al. Impact of concomitant administration of gastric acid–suppressive agents and pazopanib on outcomes in soft-tissue sarcoma patients treated within the EORTC 62043/62072 Trials. Clin. Cancer Res. 2019, 25, 1479–1485. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.R.; Gibbon, D.G.; Stein, M.N.; Lindquist, D.; Edenfield, J.W.; Martin, J.C.; Gregory, C.; Suttle, A.B.; Tada, H.; Botbyl, J.; et al. Effects of ketoconazole and esomeprazole on the pharmacokinetics of pazopanib in patients with solid tumors. Cancer Chemother. Pharm. 2013, 71, 1635–1643. [Google Scholar] [CrossRef]
- McAlister, R.K.; Aston, J.; Pollack, M.; Du, L.; Koyama, T.; Chism, D.D. Effect of concomitant pH-elevating medications with pazopanib on progression-free survival and overall survival in patients with metastatic renal cell carcinoma. Oncologist 2018, 23, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Rugo, H.S.; Herbst, R.S.; Liu, G.; Park, J.W.; Kies, M.S.; Steinfeldt, H.M.; Pithavala, Y.K.; Reich, S.D.; Freddo, J.L.; Wilding, G. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: Pharmacokinetic and clinical results. J. Clin. Oncol. 2005, 23, 5474–5483. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Gore, M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R D 2011, 11, 113–126. [Google Scholar] [CrossRef]
- Nguyen, L.; Holland, J.; Mamelok, R.; Laberge, M.-K.; Grenier, J.; Swearingen, D.; Armas, D.; Lacy, S. Evaluation of the effect of food and gastric pH on the single-dose pharmacokinetics of cabozantinib in healthy adult subjects. J. Clin. Pharm. 2015, 55, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, M.; De Divitiis, C.; Ottaiano, A.; von Arx, C.; Scala, S.; Tatangelo, F.; Delrio, P.; Tafuto, S. Lenvatinib, a molecule with versatile application: From preclinical evidence to future development in anti-cancer treatment. Cancer Manag. Res. 2019, 11, 3847–3860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussaarts, K.G.A.M.; Veerman, G.D.M.; Jansman, F.G.A.; van Gelder, T.; Mathijssen, R.H.J.; van Leeuwen, R.W.F. Clinically relevant drug interactions with multikinase inhibitors: A Review. Adv. Med. Oncol. 2019, 11, 1758835918818347. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, T. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef] [PubMed]
- De Man, F.M.; Hussaarts, K.G.A.M.; de With, M.; Oomen-de Hoop, E.; de Bruijn, P.; van Halteren, H.K.; van der Burg-de Graauw, N.C.H.P.; Eskens, F.A.L.M.; van Gelder, T.; van Leeuwen, R.W.F.; et al. Influence of the proton pump inhibitor esomeprazole on the bioavailability of regorafenib: A randomized crossover pharmacokinetic study. Clin. Pharm. 2019, 105, 1456–1461. [Google Scholar]
- Johansson, S.; Read, J.; Oliver, S.; Steinberg, M.; Li, Y.; Lisbon, E.; Mathews, D.; Leese, P.T.; Martin, P. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin. Pharm. 2014, 53, 837–847. [Google Scholar] [CrossRef]
- Wedemeyer, R.-S.; Blume, H. Pharmacokinetic drug interaction profiles of proton pump inhibitors: An update. Drug Saf. 2014, 37, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Bremer, S.C.B.; Reinhardt, L.; Sobotta, M.; Hasselluhn, M.C.; Lorf, T.; Ellenrieder, V.; Schworer, H. Pantoprazole does not affect serum trough levels of tacrolimus and everolimus in liver transplant recipients. Front. Med. 2018, 5, 320. [Google Scholar] [CrossRef]
- Chapman, P.B.; Robert, C.; Larkin, J.; Haanen, J.B.; Ribas, A.; Hogg, D.; Hamid, O.; Ascierto, P.A.; Testori, A.; Dummer, J.A.; et al. Vemurafenib in patients with BRAFV600 mutation-positive metastatic melanoma: Final overall survival results of the randomized BRIM-3 study. Ann. Oncol. 2017, 28, 2581–2587. [Google Scholar] [CrossRef]
- Lewis, K.; Hauschild, A.; Larkin, J.; Ribas, A.; Flaherty, K.T.; McArthur, G.A.; Dréno, B.; McKenna, E.; Zhu, Q.; Mun, Y.; et al. Effect of concomitant dosing with acid-reducing agents and vemurafenib dose on survival in patients with BRAFV600 mutation–positive metastatic melanoma treated with vemurafenib ± cobimetinib. Eur. J. Cancer 2019, 116, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Knapen, L.M.; Koornstra, R.H.T.; Driessen, J.H.M.; van Vlijmen, B.; Croes, S.; Schalkwijk, S.; Colbers, A.; Gerritsen, W.R.; Burger, D.M.; de Vries, F.; et al. The impact of dose and simultaneous use of acid-reducing agents on the effectiveness of vemurafenib in metastatic BRAF V600 mutated melanoma: A retrospective cohort study. Targ. Oncol. 2018, 13, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musib, L.; Choo, E.; Deng, Y.; Eppler, S.; Rooney, I.; Chan, I.T.; Dresser, M.J. Absolute bioavailability and effect of formulation change, food, or elevated pH with rabeprazole on cobimetinib absorption in healthy subjects. Mol. Pharm. 2013, 10, 4046–4054. [Google Scholar] [CrossRef]
- Pharmacokinetic Drug-Drug Interaction Study of Encorafenib and Binimetinib on Probe Drugs in Patients with BRAF V600-Mutant Melanoma or Other Advanced Solid Tumors–Full Text View–ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03864042 (accessed on 22 October 2020).
- Grüllich, C. Cabozantinib: A MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent Results Cancer Res. 2014, 201, 207–214. [Google Scholar] [PubMed]
- Sahu, A.; Prabhash, K.; Noronha, V.; Joshi, A.; Desai, S. Crizotinib: A comprehensive review. South Asian J. Cancer 2013, 2, 91–97. [Google Scholar]
- Beardslee, T.; Lawson, J. Alectinib and brigatinib: New second-generation ALK inhibitors for the treatment of non-small cell lung cancer. J. Adv. Pract. Oncol. 2018, 9, 94–101. [Google Scholar]
- Morcos, P.N.; Guerini, E.; Parrott, N.; Dall, G.; Blotner, S.; Bogman, K.; Sturm, C.; Balas, B.; Martin-Facklam, M.; Phipps, A. Effect of food and esomeprazole on the pharmacokinetics of alectinib, a highly selective ALK Inhibitor, in healthy subjects. Clin. Pharm. Drug Dev. 2017, 6, 388–397. [Google Scholar] [CrossRef]
- Drilon, A. TRK inhibitors in TRK fusion-positive cancers. Ann. Oncol. 2019, 30, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Tyverb® for HER2+ Metastatic Breast Cancer. Available online: http://www.tyverb.com/?non-us (accessed on 22 October 2020).
- Koch, K.M.; Im, Y.-H.; Kim, S.-B.; Urruticoechea Ribate, A.; Stephenson, J.; Botbyl, J.; Cartee, L.; Holshouser, J.; Ridgway, D. Effects of esomeprazole on the pharmacokinetics of lapatinib in breast cancer patients. Clin. Pharm. Drug Dev. 2013, 2, 336–341. [Google Scholar] [CrossRef]
- TYKERB (lapatinib) Tablets. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022059s007lbl.pdf (accessed on 22 October 2020).
- PIQRAY® (alpelisib) HR+/HER2-Advanced Breast Cancer Treatment|HCP. Available online: https://www.hcp.novartis.com/products/piqray/metastatic-breast-cancer/ (accessed on 22 October 2020).
- Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 2002, 1, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Burger, H.; van Tol, H.; Boersma, A.W.M.; Brok, M.; Wiemer, E.A.C.; Stoter, G.; Nooter, K. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004, 104, 2940–2942. [Google Scholar] [CrossRef] [PubMed]
- Sprycel. Available online: https://packageinserts.bms.com/pi/pi_sprycel.pdf (accessed on 22 October 2020).
- Egorin, M.J.; Shah, D.D.; Christner, S.M.; Yerk, M.A.; Komazec, K.A.; Appleman, L.R.; Redner, R.L.; Miller, B.M.; Beumer, J.H. Effect of a proton pump inhibitor on the pharmacokinetics of imatinib. Br. J. Clin. Pharm. 2009, 68, 370–374. [Google Scholar] [CrossRef]
- Oostendorp, R.L.; Buckle, T.; Beijnen, J.H.; van Tellingen, O.; Schellens, J.H.M. The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest. New Drugs 2009, 27, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Severino, G.; Chillotti, C.; De Lisa, R.; Del Zompo, M.; Ardau, R. Adverse reactions during imatinib and lansoprazole treatment in gastrointestinal stromal tumors. Ann. Pharm. 2005, 39, 162–164. [Google Scholar] [CrossRef]
- Baselga, J. The EGFR as a target for anticancer therapy--focus on cetuximab. Eur. J. Cancer 2001, 37, S16–S22. [Google Scholar] [CrossRef]
- Panitumumab. Available online: http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Panitumumab%20monograph.pdf (accessed on 22 October 2020).
- Abu-Amna, M.; Bar-Sela, G. Increase in cetuximab-induced skin rash and hypomagnesemia in patients receiving concomitant treatment with proton pump inhibitors (PPIs): A possible drug interaction? Cancer Chemother. Pharm. 2019, 83, 545–550. [Google Scholar] [CrossRef]
- Tejpar, S.; Piessevaux, H.; Claes, K.; Piront, P.; Hoenderop, J.G.J.; Verslype, C.; van Cutsem, E. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: A prospective study. Lancet Oncol. 2007, 8, 387–394. [Google Scholar] [CrossRef]
- FDA. Research C for DE and FDA Drug Safety Communication: Low Magnesium Levels Can Be Associated with Long-Term Use of Proton Pump Inhibitor Drugs (PPIs). 18 June 2019. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-low-magnesium-levels-can-be-associated-long-term-use-proton-pump (accessed on 22 October 2020).
- Avastin. Available online: https://www.rochecanada.com/PMs/Avastin/Avastin_PM_E.pdf (accessed on 22 October 2020).
- Cyramza. Available online: http://pi.lilly.com/ca/cyramza-ca-pm.pdf (accessed on 22 October 2020).
- Rudge, J.S.; Holash, J.; Hylton, D.; Russell, M.; Jiang, S.; Leidich, R.; Papadopoulos, N.; Pyles, E.A.; Torri, A.; Wiegand, S.J.; et al. VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc. Natl. Acad. Sci. USA 2007, 104, 18363–18370. [Google Scholar] [CrossRef] [Green Version]
- Herceptin. Available online: https://www.rochecanada.com/PMs/Herceptin/Herceptin_PM_E.pdf (accessed on 22 October 2020).
- Perjeta. Available online: https://www.rochecanada.com/PMs/Perjeta/Perjeta_PM_E.pdf (accessed on 22 October 2020).
