Risk of Thrombosis in Adult Philadelphia-Positive ALL Treated with an Asparaginase-Free ALL Regimen
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- White, R.H. The Epidemiology of Venous Thromboembolic Disease Venous Thromboembolism. Circulation 2003, 107, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varki, A. Trousseau’s syndrome: Multiple definitions and multiple mechanisms. Blood 2007, 110, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Marchetti, M.; Russo, L. Venous thromboembolism in the hematologic malignancies. Curr. Opin. Oncol. 2012, 24, 702–710. [Google Scholar] [CrossRef]
- Amriah, B. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar]
- Moorman, A.V.; Harrison, C.J.; Buck, G.A.N.; Richards, S.M.; Secker-Walker, L.M.; Martineau, M.; Vance, G.H.; Cherry, A.M.; Higgins, R.R.; Fielding, A.K.; et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): Analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 2007, 109, 3189–3197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de stefano, V.; Sora, F.; Rossi, E.; Chiusolo, P.; Laurenti, L.; Fianchi, L.; Zini, G.; Pagano, L.; Sica, S.; Leone, G. The risk of thrombosis in patients with acute leukemia: Occurrence of thrombosis at diagnosis and during treatment. J. Thromb. Haemost. 2005, 3, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Vu, K.; Luong, N.V.; Hubbard, J.; Zalpour, A.; Faderl, S.; Thomas, D.A.; Yang, D.; Kantarjian, H.; Kroll, M.H. A retrospective study of venous thromboembolism in acute leukemia patients treated at the university of texas MD anderson cancer center. Cancer Med. 2015, 4, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.A.; Wolf, R.C.; Hook, C.C.; Pruthi, R.K.; Heit, J.A.; Letendre, L.L.; Tefferi, A.; Kaufmann, S.H.; Mesa, R.A.; Litzow, M.R. Thromboembolism in adults with acute lymphoblastic leukemia during induction with L-asparaginase-containing multi-agent regimens: Incidence, risk factors, and possible role of antithrombin. Leuk. Lymphoma 2004, 45, 1545–1551. [Google Scholar] [CrossRef]
- Grace, R.F.; DeAngelo, D.J.; Stevenson, K.E.; Neuberg, D.; Sallan, S.E.; Abou Mourad, Y.R.; Bergeron, J.; Seftel, M.D.; Kokulis, C.; Connors, J.M. The use of prophylactic anticoagulation during induction and consolidation chemotherapy in adults with acute lymphoblastic leukemia. J. Thromb. Thrombolysis 2018, 45, 306–314. [Google Scholar] [CrossRef]
- De Stefano, V.; Za, T.; Ciminello, A.; Betti, S.; Rossi, E. Haemostatic alterations induced by treatment with asparaginases and clinical consequences. Thromb. Haemost. 2015, 114, 247–261. [Google Scholar]
- Bade, N.A.; Lu, C.; Patzke, C.L.; Baer, M.R.; Duong, V.H.; Law, J.Y.; Lee, S.T.; Sausville, E.A.; Zimrin, A.B.; Duffy, A.P.; et al. Optimizing pegylated asparaginase use: An institutional guideline for dosing, monitoring, and management. J. Oncol. Pharm. Pract. 2019, 26, 74–92. [Google Scholar] [CrossRef] [PubMed]
- Kekre, N.; Connors, J.M. Venous thromboembolism incidence in hematologic malignancies. Blood Rev. 2019, 33, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Sibai, H.; Seki, J.T.; Wang, T.Q.; Sakurai, N.; Atenafu, E.G.; Yee, K.W.; Schuh, A.C.; Gupta, V.; Minden, M.D.; Schimmer, A.D.; et al. Venous thromboembolism prevention during asparaginase-based therapy for acute lymphoblastic leukemia. Curr. Oncol. 2016, 23, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rives, S.; Estella, J.; Gómez, P.; López-Duarte, M.; de Miguel, P.G.; Verdeguer, A.; Moreno, M.J.; Vivanco, J.L.; Couselo, J.M.; Fernández-Delgado, R.; et al. Intermediate dose of imatinib in combination with chemotherapy followed by allogeneic stem cell transplantation improves early outcome in paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (ALL): Results of the Spanish Cooperative Group SHOP studies ALL-94, ALL-99 and ALL-2005. Br. J. Haematol. 2011, 154, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Schrappe, M.; De Lorenzo, P.; Castor, A.; Lucchini, G.; Gandemer, V.; Pieters, R.; Stary, J.; Escherich, G.; Campbell, M.; et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): A randomised, open-label, intergroup study. Lancet Oncol. 2012, 13, 936–945. [Google Scholar] [CrossRef]
