Evaluating the Effect of Nano-SiO2 on Different Types of Soils: A Multi-Scale Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Sample Preparation
2.3. Testing Methods
3. Results and Discussion
3.1. Constant Temperature Evaporation Test
3.2. Direct Shear Test
3.3. Unconfined Compression Test
- : Residual strength;
- : Unconfined compressive strength.
3.4. SEM (XRD) and X-ray Diffraction Analysis
3.5. pH Tests
3.6. Limitation and Future Work
4. Conclusions
- Nano-SiO2 has a great specific surface area, which results in a smaller final water evaporation loss and lower evaporation rate in regard to nano-SiO2-reinforced soil, when compared with plain soil.
- Nano-SiO2 can improve the shear strength of clayey and sandy soil under cured and uncured conditions. The enhancing effect increases with the increase in nano-SiO2 content, and the enhancing effect on clayey soil is better than on sandy soil.
- Nano-SiO2 can fill the pores between soil particles in order to improve the mechanical properties of the matrix. In addition, it can form a gel to enhance the connection between soil particles. By these means, the shear strength of soil is promoted. As sandy soil has larger particles and a looser structure, the reinforcing effect of nano-SiO2 possesses less influence.
- The unconfined compressive strength of nano-SiO2-reinforced clayey soil increases with the rise of nano-SiO2 content. Nano-SiO2 also increases the soil brittleness, which results in a decrease in failure strain.
- The results of SEM and X-ray diffraction show that nano-SiO2 enhances soil strength in two ways: one is by improving the interfacial contact area and the particle packing density of soil; the other is by enhancing the cementation between soil particles. There is no new mineral composition generated in nano-SiO2-reinforced soil.
- When compared with traditional cement material, nano-SiO2 has less influence on the soil pH value.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Wei, K.; Gu, J.; Huang, X.; Dai, X.; Liu, Q. Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil. Polymers 2022, 14, 787. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Du, Y.; Xiao, J. Shear Properties of Stabilized Loess Using Novel Reactive Magnesia-Bearing Binders. J. Mater. Civ. Eng. 2019, 31, 04019039. [Google Scholar] [CrossRef]
- Wang, D.; Korkiala-Tanttu, L. 1-D compressibility behaviour of cement-lime stabilized soft clays. Eur. J. Environ. Civ. Eng. 2020, 24, 1013–1031. [Google Scholar] [CrossRef]
- Hejazi, S.M.; Sheikhzadeh, M.; Abtahi, S.M.; Zadhoush, A. A simple review of soil reinforcement by using natural and synthetic fibers. Constr. Build. Mater. 2012, 30, 100–116. [Google Scholar] [CrossRef]
- Ismail, M.A.; Joer, H.A.; Sim, W.H.; Randolph, M.F. Effect of cement type on shear behavior of cemented calcareous soil. J. Geotech. Geoenviron. Eng. 2002, 128, 520–529. [Google Scholar] [CrossRef]
- Fan, J.; Wang, D.; Qian, D. Soil-cement mixture properties and design considerations for reinforced excavation. J. Rock Mech. Geotech. Eng. 2018, 10, 791–797. [Google Scholar] [CrossRef]
- Lin, Q. Research on the Tests of Cement–Soil Pile Compound Foundation. Master’s Thesis, Zhejiang University, Hangzhou, China, 1989. [Google Scholar]
- Soltani, A.; Deng, A.; Taheri, A.; Mirzababaei, M. Rubber powder–polymer combined stabilization of South Australian expansive soils. Geosynth. Int. 2018, 25, 304–321. [Google Scholar] [CrossRef]
- Parmar, J.; Yadav, V.; Pandya, S. Influence of Biopolymer Treatment on Suction Characteristics of Bhavnagar Expansive Soil. In Ground Improvement and Reinforced Soil Structures; Springer: Berlin, Germany, 2022; pp. 471–487. [Google Scholar]