- Roux, C.; Briot, K.; Gossec, L.; Kolta, S.; Blenk, T.; Felsenberg, D.; Reid, D.M.; Eastell, R.; Gluer, C.C. Increase in vertebral fracture risk in postmenopausal women using omeprazole. Calcif. Tissue Int. 2009, 84, 13–19. [Google Scholar] [CrossRef]
- Yu, E.W.; Blackwell, T.; Ensrud, K.E.; Hillier, T.A.; Lane, N.E.; Orwoll, E.; Bauer, D.C. Acid-suppressive medications and risk of bone loss and fracture in older adults. Calcif. Tissue Int. 2008, 83, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-X.; Lewis, J.D.; Epstein, S.; Metz, D.C. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA 2006, 296, 2947–2953. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Hannon, R.A.; Cuzick, J.; Dowsett, M.; Clack, G.; Adams, J.E. Effect of an aromatase inhibitor on bmd and bone turnover markers: 2-year results of the Anastrozole, Tamoxifen, Alone or in Combination (ATAC) trial (18233230). J. Bone Min. Res. 2006, 21, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Ligibel, J.A.; O’Malley, A.J.; Fisher, M.; Daniel, G.W.; Winer, E.P.; Keating, N.L. Patterns of bone density evaluation in a community population treated with aromatase inhibitors. Breast Cancer Res. Treat. 2012, 134, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Benoist, G.E.; van Oort, I.M.; Smeenk, S.; Javad, A.; Somford, D.M.; Burger, D.M.; Mehra, N.; van Erp, N.P. Drug-drug interaction potential in men treated with enzalutamide: Mind the gap. Br. J. Clin. Pharm. 2018, 84, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124, 837–848. [Google Scholar] [CrossRef] [Green Version]
- Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013, 342, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, B.; et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342, 967–970. [Google Scholar] [CrossRef]
- Jackson, M.A.; Goodrich, J.K.; Maxan, M.-E.; Freedberg, D.E.; Abrams, J.A.; Poole, A.C.; Sutter, J.L.; Walter, D.; Ley, R.E.; Bell, J.T.; et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 2016, 65, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Britton, R.A.; Young, V.B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 2014, 146, 1547–1553. [Google Scholar] [CrossRef] [Green Version]
- Kwok, C.S.; Arthur, A.K.; Anibueze, C.I.; Singh, S.; Cavallazzi, R.; Loke, Y.K. Risk of clostridium difficile infection with acid suppressing drugs and antibiotics: Meta-analysis. Am. J. Gastroenterol. 2012, 107, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Imhann, F.; Vich Vila, A.; Bonder, M.J.; Lopez Manosalva, A.G.; Koonen, D.P.Y.; Fu, J.; Wijimenga, C.; Zhernakova, A.; Weersma, R.K. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes 2017, 8, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ESMO. Proton Pump Inhibitor Therapy Negatively Impacts the Efficacy of Nivolumab Plus Ipilimumab Combination Treatment in Melanoma. Available online: https://www.esmo.org/oncology-news/Proton-Pump-Inhibitor-Therapy-Negatively-Impacts-the-Efficacy-of-Nivolumab-Plus-Ipilimumab-Combination-Treatment-in-Melanoma (accessed on 22 October 2020).
- Chalabi, M.; Cardona, A.; Nagarkar, D.R.; Scala, A.D.; Gandara, D.R.; Rittmeyer, A.; Albert, M.L.; Powles, T.; Kok, M.; Herrera, F.G. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: Pooled post hoc analyses of the OAK and POPLAR trials. Ann. Oncol. 2020, 31, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, R.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Ibrahimi, S.; Khalid, B.; Roman, D.; Zhao, D.; Aljumaily, R. Do proton pump inhibitors modulate the efficacy of anti-PD-1/PD-L1 therapy? A retrospective study. J. Oncol. Pharm. Pract. 2019, 25, 762–764. [Google Scholar] [CrossRef] [PubMed]
- Bellet, M.; Ahmad, F.; Villanueva, R.; Valdivia, C.; Palomino-Doza, J.; Ruiz, A.; Gonzalez, X.; Adrover, E.; Azaro, A.; Valls-Margarit, M.; et al. Palbociclib and ribociclib in breast cancer: Consensus workshop on the management of concomitant medication. Adv. Med. Oncol. 2019, 11, 1758835919833867. [Google Scholar] [CrossRef]
- Samant, T.S.; Dhuria, S.; Lu, Y.; Laisney, M.; Yang, S.; Grandeury, A.; Mueller-Zsigmondy, M.; Umehara, K.; Huth, F.; Miller, M.; et al. Ribociclib Bioavailability Is Not Affected by Gastric pH Changes or Food Intake: In Silico and Clinical Evaluations. Clin. Pharm. 2018, 104, 374–383. [Google Scholar]
- Sun, W.; Klamerus, K.J.; Yuhas, L.M.; Pawlak, S.; Plotka, A.; O’Gorman, M.; Kirkovsky, L.; Kosa, M.; Wang, D. Impact of acid-reducing agents on the pharmacokinetics of palbociclib, a weak base with ph-dependent solubility, with different food intake conditions. Clin. Pharm. Drug Dev. 2017, 6, 614–626. [Google Scholar] [CrossRef]
- Ibrace. Available online: https://www.ema.europa.eu/en/documents/product-information/ibrance-epar-product-information_en.pdf (accessed on 22 October 2020).
- Kaufman, B.; Shapira-Frommer, R.; Schmutzler, R.K.; Audeh, M.W.; Friedlander, M.; Balmaña, J.; Mitchell, G.; Fried, G.; Stemmer, S.M.; Hubert, A.; et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 2015, 33, 244–250. [Google Scholar] [CrossRef]
- Reigner, B.; Blesch, K.; Weidekamm, E. Clinical pharmacokinetics of capecitabine. Clin. Pharm. 2001, 40, 85–104. [Google Scholar] [CrossRef] [PubMed]
- MICROMEDEX 2.0 Drug Interactions. Available online: www.micromedexsolutions.com (accessed on 22 October 2020).
- Reigner, B.; Clive, S.; Cassidy, J.; Jodrell, D.; Schulz, R.; Goggin, T.; Banken, L.; Roos, B.; Mulligans, T.; Weidekamm, E. Influence of the antacid Maalox on the pharmacokinetics of capecitabine in cancer patients. Cancer Chemother. Pharm. 1999, 43, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.P.; Hecht, J.R.; Slamon, D.; Wainberg, Z.A.; Bang, Y.-J.; Hoff, P.M.; Sobrero, A.; Qin, S.; Afenjar, K.; Houe, V.; et al. Association of proton pump inhibitors and capecitabine efficacy in advanced gastroesophageal cancer: Secondary analysis of the TRIO-013/LOGiC randomized clinical trial. JAMA Oncol. 2017, 3, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ilich, A.I.; Kim, C.A.; Chu, M.P.; Wong, G.G.; Ghosh, S.; Danilak, M.; Mulder, K.E.; Spratlin, J.L.; Chambers, C.R.; et al. Concomitant administration of proton pump inhibitors and capecitabine is associated with increased recurrence risk in early stage colorectal cancer patients. Clin. Colorectal Cancer 2016, 15, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Lomustine Product Information. Available online: https://gp2u.com.au/static/pdf/C/CEENU-PI.pdf (accessed on 20 April 2020).
- Thomson, P.D.R. Cyclophosphamide. In USP DI Drug Information for the Healthcare Professional, 20th ed.; Micromedex, Inc.: Englewood, CO, USA, 2002; Volume 1. [Google Scholar]
- Gregory, R.K.; Smith, I.E. Vinorelbine–A clinical Review. Br. J. Cancer 2000, 82, 1907–1913. [Google Scholar]
- Thomson, P.D.R. Etoposide. In USP DI Drug Information for the Healthcare ProfessionalI, 20th ed.; Micromedex, Inc.: Englewood, CO, USA, 2002; Volume 1, pp. 1426–1430. [Google Scholar]
- Stoller, R.G.; Hande, K.R.; Jacobs, S.A.; Rosenberg, S.A.; Chabner, B.A. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N. Engl. J. Med. 1977, 297, 630–634. [Google Scholar] [CrossRef]
- Reid, T.; Yuen, A.; Catolico, M.; Carlson, R.W. Impact of omeprazole on the plasma clearance of methotrexate. Cancer Chemother. Pharm. 1993, 33, 82–84. [Google Scholar] [CrossRef]
- Beorlegui, B.; Aldaz, A.; Ortega, A.; Aquerreta, I.; Sierrasesúmega, L.; Giráldez, J. Potential interaction between methotrexate and omeprazole. Ann. Pharm. 2000, 34, 1024–1027. [Google Scholar] [CrossRef]
- Tröger, U.; Stötzel, B.; Martens-Lobenhoffer, J.; Gollnick, H.; Meyer, F.P. Drug points: Severe myalgia from an interaction between treatments with pantoprazole and methotrexate. BMJ 2002, 324, 1497. [Google Scholar] [CrossRef] [Green Version]
