Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- Pulmonary embolism diagnosed by scintigraphy.
- Absolute and relative contraindication to cardiopulmonary stress test or exercise training [12].
- Severe exercise intolerance, significant cardiac arrhythmia or ischemia during low-intensity exercise, severe pulmonary hypertension.
- Severe pulmonary disease (e.g., chronic obstructive pulmonary disease, severe COVID-19-related symptoms, severe asthma).
- Recent cardiovascular events (cardiac decompensation, angioplasty or cardiac surgery less than 4 weeks; valvular heart disease requiring surgical correction, myopericarditis, unstable ventricular rhythm disturbances despite treatment).
- Kidney failure requiring dialysis.
- Heart failure (NYHA III or IV).
2.3. Interventional Methods
2.3.1. Measurements and Outcomes
2.3.2. Primary Outcome: Cardiorespiratory Fitness
2.3.3. Secondary Outcomes: Functional and Respiratory Capacity, Quality of Life
2.3.4. Tertiary Outcomes: Coagulation, Inflammatory and Antioxidant Profile and Brain Health
2.4. Cardiopulmonary-Rehabilitation Program
2.5. Research Plan
3. Data analysis
3.1. Sample-Size Calculation
3.2. Statistical Analysis
3.3. Blinding
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 6MWT | 6-min walking test |
| ANCOVA | covariance analysis model |
| COVID-19 | Coronavirus Disease 2019 |
| CPET | cardiopulmonary exercise testing |
| FEV1 | forced expiratory volume in one second |
| fNIRS | functional near-infrared spectroscopy |
| FVC | forced vital capacity |
| IVC | inspiratory vital capacity |
| MHICC | Montreal Health Innovations Coordinating Centre |
| MoCA | Montreal Cognitive Assessment |
| PCR | polymerase chain reaction |
| PEF | peak expiratory flow |
| SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
| SF-36 | 36-item short-form |
| SPIRIT | Standard Protocol Items-Recommendations for Interventional Trials guidelines |
| STS | Sit-to-Stand test |
| TUG | timed up-and-go test |
References
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Kalhan, A.; Kalra, S. Long term complications and rehabilitation of COVID-19 patients. J. Pak. Med. Assoc. 2020, 70 (Suppl. 3), S131–S135. [Google Scholar] [CrossRef] [PubMed]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw. Open 2021, 4, e2036142. [Google Scholar] [CrossRef] [PubMed]
- Carfi, A.; Bernabei, R.; Landi, F.; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- ElBini Dhouib, I. Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2. Drug Discov. Ther. 2021, 14, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Rehabilitation management of patients with COVID-19: Lessons learned from the first experience in China. Eur. J. Phys. Rehabil. Med. 2020, 56, 335–338. [Google Scholar] [CrossRef]
- Lerum, T.V.; Aaløkken, T.M.; Brønstad, E.; Aarli, B.; Ikdahl, E.; Lund, K.M.A.; Durheim, M.T.; Rodriguez, J.R.; Meltzer, C.; Tonby, K.; et al. Dyspnoea, lung function and CT findings 3 months after hospital admission for COVID-19. Eur. Respir. J. 2021, 57, 2003448. [Google Scholar] [CrossRef] [PubMed]
- Sonnweber, T.; Sahanic, S.; Pizzini, A.; Luger, A.; Schwabl, C.; Sonnweber, B.; Kurz, K.; Koppelstätter, S.; Haschka, D.; Petzer, V.; et al. Cardiopulmonary recovery after COVID-19: An observational prospective multicentre trial. Eur. Respir. J. 2021, 57, 2003481. [Google Scholar] [CrossRef]
- Clavario, P.; De Marzo, V.; Lotti, R.; Barbara, C.; Porcile, A.; Russo, C.; Beccaria, F.; Bonavia, M.; Bottaro, L.C.; Caltabellotta, M.; et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int. J. Cardiol. 2021, 340, 113–118. [Google Scholar] [CrossRef]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.; et al. An official American Thoracic Society/European Respiratory Society Statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Rochester, C.L.; Vogiatzis, I.; Holland, A.E.; Lareau, S.C.; Marciniuk, D.D.; Puhan, M.A.; Spruit, M.A.; Masefield, S.; Casaburi, R.; Clini, E.M.; et al. An Official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2015, 192, 1373–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports Medicine; Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Liu, K.; Zhang, W.; Yang, Y.; Zhang, J.; Li, Y.; Chen, Y. Respiratory rehabilitation in elderly patients with COVID-19: A randomized controlled study. Complement. Ther. Clin. Pract. 2020, 39, 101166. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.X.; Tran, Y.M.; Vu, K.T.; Eapen, B.C. Postacute inpatient rehabilitation for COVID-19. BMJ Case Rep. 2020, 13, e237406. [Google Scholar] [CrossRef] [PubMed]
- Barbara, C.; Clavario, P.; De Marzo, V.; Lotti, R.; Guglielmi, G.; Porcile, A.; Russo, C.; Griffo, R.; Mäkikallio, T.; Hautala, A.J.; et al. Effects of exercise rehabilitation in patients with long COVID-19. Eur. J. Prev. Cardiol. 2022, zwac019. [Google Scholar] [CrossRef]
- Rooney, S.; Webster, A.; Paul, L. Systematic review of changes and recovery in physical function and fitness after severe acute respiratory syndrome-related coronavirus infection: Implications for COVID-19 rehabilitation. Phys. Ther. 2020, 100, 1717–1729. [Google Scholar] [CrossRef]
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S.; et al. The stanford hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sports Med. 2020, 54, 949–959. [Google Scholar] [CrossRef]
- WHO. COVID-19 Clinical Management: Living Guidance; WHO: Geneva, Switzerland, 2021.
- Sun, T.; Guo, L.; Tian, F.; Dai, T.; Xing, X.; Zhao, J.; Li, Q. Rehabilitation of patients with COVID-19. Expert Rev. Respir. Med. 2020, 14, 1249–1256. [Google Scholar] [CrossRef]
- Agostini, F.; Mangone, M.; Ruiu, P.; Paolucci, T.; Santilli, V.; Bernetti, A. Rehabilitation setting during and after COVID-19: An overview on recommendations. J. Rehabil. Med. 2021, 53, jrm00141. [Google Scholar] [CrossRef]
- Barrett, H.; DeGroute, W.; Denehy, L.; Etimadi, Y.; Gosslink, R.; Grey, D.; Hallowell, B.; Lim, P.; Marks, E.; Mishra, S.; et al. Rehabilitation Considerations for the COVID-19 Outbreak; Pan American Health Organization; World Health Organization: Washington, DC, USA, 2020.
- Steell, L.; Ho, F.K.; Sillars, A.; Petermann-Rocha, F.; Li, H.; Lyall, D.M.; Iliodromiti, S.; Welsh, P.; Anderson, J.; MacKay, D.F.; et al. Dose-response associations of cardiorespiratory fitness with all-cause mortality and incidence and mortality of cancer and cardiovascular and respiratory diseases: The UK Biobank cohort study. Br. J. Sports Med. 2019, 53, 1371–1378. [Google Scholar] [CrossRef] [Green Version]
- Radtke, T.; Crook, S.; Kaltsakas, G.; Louvaris, Z.; Berton, D.; Urquhart, D.S.; Kampouras, A.; Rabinovich, R.A.; Verges, S.; Kontopidis, D.; et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. Eur. Respir. Rev. 2019, 28, 180101. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I. COVID-19—Does exercise prescription and maximal oxygen uptake (VO2 max) have a role in risk-stratifying patients? Clin. Med. 2020, 20, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Cothran, T.P.; Kellman, S.; Singh, S.; Beck, J.S.; Powell, K.J.; Bolton, C.J.; Tam, J.W. A brewing storm: The neuropsychological sequelae of hyperinflammation due to COVID-19. Brain Behav. Immun. 2020, 88, 957–958. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, R.; Wilke, S.; Smid, D.E.; Janssen, D.J.; Franssen, F.M.; Probst, V.S.; Wouters, E.F.; Muris, J.W.; Pitta, F.; Spruit, M.A. Measurement properties of the Timed Up & Go test in patients with COPD. Chron. Respir. Dis. 2016, 13, 344–352. [Google Scholar] [PubMed] [Green Version]
- Bohannon, R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Ski. 2006, 103, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.E.; Kon, S.S.; Canavan, J.L.; Patel, M.S.; Clark, A.L.; Nolan, C.M.; Polkey, M.I.; Man, W.D. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax 2013, 68, 1015–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global COVID-19 Clinical Platform Case Report Form (CRF) for Post COVID Condition (Post COVID-19 CRF); WHO: Geneva, Switzerland, 2020.
- Tran, V.T.; Riveros, C.; Clepier, B.; Desvarieux, M.; Collet, C.; Yordanov, Y.; Ravaud, P. Development and validation of the long COVID symptom and impact tools, a set of patient-reported instruments constructed from patients’ lived experience. medRxiv 2021. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- McComb, E.; Tuokko, H.; Brewster, P.; Chou, P.H.; Kolitz, K.; Crossley, M.; Simard, M. Mental alternation test: Administration mode, age, and practice effects. J. Clin. Exp. Neuropsychol. 2011, 33, 234–241. [Google Scholar] [CrossRef]
- Pendlebury, S.T.; Welch, S.J.; Cuthbertson, F.C.; Mariz, J.; Mehta, Z.; Rothwell, P.M. Telephone assessment of cognition after transient ischemic attack and stroke: Modified telephone interview of cognitive status and telephone Montreal Cognitive Assessment versus face-to-face Montreal Cognitive Assessment and neuropsychological battery. Stroke 2013, 44, 227–229. [Google Scholar] [CrossRef] [Green Version]
- Lezak, M.D. Neuropsychological Assessment; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Gearhart, R.F., Jr.; Lagally, K.M.; Riechman, S.E.; Andrews, R.D.; Robertson, R.J. Strength tracking using the OMNI resistance exercise scale in older men and women. J. Strength Cond. Res. 2009, 23, 1011–1015. [Google Scholar] [CrossRef]
- Baratto, C.; Caravita, S.; Faini, A.; Perego, G.B.; Senni, M.; Badano, L.P.; Parati, G. Impact of COVID-19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study. J. Appl. Physiol. 2021, 130, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, R.F.; Mondoni, M.; Parazzini, E.M.; Pitari, F.; Brambilla, E.; Luraschi, S.; Balbi, M.; Sferrazza Papa, G.F.; Sotgiu, G.; Guazzi, M.; et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur. Respir. J. 2021, 58, 2100870. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Joseph, P.; Heerdt, P.M.; Cullinan, M.; Lutchmansingh, D.D.; Gulati, M.; Possick, J.D.; Systrom, D.M.; Waxman, A.B. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing. Chest 2021, 161, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Skjorten, I.; Ankerstjerne, O.A.W.; Trebinjac, D.; Brønstad, E.; Rasch-Halvorsen, Ø.; Einvik, G.; Lerum, T.V.; Stavem, K.; Edvardsen, A.; Ingul, C.B. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur. Respir. J. 2021, 58, 2100996. [Google Scholar] [CrossRef]
- Pecanha, T.; Goessler, K.F.; Roschel, H.; Gualano, B. Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1441–H1446. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Chau, B.; Lui, M.; Lam, G.T.; Lin, N.; Humbert, S. Physical medicine and rehabilitation and pulmonary rehabilitation for COVID-19. Am. J. Phys. Med. Rehabil. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Gu, R.; Xu, S.; Li, Z.; Gu, Y.; Sun, Z. The safety and effectiveness of rehabilitation exercises on COVID-19 patients: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e21373. [Google Scholar] [CrossRef]
- Yan, H.; Ouyang, Y.; Wang, L.; Luo, X.; Zhan, Q. Effect of respiratory rehabilitation training on elderly patients with COVID-19: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e22109. [Google Scholar] [CrossRef]
- Siddiq, M.A.B.; Rathore, F.A.; Clegg, D.; Rasker, J.J. Pulmonary Rehabilitation in COVID-19 patients: A scoping review of current practice and its application during the pandemic. Turk. J. Phys. Med. Rehabil. 2020, 66, 480–494. [Google Scholar] [CrossRef]
| Time Point | t−1 | T0 Baseline Evaluations | T1 10 Weeks | ||
|---|---|---|---|---|---|
| Visit 1 | Visit 2 | Visit 3 | Visit 4, 5, 6 | ||
| Enrolment: | |||||
| Eligibility screening | X | ||||
| Informed consent | X | ||||
| Assessments: | |||||
| Medical visit | X | X | |||
| Blood draw 1 | X | X | |||
| Body-composition analysis | X | X | |||
| Spirometry | X | X | |||
| O2max | X | X | |||
| Neuropsychological assessment 2 | X | X | |||
| NIRS pulsatility, neurovascular coupling | X | X | |||
| 5 Sit-to-Stand test | X | X | |||
| Timed Up-and-Go test | X | X | |||
| 6 min walking test | X | X | |||
| Self-reported questionnaires 3 | X | X | |||
| Interventions: | |||||
| control group | Have to maintain their daily habit | ||||
| cardiopulmonary-exercise-training group | 8 weeks; 3 times/week | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besnier, F.; Bérubé, B.; Malo, J.; Gagnon, C.; Grégoire, C.-A.; Juneau, M.; Simard, F.; L’Allier, P.; Nigam, A.; Iglésies-Grau, J.; et al. Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. Int. J. Environ. Res. Public Health 2022, 19, 4133. https://doi.org/10.3390/ijerph19074133
Besnier F, Bérubé B, Malo J, Gagnon C, Grégoire C-A, Juneau M, Simard F, L’Allier P, Nigam A, Iglésies-Grau J, et al. Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. International Journal of Environmental Research and Public Health. 2022; 19(7):4133. https://doi.org/10.3390/ijerph19074133
Chicago/Turabian StyleBesnier, Florent, Béatrice Bérubé, Jacques Malo, Christine Gagnon, Catherine-Alexandra Grégoire, Martin Juneau, François Simard, Philippe L’Allier, Anil Nigam, Josep Iglésies-Grau, and et al. 2022. "Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study" International Journal of Environmental Research and Public Health 19, no. 7: 4133. https://doi.org/10.3390/ijerph19074133
APA StyleBesnier, F., Bérubé, B., Malo, J., Gagnon, C., Grégoire, C.-A., Juneau, M., Simard, F., L’Allier, P., Nigam, A., Iglésies-Grau, J., Vincent, T., Talamonti, D., Dupuy, E. G., Mohammadi, H., Gayda, M., & Bherer, L. (2022). Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. International Journal of Environmental Research and Public Health, 19(7), 4133. https://doi.org/10.3390/ijerph19074133