- Schultz, K.R.; Carroll, A.; Heerema, N.A.; Bowman, W.P.; Aledo, A.; Slayton, W.B.; Sather, H.; Devidas, M.; Zheng, H.W.; Davies, S.M.; et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s oncology group study AALL0031. Leukemia 2014, 28, 1467–1471. [Google Scholar] [CrossRef] [Green Version]
- Rowe, J.M.; Buck, G.; Burnett, A.K.; Chopra, R.; Wiernik, P.H.; Richards, S.M.; Lazarus, H.M.; Franklin, I.M.; Litzow, M.R.; Ciobanu, N.; et al. Induction therapy for adults with acute lymphoblastic leukemia: Results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood 2005, 106, 3760–3767. [Google Scholar] [CrossRef] [Green Version]
- DeAngelo, D.J.; Stevenson, K.E.; Dahlberg, S.E.; Silverman, L.B.; Couban, S.; Supko, J.G.; Amrein, P.C.; Ballen, K.K.; Seftel, M.D.; Turner, A.R.; et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18-50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia 2015, 29, 526–534. [Google Scholar] [CrossRef]
- Daver, N.; Thomas, D.; Ravandi, F.; Cortes, J.; Garris, R.; Jabbour, E.; Garcia-Manero, G.; Borthakur, G.; Kadia, T.; Rytting, M.; et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic Leukemia. Haematologica 2015, 100, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Thyagu, S.; Minden, M.D.; Gupta, V.; Yee, K.W.; Schimmer, A.D.; Schuh, A.C.; Lipton, J.H.; Messner, H.A.; Xu, W.; Brandwein, J.M. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukaemia with imatinib combined with a paediatric-based protocol. Br. J. Haematol. 2012, 158, 506–514. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Q.; Xu, L.P.; Zhang, X.H.; Chen, H.; Qin, Y.Z.; Ruan, G.R.; Jiang, H.; Jia, J.S.; Zhao, T.; et al. Allogeneic Stem Cell Transplantation versus Tyrosine Kinase Inhibitors Combined with Chemotherapy in Patients with Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia. Biol. Blood Marrow Transplant. 2018, 24, 741–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulman, S.; Kearon, C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J. Thromb. Haemost. 2005, 3, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Luong, N.V.; Kroll, M.H.; Vu, K. Recurrence of venous thromboembolism among adults acute leukemia patients treated at the University of Texas MD Anderson Cancer Center: Incidence and risk factors. Thromb. Res. 2017, 156, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Refaei, M.; Fernandes, B.; Brandwein, J.; Goodyear, M.D.; Pokhrel, A.; Wu, C. Incidence of catheter-related thrombosis in acute leukemia patients: A comparative, retrospective study of the safety of peripherally inserted vs. centrally inserted central venous catheters. Ann. Hematol. 2016, 95, 2057–2064. [Google Scholar] [CrossRef] [PubMed]
- Noble, S.; Pasi, J. Epidemiology and pathophysiology of cancer-associated thrombosis. Br. J. Cancer 2010, 102, S2–S9. [Google Scholar] [CrossRef]
- Timp, J.F.; Braekkan, S.K.; Versteeg, H.H.; Cannegieter, S.C. Epidemiology of cancer-associated venous thrombosis. Blood 2013, 122, 1712–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Lim, K.M.; Noh, J.Y.; Kim, K.; Kang, S.; Chang, Y.K.; Shin, S.; Chung, J.H. Doxorubicin-induced platelet procoagulant activities: An important clue for chemotherapy-associated thrombosis. Toxicol. Sci. 2011, 124, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Johannesdottir, S.A.; Horváth-Puhó, E.; Dekkers, O.M.; Cannegieter, S.C.; Jørgensen, J.O.; Ehrenstein, V.; Vandenbroucke, J.P.; Pedersen, L.; Sørensen, H.T. Use of glucocorticoids and risk of venous thromboembolism: A nationwide population-based case-control study. JAMA Intern. Med. 2013, 173, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moslehi, J.J.; Deininger, M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J. Clin. Oncol. 2015, 33, 4210–4218. [Google Scholar] [CrossRef] [PubMed]
- Pasvolsky, O.; Leader, A.; Iakobishvili, Z.; Wasserstrum, Y.; Kornowski, R.; Raanani, P. Tyrosine kinase inhibitor associated vascular toxicity in chronic myeloid leukemia. Cardio Oncol. 2015, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, D.; Fish, J.E.; Lipton, J.H.; Aghel, N. Mechanisms of Cardiovascular Toxicity of BCR-ABL1 Tyrosine Kinase Inhibitors in Chronic Myelogenous Leukemia. Curr. Hematol. Malig. Rep. 2020, 15, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Sibai, H.; Chen, R.; Liu, X.; Falcone, U.; Schimmer, A.; Schuh, A.; Law, A.; McNamara, C.; Maze, D.; Yee, K.; et al. Anticoagulation prophylaxis reduces venous thromboembolism rate in adult acute lymphoblastic leukaemia treated with asparaginase-based therapy. Br. J. Haematol. 2020, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, J.; Carrier, M. Thromboembolism prophylaxis during L-asparaginase therapy in acute lymphoblastic leukemia—Time to reconsider current approaches? Thromb. Res. 2020, 188, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Soff, G.A.; Mones, J.; Wilkins, C.; Devlin, S.; Haegler-Laube, E.; Wills, J.; Sarasohn, D.M.; Juluru, K.; Singer, M.; Miao, Y.; et al. Rivaroxaban treatment of cancer-associated venous thromboembolism: Memorial Sloan Kettering Cancer Center institutional experience. Res. Pract. Thromb. Haemost. 2019, 3, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- McBane, R.D.; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: The ADAM VTE trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef]
- Stein, P.D.; Beemath, A.; Meyers, F.A.; Kayali, F.; Skaf, E.; Olson, R.E. Pulmonary embolism as a cause of death in patients who died with cancer. Am. J. Med. 2006, 119, 163–165. [Google Scholar] [CrossRef]
Variables | Whole Cohort (n = 123) Mean (Range) | Patients Who Developed VTE (n = 30) Mean (Range) | Patients Who Did Not Develop VTE (n = 95) Mean (Range) | p Value |
---|---|---|---|---|
Age at diagnosis (range) | 49.9 (17.4–80.9) | 55.2 (24.2–80.9) | 48.2 (17.4–80.0) | 0.01 |
Sex, female (%) | 56 (45.5%) | 16 (53.3%) | 40 (43.0%) | 0.32 |
Weight in kg (range) | 74.7 (41.7–127) | 73.1 (41.7–110.8) | 74.7 (47.0–127.0) | 0.48 |
BMI in kg/m2 (range) | 26.1 (18.9–52.2) | 26.3 (18.9–38.3) | 26.4 (17.7–52.2) | 0.56 |
WBC in bil/L (range) | 45.6 (0–460) | 41.9 (1.4–413) | 46.8 (0–460) | 0.84 |
Blast in % (range) | 72.8 (0–98) | 74.9 (0–98) | 72.1 (0.8–97) | 0.80 |
Variables | Sub-Categories | Patients with VTE n = 30 n (%) |
---|---|---|
Timing of VTE | At diagnosis | 4 (13.3) |
Induction | 10 (33.3) | |
Intensification | 11 (36.7) | |
Maintenance | 5 (16.7) | |
Location of VTE | DVT | 10 (33.3) |
PE | 6 (20.0) | |
Cardiac | 2 (6.7) | |
PICC/CVC-related | 12 (40.0) | |
plt < 50 bil/L | Among 10 VTE pts during induction | 9 (9 in 10, 90.0%) |
Among 11 VTE pts during intensification | 2 (2 in 11, 18.2%) | |
Padua score (mean, range) | 5.4, 3–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Liu, X.; Law, A.D.; Kanfar, S.; Maze, D.; Chan, S.M.; Gupta, V.; Yee, K.W.; Minden, M.D.; Schimmer, A.D.; et al. Risk of Thrombosis in Adult Philadelphia-Positive ALL Treated with an Asparaginase-Free ALL Regimen. Curr. Oncol. 2021, 28, 128-137. https://doi.org/10.3390/curroncol28010016
Chen R, Liu X, Law AD, Kanfar S, Maze D, Chan SM, Gupta V, Yee KW, Minden MD, Schimmer AD, et al. Risk of Thrombosis in Adult Philadelphia-Positive ALL Treated with an Asparaginase-Free ALL Regimen. Current Oncology. 2021; 28(1):128-137. https://doi.org/10.3390/curroncol28010016
Chicago/Turabian StyleChen, Ruiqi, Xing Liu, Arjun D. Law, Solaf Kanfar, Dawn Maze, Steven M. Chan, Vikas Gupta, Karen W. Yee, Mark D. Minden, Aaron D. Schimmer, and et al. 2021. "Risk of Thrombosis in Adult Philadelphia-Positive ALL Treated with an Asparaginase-Free ALL Regimen" Current Oncology 28, no. 1: 128-137. https://doi.org/10.3390/curroncol28010016
APA StyleChen, R., Liu, X., Law, A. D., Kanfar, S., Maze, D., Chan, S. M., Gupta, V., Yee, K. W., Minden, M. D., Schimmer, A. D., Schuh, A. C., McNamara, C. J., Murphy, T., Xu, A., Falcone, U., Seki, J., & Sibai, H. (2021). Risk of Thrombosis in Adult Philadelphia-Positive ALL Treated with an Asparaginase-Free ALL Regimen. Current Oncology, 28(1), 128-137. https://doi.org/10.3390/curroncol28010016