- Santucci, R.; Levêque, D.; Kemmel, V.; Lutz, P.; Gérout, A.-C.; N’guyen, A.; Lescoute, A.; Schneider, F.; Bergerat, J.P.; Herbrecht, R. Severe intoxication with methotrexate possibly associated with concomitant use of proton pump inhibitors. Anticancer Res. 2010, 30, 963–965. [Google Scholar]
- McBride, A.; Antonia, S.J.; Haura, E.B.; Goetz, D. Suspected methotrexate toxicity from omeprazole: A case review of carboxypeptidase G2 use in a methotrexate-experienced patient with methotrexate toxicity and a review of the literature. J. Pharm. Pract. 2012, 25, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Bauters, T.G.M.; Verlooy, J.; Robays, H.; Laureys, G. Interaction between methotrexate and omeprazole in an adolescent with leukemia: A case report. Pharm. World Sci. 2008, 30, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Ranchon, F.; Ranchon, F.; Vantard, N.; Gouraud, A.; Schwiertz, V.; Franchon, E.; Pham, B.N.; Vial, T.; You, B.; Bouafia, F.; et al. Suspicion of drug-drug interaction between high-dose methotrexate and proton pump inhibitors: A Case Report–Should the practice be changed? CHE 2011, 57, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Narumi, K.; Sato, Y.; Kobayashi, M.; Furugen, A.; Kasashi, K.; Yamada, T.; Teshima, T.; Iselki, K. Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: Evaluation of drug-drug interactions mediated by organic anion transporter. Biopharm. Drug Dispos. 2017, 38, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Doki, K.; Homma, M.; Tamaki, H.; Hori, S.; Ohtani, H.; Sawada, Y.; Kohda, Y. Co-administration of proton pump inhibitors delays elimination of plasma methotrexate in high-dose methotrexate therapy. Br. J. Clin. Pharm. 2009, 67, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breedveld, P.; Zelcer, N.; Pluim, D.; Sönmezer, O.; Tibben, M.M.; Beijnen, J.H.; Schinkel, A.H.; van Tellingen, O.; Borst, P.; Schellens, J.H. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: Potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res. 2004, 64, 5804–5811. [Google Scholar] [CrossRef] [Green Version]
Oncologic Treatment Drugs | Type of Evidence on Interactions | ||||
---|---|---|---|---|---|
Class | Name | Decreased Activity and/or Increased Toxicity | No Interaction | Controverse Data | Absence of Data |
Epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKIs) | Erlotinib | ✓ | |||
Gefitinib | ✓ | ||||
Afatinib | ✓ | ||||
Dacomitinib | ✓ | ||||
Osimertinib | ✓ | ||||
Anti-vascular endothelial growth factor (VEGF) inhibitor | Sunitinib | ✓ | |||
Pazopanib | ✓ | ||||
Axitinib | ✓ | ||||
Cabozantinib | ✓ | ||||
Levantinib | ✓ | ||||
Sorafenib | ✓ | ||||
Regorafenib | ✓ | ||||
Vandetanib | ✓ | ||||
Mammalian target of rapamycin (mTOR) inhibitor | Everolimus | ✓ | |||
Sirolimus | ✓ | ||||
Tacrolimus | ✓ | ||||
Temsirolimus | ✓ | ||||
BRAF/MEK inhibitor | Vemurafenib | ✓ | |||
Cobimetinib | ✓ | ||||
Encorafenib | ✓ | ||||
Trametinib | ✓ | ||||
Binimetinib | ✓ | ||||
MET/anaplastic lymphoma kinase (ALK) inhibitor | Crizotinib | ✓ | |||
ALK inhibitor | Alectinib | ✓ | |||
Brigatininib | ✓ | ||||
Tyrosine kinase (TRK) inhibitor | Larotrectinib | ✓ | |||
HER2 inhibitor | Lapatinib | ✓ | |||
PI3K inhibitor | Alpelisib | ✓ | |||
KIT inhibitor | Imatinib | ✓ (a) | |||
Anti-EGFR mAbs | Cetuximab | ✓ (b) | |||
Panitunumab | ✓ (b) | ||||
Anti-angiogenic mAb | Bevacizumab | ✓ | |||
Ramucirumab | ✓ | ||||
Anti-HER2 mAb | Trasntuzumab | ✓ | |||
Pertuzumab | ✓ | ||||
Estrogen receptor inhibitor | Tamoxifen | ✓ (c) | |||
Fulvestrant | ✓ (c) | ||||
Anastrozole | ✓ (c) | ||||
Letrozole | ✓ (c) | ||||
Exemestane | ✓ (c) | ||||
Androgen receptor inhibitor | Enzalutamide | ✓ (d) | |||
Abiraterone | ✓ | ||||
Immunotherapy | Pembrolizumab | ✓ | |||
Nivolumab | ✓ | ||||
Ipililimab | ✓ | ||||
Atezolizumab | ✓ | ||||
Cycline inhibitor | Ribociclib | ✓ | |||
Abemaciclib | ✓ | ||||
Palbociclib | ✓ | ||||
Poly ADP ribose polymerase (PARP) inhibitor | Olaparib | ✓ | |||
Talazoparib | ✓ | ||||
Oral QT | Capecitabine | ✓ | |||
Temozolamide | ✓ | ||||
Lomustine | ✓ | ||||
Cyclophosphamide | ✓ | ||||
Vinorelbine | ✓ | ||||
Etoposide | ✓ | ||||
IV QT | Methotrexate | ✓ | |||
Other IV QTs | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchiyama, A.A.T.; Silva, P.A.I.A.; Lopes, M.S.M.; Yen, C.T.; Ricardo, E.D.; Mutão, T.; Pimenta, J.R.; Machado, L.M.; Shimba, D.S.; Peixoto, R.D. Proton Pump Inhibitors and Oncologic Treatment Efficacy: A Practical Review of the Literature for Oncologists. Curr. Oncol. 2021, 28, 783-799. https://doi.org/10.3390/curroncol28010076
Uchiyama AAT, Silva PAIA, Lopes MSM, Yen CT, Ricardo ED, Mutão T, Pimenta JR, Machado LM, Shimba DS, Peixoto RD. Proton Pump Inhibitors and Oncologic Treatment Efficacy: A Practical Review of the Literature for Oncologists. Current Oncology. 2021; 28(1):783-799. https://doi.org/10.3390/curroncol28010076
Chicago/Turabian StyleUchiyama, Angel A. T., Pedro A. I. A. Silva, Moisés S. M. Lopes, Cheng T. Yen, Eliza D. Ricardo, Taciana Mutão, Jefferson R. Pimenta, Larissa M. Machado, Denis S. Shimba, and Renata D. Peixoto. 2021. "Proton Pump Inhibitors and Oncologic Treatment Efficacy: A Practical Review of the Literature for Oncologists" Current Oncology 28, no. 1: 783-799. https://doi.org/10.3390/curroncol28010076
APA StyleUchiyama, A. A. T., Silva, P. A. I. A., Lopes, M. S. M., Yen, C. T., Ricardo, E. D., Mutão, T., Pimenta, J. R., Machado, L. M., Shimba, D. S., & Peixoto, R. D. (2021). Proton Pump Inhibitors and Oncologic Treatment Efficacy: A Practical Review of the Literature for Oncologists. Current Oncology, 28(1), 783-799. https://doi.org/10.3390/curroncol28010076