- Gu, J.; Cai, X.; Chen, C. Study on the impact of a biopolymer-fiber combination on soil reinforcement. Adv. Eng. Technol. Res. 2022, 3, 65. [Google Scholar] [CrossRef]
- Chen, C.; Wu, L.; Perdjon, M.; Huang, X.; Peng, Y. The drying effect on xanthan gum biopolymer treated sandy soil shear strength. Constr. Build. Mater. 2019, 197, 271–279. [Google Scholar] [CrossRef]
- Chen, C.; Wu, L.; Harbottle, M. Exploring the effect of biopolymers in near-surface soils using xanthan gum–modified sand under shear. Can. Geotech. J. 2020, 57, 1109–1118. [Google Scholar] [CrossRef]
- Hyung, H.; Fortner, J.D.; Hughes, J.B.; Kim, J.-H. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 2007, 41, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Finch, G.; Havel, H.; Analoui, M.; Barton, R.W.; Diwan, A.R.; Hennessy, M.; Reddy, V.; Sadrieh, N.; Tamarkin, L.; Wolfgang, M. Nanomedicine Drug Development: A Scientific Symposium Entitled “Charting a Roadmap to Commercialization”; Springer: Berlin, Germany, 2014. [Google Scholar]
- Hanus, M.J.; Harris, A.T. Nanotechnology innovations for the construction industry. Prog. Mater. Sci. 2013, 58, 1056–1102. [Google Scholar] [CrossRef]
- Kong, R.; Zhang, F.; Wang, G.; Peng, J. Stabilization of loess using nano-SiO2. Materials 2018, 11, 1014. [Google Scholar] [CrossRef]
- Fattahi Masrour, F.; Naghdipour Mirsadeghi, M.; MolaAbasi, H.; Jamshidi Chenari, R. Effect of nanosilica on the macro-and microbehavior of dispersive clays. J. Mater. Civ. Eng. 2021, 33, 04021349. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Li, N.; Tao, F.; Yao, K. Characterisation of nano magnesia–cement-reinforced seashore soft soil by direct-shear test. Mar. Georesources Geotechnol. 2019, 37, 989–998. [Google Scholar] [CrossRef]
- Li, B.; Luo, F.; Ai, X.; Li, X.; Li, L. Mechanical properties of unbound granular materials reinforced with nanosilica. Case Stud. Constr. Mater. 2022, 17, e01574. [Google Scholar] [CrossRef]
- Zieba, Z.; Garlikowski, D.; Monka, J. The Influence of Nanosilica on Unconfined Compressive Strength of Frost-Susceptible Soil. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 42060. [Google Scholar] [CrossRef]
- Khodaparast, M.; Rajabi, A.M.; Mohammadi, M. Mechanical properties of silty clay soil treated with a mixture of lime and zinc oxide nanoparticles. Constr. Build. Mater. 2021, 281, 122548. [Google Scholar] [CrossRef]
- Choobbasti, A.J.; Samakoosh, M.A.; Kutanaei, S.S. Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Constr. Build. Mater. 2019, 211, 1094–1104. [Google Scholar] [CrossRef]
- Kulanthaivel, P.; Selvakumar, S.; Soundara, B.; Kayalvizhi, V.; Bhuvaneshwari, S. Combined effect of nano-silica and randomly distributed fibers on the strength behavior of clay soil. Nanotechnol. Environ. Eng. 2022, 7, 1–12. [Google Scholar] [CrossRef]
- Sarli, J.M.; Hadadi, F.; Bagheri, R.-A. Stabilizing geotechnical properties of loess soil by mixing recycled polyester fiber and nano-SiO2. Geotech. Geol. Eng. 2020, 38, 1151–1163. [Google Scholar] [CrossRef]
- Li, G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 2004, 34, 1043–1049. [Google Scholar] [CrossRef]
- Patro, A.; Sahoo, R.R. Strength and Microstructure Evolution of Soft Soils by Using Nano-silica. In Ground Characterization and Foundations; Springer: Berlin, Germany, 2022; pp. 315–325. [Google Scholar]
- Ghavami, S.; Naseri, H.; Jahanbakhsh, H.; Nejad, F.M. The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Constr. Build. Mater. 2021, 285, 122918. [Google Scholar] [CrossRef]
- ASTM D698-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International: West Conshohocken, PA, USA, 2021.
- Tomar, A.; Sharma, T.; Singh, S. Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Mater. Today Proc. 2020, 26, 3449–3457. [Google Scholar] [CrossRef]
- Kalhor, A.; Ghazavi, M.; Roustaei, M.; Mirhosseini, S. Influence of nano-SiO2 on geotechnical properties of fine soils subjected to freeze-thaw cycles. Cold Reg. Sci. Technol. 2019, 161, 129–136. [Google Scholar] [CrossRef]
- Chen, C.; Wu, L.; Harbottle, M. Influence of biopolymer gel-coated fibres on sand reinforcement as a model of plant root behaviour. Plant Soil 2019, 438, 361–375. [Google Scholar] [CrossRef]
- Wanare, R.; Jayanthi, P.; Iyer, K.K. A study on cracking behavior of marine soil modified with ultrafine slag under cured and uncured conditions. Mater. Today Proc. 2022, 65, 662–668. [Google Scholar] [CrossRef]
- ASTM D3080/D3080M-11; Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions (Withdrawn 2020). ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D4219-22; Standard Test Method for Short-Term Unconfined Compressive Strength Index of Chemically Grouted Soils. ASTM International: West Conshohocken, PA, USA, 2022.
- Zeng, L.; Wang, L.; Xu, H.; Jiao, G.; Cui, S.; Han, H.; Zhang, B. Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-ray Diffraction; Petroleum Industry Publishing House: Beijing, China, 2010. [Google Scholar]
- ASTM D4972-19 p6; Standard Test Methods for pH of Soils. ASTM International: West Conshohocken, PA, USA, 2019.
- Diaz, F.; Jimenez, C.; Tejedor, M. Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agric. Water Manag. 2005, 74, 47–55. [Google Scholar] [CrossRef]
- Burt, C.M.; Mutziger, A.J.; Allen, R.G.; Howell, T.A. Evaporation research: Review and interpretation. J. Irrig. Drain. Eng. 2005, 131, 37. [Google Scholar] [CrossRef]
- Gardner, W.; Hillel, D. The relation of external evaporative conditions to the drying of soils. J. Geophys. Res. 1962, 67, 4319–4325. [Google Scholar] [CrossRef]
- An, N.; Tang, C.-S.; Xu, S.-K.; Gong, X.-P.; Shi, B.; Inyang, H.I. Effects of soil characteristics on moisture evaporation. Eng. Geol. 2018, 239, 126–135. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L. Experimental studies on nanomaterials for soil improvement: A review. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- Changizi, F.; Haddad, A. Effect of nanocomposite on the strength parameters of soil. KSCE J. Civ. Eng. 2017, 21, 676–686. [Google Scholar] [CrossRef]
- Jo, B.-W.; Kim, C.-H.; Tae, G.-h.; Park, J.-B. Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 2007, 21, 1351–1355. [Google Scholar] [CrossRef]
- Qing, Y.; Zenan, Z.; Deyu, K.; Rongshen, C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 2007, 3, 539–545. [Google Scholar] [CrossRef]
- Mallela, J.; Quintus, H.V.; Smith, K. Consideration of lime-stabilized layers in mechanistic-empirical pavement design. Natl. Lime Assoc. 2004, 200, 1–40. [Google Scholar]
- Basudhar, P. Modeling of soil–woven geotextile interface behavior from direct shear test results. Geotext. Geomembr. 2010, 28, 403–408. [Google Scholar]
- Ple, O.; Lê, T. Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay. Geotext. Geomembr. 2012, 32, 111–116. [Google Scholar] [CrossRef]
- Zeng, H.; Yin, L.-Y.; Tang, C.-S.; Zhu, C.; Cheng, Q.; Li, H.; Lv, C.; Shi, B. Tensile behavior of bio-cemented, fiber-reinforced calcareous sand from coastal zone. Eng. Geol. 2021, 294, 106390. [Google Scholar] [CrossRef]
- Kannan, G.; Sujatha, E.R. Effect of Nano Additive on Mechanical Properties of Natural Fiber Reinforced Soil. J. Nat. Fibers 2022, 1–15. [Google Scholar] [CrossRef]
- Ghavami, S.; Farahani, B.; Jahanbakhsh, H.; Moghadas Nejad, F. Effects of silica fume and nano-silica on the engineering properties of kaolinite clay. AUT J. Civ. Eng. 2018, 2, 135–142. [Google Scholar]
- