The Impact of Home Interventions on Dry Eye Disease (DED) Symptoms and Signs in United States Veterans
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Home Interventions and Change in Environmental Metrics
3.2. Impact of Interventions on DED Symptoms and Signs
Number of Interventions
3.3. Specific Interventions
3.3.1. Home Ventilation
3.3.2. Exhaust Fan Use
3.3.3. Vinegar and Baking Soda for Cleaning
3.3.4. Indoor Temperature Control
3.3.5. Indoor Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar]
- Lee, Y.; Kim, M.; Galor, A. Beyond dry eye: How co-morbidities influence disease phenotype in dry eye disease. Clin. Exp. Optom. 2022, 105, 177–185. [Google Scholar] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.-S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar]
- Yu, J.; Asche, C.V.; Fairchild, C.J. The Economic Burden of Dry Eye Disease in the United States: A Decision Tree Analysis. Cornea 2011, 30, 379–387. [Google Scholar]
- Mandell, J.T.; Idarraga, M.; Kumar, N.; Galor, A. Impact of Air Pollution and Weather on Dry Eye. J. Clin. Med. 2020, 9, 3740. [Google Scholar] [CrossRef] [PubMed]
- Galor, A.; Kumar, N.; Feuer, W.; Lee, D.J. Environmental Factors Affect the Risk of Dry Eye Syndrome in a United States Veteran Population. Ophthalmology 2014, 121, 972–973.e1. [Google Scholar] [PubMed]
- Yu, D.; Deng, Q.; Wang, J.; Chang, X.; Wang, S.; Yang, R.; Yu, J.; Yu, J. Air Pollutants are associated with Dry Eye Disease in Urban Ophthalmic Outpatients: A Prevalence Study in China. J. Transl. Med. 2019, 17, 46. [Google Scholar]
- Patel, S.; Mittal, R.; Kumar, N.; Galor, A. The environment and dry eye-manifestations, mechanisms, and more. Front. Toxicol. 2023, 5, 1173683. [Google Scholar]
- Idarraga, M.A.; Guerrero, J.S.; Mosle, S.G.; Miralles, F.; Galor, A.; Kumar, N. Relationships Between Short-Term Exposure to an Indoor Environment and Dry Eye (DE) Symptoms. J. Clin. Med. 2020, 9, 1316. [Google Scholar] [CrossRef]
- Huang, A.; Janecki, J.; Galor, A.; Rock, S.; Menendez, D.; Hackam, A.S.; Jeng, B.H.; Kumar, N. Association of the Indoor Environment with Dry Eye Metrics. JAMA Ophthalmol. 2020, 138, 867–874. [Google Scholar]
- Federman, A.D.; O’Conor, R.; Mindlis, I.; Hoy-Rosas, J.; Hauser, D.; Lurio, J.; Shroff, N.; Lopez, R.; Erblich, J.; Wolf, M.S.; et al. Effect of a Self-management Support Intervention on Asthma Outcomes in Older Adults: The SAMBA Study Randomized Clinical Trial. JAMA Intern. Med. 2019, 179, 1113–1121. [Google Scholar] [CrossRef]
- Chalmers, R.L.; Begley, C.G.; Caffery, B. Validation of the 5-Item Dry Eye Questionnaire (DEQ-5): Discrimination across self-assessed severity and aqueous tear deficient dry eye diagnoses. Contactlens Anterior Eye 2010, 33, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, R.M.; Christianson, M.D.; Jacobsen, G.; Hirsch, J.D.; Reis, B.L. Reliability and validity of the Ocular Surface Disease Index. Arch. Ophthalmol. 2000, 118, 615–621. [Google Scholar] [CrossRef]
- Spierer, O.; Felix, E.R.; McClellan, A.L.; Parel, J.M.; Gonzalez, A.; Feuer, W.J.; Sarantopoulos, C.D.; Levitt, R.C.; Ehrmann, K.; Galor, A. Corneal Mechanical Thresholds Negatively Associate with Dry Eye and Ocular Pain Symptoms. Investig. Ophthalmol. Vis. Sci. 2016, 57, 617–625. [Google Scholar]
- Meiboscale. Dr Heiko Pult—Optometry & Vision Research. Available online: www.heiko-pult.de (accessed on 7 October 2020).
- Kim, Y.; Choi, Y.H.; Kim, M.K.; Paik, H.J.; Kim, D.H. Different adverse effects of air pollutants on dry eye disease: Ozone, PM2.5, and PM10. Environ. Pollut. 2020, 265 Pt B, 115039. [Google Scholar]
- Vijayan, V.K.; Paramesh, H.; Salvi, S.S.; Dalal, A.A. Enhancing indoor air quality—The air filter advantage. Lung India 2015, 32, 473–479. [Google Scholar]
- World Health Organization. Indoor air quality: Organic pollutants. Environ. Technol. Lett. 1989, 10, 855–858. [Google Scholar]
- Carrer, P.; Wargocki, P.; Fanetti, A.; Bischof, W.; De Oliveira Fernandes, E.; Hartmann, T.; Kephalopoulos, S.; Palkonen, S.; Seppänen, O. What does the scientific literature tell us about the ventilation–health relationship in public and residential buildings? Build. Environ. 2015, 94, 273–286. [Google Scholar]
- Xia, X.; Chan, K.H.; Lam, K.B.H.; Qiu, H.; Li, Z.; Yim, S.H.L.; Ho, K.-F. Effectiveness of indoor air purification intervention in improving cardiovascular health: A systematic review and meta-analysis of randomized controlled trials. Sci. Total Environ. 2021, 789, 147882. [Google Scholar] [CrossRef]
- Han, K.-T.; Ruan, L.-W. Effects of indoor plants on air quality: A systematic review. Environ. Sci. Pollut. Res. 2020, 27, 16019–16051. [Google Scholar] [CrossRef]
- Mattila, J.M.; Lakey, P.S.J.; Shiraiwa, M.; Wang, C.; Abbatt, J.P.D.; Arata, C.; Goldstein, A.H.; Ampollini, L.; Katz, E.F.; DeCarlo, P.F.; et al. Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. Environ. Sci. Technol. 2020, 54, 1730–1739. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar]
- Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D. Indirect health effects of relative humidity in indoor environments. Environ. Health Perspect. 1986, 65, 351–361. [Google Scholar] [PubMed]
- de Robles, D.; Kramer, S.W. Improving Indoor Air Quality through the Use of Ultraviolet Technology in Commercial Buildings. Procedia Eng. 2017, 196, 888–894. [Google Scholar] [CrossRef]
- Norbäck, D.; Björnsson, E.; Janson, C.; Widström, J.; Boman, G. Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings. Occup. Environ. Med. 1995, 52, 388–395. [Google Scholar] [CrossRef]
- Perneger, T.V. What’s wrong with Bonferroni adjustments. BMJ 1998, 316, 1236–1238. [Google Scholar] [CrossRef]
- Torricelli, A.A.; Novaes, P.; Matsuda, M.; Braga, A.; Saldiva, P.H.; Alves, M.R.; Monteiro, M.L.R. Correlation between signs and symptoms of ocular surface dysfunction and tear osmolarity with ambient levels of air pollution in a large metropolitan area. Cornea 2013, 32, e11–e15. [Google Scholar] [CrossRef]
- Hao, R.; Wan, Y.; Zhao, L.; Liu, Y.; Sun, M.; Dong, J.; Xu, Y.; Wu, F.; Wei, J.; Xin, X.; et al. The effects of short-term and long-term air pollution exposure on meibomian gland dysfunction. Sci. Rep. 2022, 12, 6710. [Google Scholar] [CrossRef]
- Krieger, J.W.; Takaro, T.K.; Song, L.; Weaver, M. The Seattle-King County Healthy Homes Project: A randomized, controlled trial of a community health worker intervention to decrease exposure to indoor asthma triggers. Am. J. Public Health 2005, 95, 652–659. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Mo, J.H.; Li, Y.Y.; Xia, J.Y.; Bai, X.B.; Xie, P.F.; Liang, J.Y.; Yang, Z.F.; Chen, Q.Y. Efficacy of indoor air purification in the treatment of Artemisia pollen-allergic rhinitis: A randomised, double-blind, clinical controlled trial. Clin. Otolaryngol. 2020, 45, 394–401. [Google Scholar] [CrossRef]
- He, X.; Brem, B.T.; Bahk, Y.K.; Kuo, Y.-Y.; Wang, J. Effects of relative humidity and particle type on the performance and service life of automobile cabin air filters. Aerosol Sci. Technol. 2016, 50, 542–554. [Google Scholar] [CrossRef]
- Chan, Y.C.; Simpson, R.W.; McTainsh, G.H.; Vowles, P.D.; Cohen, D.D.; Bailey, G.M. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmos. Environ. 1999, 33, 3237–3250. [Google Scholar] [CrossRef]
- Bossou, Y.M.; Serssar, Y.; Allou, A.; Vitry, S.; Momas, I.; Seta, N.; Menotti, J.; Achard, S. Impact of Mycotoxins Secreted by Aspergillus Molds on the Inflammatory Response of Human Corneal Epithelial Cells. Toxins 2017, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Rabensteiner, D.F.; Spreitzhofer, E.; Trummer, G.; Wachswender, C.; Kirchengast, S.; Horwath-Winter, J.; Schmut, O. Pollen enzymes degrade human tear fluid and conjunctival cells: An approach to understanding seasonal non-allergic conjunctivitis. Dev. Ophthalmol. 2010, 45, 83–92. [Google Scholar]
- Kercsmar, C.M.; Dearborn, D.G.; Schluchter, M.; Xue, L.; Kirchner, H.L.; Sobolewski, J.; Greenberg, S.J.; Vesper, S.J.; Allan, T. Reduction in asthma morbidity in children as a result of home remediation aimed at moisture sources. Environ. Health Perspect. 2006, 114, 1574–1580. [Google Scholar] [CrossRef]
Demographics, %, (n) or Mean ± SD (n) | |
---|---|
Age (years) | 60.9 ± 11.4 (99) |
Sex, male | 85.8% (85) |
Race, White | 46.5% (46) |
Race, Black | 53.5% (53) |
Ethnicity, Hispanic | 28.3% (28) |
BMI (kg/m2) | 32 ± 8.5 (99) |
Smoking, current | 28.3% (28) |
Comorbidities, % (n) | |
Hypertension | 60.6% (60) |
Hypercholesterolemia | 48.5% (48) |
PTSD | 20.2% (20) |
Depression | 69.7% (69) |
Arthritis | 60.6% (60) |
Sleep Apnea | 39.4% (39) |
BPH | 21.2% (21) |
Rosacea | 1% (1) |
Hepatitis C | 14.1% (14) |
Devices and Medications, % (n) | |
CPAP | 35.4% (35) |
NSAIDs | 26.3% (26) |
ASA | 36.4% (36) |
Fish Oil | 12.1% (12) |
Multivitamins | 61.6% (61) |
Beta Blockers | 12.2% (12) |
Antidepressants | 54.6% (54) |
Antianxiety | 52% (51) |
Analgesics | 56.6% (56) |
Antihistamines | 12.1% (12) |
Variable | Mean (SD) [Min–Max] |
---|---|
DED symptoms | |
DEQ5 score (0–22) | 10.49 (5.51) [0–21] |
OSDI score (0–100) | 33.68 (25.30) [0–100] |
Corneal sensitivity | |
Average detection threshold (mL/min) | 79.44 (51.99) [15–410] |
Average pain threshold (mL/min) | 240.56 (133.54) [40–410] |
Ocular surface signs β | |
Tear osmolarity (270–350 mOsm/L) | 316.91 (19.06) [289–375] |
Difference in osmolarity between eyes (mOsm/L) | 15.24 (14.62) [0–80] |
Sum score of eyelid laxity (0–4) | 0.51 (0.81) [0–4] |
Conjunctivochalasis scale (0–6) | 1.15 (1.02) [0–5] |
Corneal staining (0–15) | 1.67 (2.13) [0–10] |
Conjunctival staining (0–9) | 0.58 (1.28) [0–8] |
Tear breakup time (seconds) | 8.09 (3.67) [3–25] |
Schirmer wetting by tears (0–35 mm) | 17.33 (8.88) [2–35] |
Inferior Meibomian gland plugging (0–3) | 1.45 (1.25) [0–3] |
Inferior Meibomian gland dropout (0–4) | 1.66 (1.11) [0–4] |
Home environment | |
Indoor dry bulb temperature (°C) | 24.94 (2.84) [15–38] |
Indoor relative humidity (%) | 63.48 (20.59) [25–100] |
Indoor heat stress index (°C) | 25.66 (4.38) [14–46] |
Indoor airborne PM2.5 concentration (µg/m3) | 2.13 (3.66) [0–19] |
Indoor airborne PM10 concentration (µg/m3) | 6.69 (6.68) [0–30] |
Intervention | # Participants Who Implemented Intervention (%) (n) |
---|---|
Number of interventions | |
0 | 29.3% (29) |
1 | 18.2% (18) |
2 | 19.2% (19) |
3 or more | 33.3% (33) |
Specific Interventions | |
Home ventilation (opening doors and windows) | 42.4% (42) |
AC air filter change every 2–3 months | 36.4% (36) |
Exhaust fan use | 31.3% (31) |
Vinegar and baking soda use for cleaning | 27.3% (27) |
Indoor temperature < 72 °F | 23.3% (23) |
Indoor plants | 20.2% (20) |
Air purifier(s) | 9.1% (9) |
Indoor humidity between 50 and 55% | 5.8% (6) |
Ultraviolet light in the AC unit | 3.0% (3) |
Carpet removal | 4.0% (4) |
Variable | Change (Baseline to 6 Months) in Those That Implemented 0 Interventions | Change (Baseline to 6 Months) in Those That Implemented ≥ 1 Intervention | p Value |
---|---|---|---|
DED symptoms | |||
DEQ5 score | −1.69 (3.53; 29) | −0.57 (3.44; 70) | 0.15 |
OSDI score * | −0.31 (0.93; 29) | −0.14 (0.89; 70) | 0.42 |
Corneal sensitivity | |||
Average detection threshold (mL/min) * | 0.14 (0.77; 27) | 0.22 (0.66; 68) | 0.64 |
Average pain threshold (mL/min) * | 0.02 (0.68; 27) | 0.06 (0.64; 68) | 0.80 |
Ocular surface signs β | |||
Tear osmolarity (mOsm/L) | 0.00 (0.08; 26) | 0.03 (0.07; 67) | 0.08 |
Difference in osmolarity between eyes (mOsm/L) * | −0.26 (1.53; 26) | 0.40 (1.23; 67) | 0.03 |
Sum score of eyelid laxity * | −0.14 (0.62; 29) | −0.05 (0.50; 73) | 0.47 |
Conjunctivochalasis * | −0.18 (0.51; 29) | 0.00 (0.59; 73) | 0.15 |
Corneal staining * | −0.25 (0.91; 29) | −0.03 (0.88; 68) | 0.26 |
Conjunctival staining * | 0.03 (0.62; 29) | −0.08 (0.57; 66) | 0.43 |
Tear breakup time (seconds) * | 0.05 (0.39; 29) | −0.03 (0.55; 68) | 0.50 |
Schirmer wetting by tears (mm) * | 0.38 (0.92; 29) | 0.11 (0.47; 68) | 0.06 |
Inferior Meibomian gland plugging * | −0.08 (0.50; 28) | 0.19 (0.53; 67) | 0.02 |
Inferior Meibomian gland dropout | −0.10 (1.23; 29) | −0.01 (1.39; 68) | 0.77 |
Home environment | |||
Indoor dry bulb temperature (°C) | −0.76 (3.74; 27) | 0.41 (3.51; 68) | 0.16 |
Indoor relative humidity (%) | −9.56 (29.91; 26) | −12.77 (24.57; 67) | 0.60 |
Indoor heat stress index (°C) | −1.53 (7.65; 26) | −0.02 (5.56; 67) | 0.15 |
Indoor airborne PM2.5 concentration (µg/m3) * | 0.08 (0.85; 20) | 0.07 (1.10; 58) | 0.99 |
Indoor airborne PM10 concentration (µg/m3) * | 0.28 (1.09; 20) | 0.15 (1.09; 58) | 0.64 |
loge (Δosmolarity mOsmol/L) | loge (Δosmolarity Difference Between Eyes mOsmol/L) | loge (ΔMeibomian Gland Plugging) | |
---|---|---|---|
# of interventions (0 = none, 1, 2, and 3 = 3 or more) | 0.02 ** | 0.28 ** | 0.14 *** |
(0.00–0.03) | (0.03–0.54) | (0.05–0.24) | |
Age categories (1 = < 45 years; 2 = 45–62; 3 = 62+) | 0.02 | 0.25 | −0.02 |
(−0.01–0.05) | (−0.26–0.77) | (−0.21–0.18) | |
Gender (1 = male; 2 = female) | −0.01 | 0.16 | −0.08 |
(−0.06–0.03) | (−0.72–1.05) | (−0.41–0.25) | |
Season (1 = winter and spring; 2 = summer and fall) | 0 | 0.35 | −0.1 |
(−0.03–0.03) | (−0.22–0.93) | (−0.32–0.11) | |
Race (1 = White; 0 = other) | 0 | 0.08 | 0.04 |
(−0.03–0.03) | (−0.48–0.65) | (−0.18–0.25) | |
Allergy status (1 = yes, 0 = otherwise) | −0.02 | −0.4 | 0.13 |
(−0.05–0.01) | (−0.98–0.17) | (−0.09–0.34) | |
Factor 1—Comorbidities α1 | 0.03 ** | −0.02 | 0.07 |
(0.00–0.05) | (−0.50–0.46) | (−0.11–0.25) | |
Factor 2—Comorbidities α2 | −0.03 ** | −0.2 | 0.03 |
(−0.05–−0.00) | (−0.64–0.24) | (−0.13–0.19) | |
Factor 1—Medicine use γ1 | 0.02 * | 0.26 * | −0.02 |
(−0.00–0.03) | (−0.05–0.57) | (−0.13–0.10) | |
Factor 2—Medicine use γ2 | −0.03 ** | −0.34 | −0.15 * |
(−0.05–−0.00) | (−0.79–0.10) | (−0.31–0.01) | |
Constant | −0.02 | −1.04 | −0.01 |
(−0.10–0.06) | (−2.59–0.51) | (−0.60–0.57) | |
Observations | 92 | 92 | 94 |
R-squared | 0.21 | 0.14 | 0.17 |
loge (Δosmolarity mOsmol/L) | loge (Δosmolarity Difference Between Eyes mOsmol/L | loge (ΔSchirmer Wetting mm) | loge (ΔMeibomian Gland Plugging) | |
---|---|---|---|---|
Home ventilation | 0.03 ** | 0.72 ** | −0.28 * | 0.32 *** |
(0.00–0.07) | (0.12–1.32) | (−0.56–0.00) | (0.08–0.55) | |
Age categories (1 = < 45 years; 2 = 45–62; 3 = 62+) | 0.02 | 0.21 | 0.27 ** | −0.03 |
(−0.01–0.04) | (−0.30–0.72) | (0.03–0.51) | (−0.23–0.16) | |
Gender (1 = male; 2 = female) | 0 | 0.33 | 0.28 | −0.01 |
(−0.05–0.04) | (−0.54–1.20) | (−0.14–0.69) | (−0.35–0.32) | |
Season (1 = winter and spring; 2 = summer and fall) | −0.01 | 0.34 | 0.03 | −0.11 |
(−0.04–0.02) | (−0.23–0.91) | (−0.24–0.29) | (−0.33–0.11) | |
Race (1 = White; 0 = other) | 0 | 0.13 | −0.2 | 0.07 |
(−0.03–0.03) | (−0.43–0.69) | (−0.46–0.06) | (−0.14–0.28) | |
Allergy status (1 = yes, 0 = otherwise) | −0.02 | −0.32 | 0.02 | 0.17 |
(−0.05–0.01) | (−0.89–0.26) | (−0.24–0.29) | (−0.05–0.38) | |
Factor 1—Comorbidities α1 | 0.03 * | −0.02 | −0.11 | 0.07 |
(−0.00–0.05) | (−0.50–0.46) | (−0.33–0.11) | (−0.12–0.25) | |
Factor 2—Comorbidities α2 | −0.02 ** | −0.14 | −0.15 | 0.05 |
(−0.05–−0.00) | (−0.58–0.30) | (−0.35–0.05) | (−0.11–0.21) | |
Factor 1—Medicine use γ1 | 0.01 | 0.24 | −0.01 | −0.02 |
(−0.00–0.03) | (−0.07–0.54) | (−0.15–0.13) | (−0.13–0.09) | |
Factor 2—Medicine use γ2 | −0.02 ** | −0.31 | −0.02 | −0.14 * |
(−0.05–−0.00) | (−0.75–0.13) | (−0.22–0.17) | (−0.30–0.02) | |
Constant | −0.01 | −1.04 | −0.56 | 0 |
(−0.10–0.07) | (−2.58–0.50) | (−1.28–0.17) | (−0.59–0.59) | |
Observations | 92 | 92 | 96 | 94 |
R-squared | 0.19 | 0.15 | 0.16 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baeza, D.C.; Penso, J.Z.; Menendez, D.M.; Contreras, J.A., Jr.; Rock, S.; Galor, A.; Kumar, N. The Impact of Home Interventions on Dry Eye Disease (DED) Symptoms and Signs in United States Veterans. Int. J. Environ. Res. Public Health 2025, 22, 438. https://doi.org/10.3390/ijerph22030438
Baeza DC, Penso JZ, Menendez DM, Contreras JA Jr., Rock S, Galor A, Kumar N. The Impact of Home Interventions on Dry Eye Disease (DED) Symptoms and Signs in United States Veterans. International Journal of Environmental Research and Public Health. 2025; 22(3):438. https://doi.org/10.3390/ijerph22030438
Chicago/Turabian StyleBaeza, Drew C., Johnathon Z. Penso, Dhariyat M. Menendez, Julio A. Contreras, Jr., Sarah Rock, Anat Galor, and Naresh Kumar. 2025. "The Impact of Home Interventions on Dry Eye Disease (DED) Symptoms and Signs in United States Veterans" International Journal of Environmental Research and Public Health 22, no. 3: 438. https://doi.org/10.3390/ijerph22030438
APA StyleBaeza, D. C., Penso, J. Z., Menendez, D. M., Contreras, J. A., Jr., Rock, S., Galor, A., & Kumar, N. (2025). The Impact of Home Interventions on Dry Eye Disease (DED) Symptoms and Signs in United States Veterans. International Journal of Environmental Research and Public Health, 22(3), 438. https://doi.org/10.3390/ijerph22030438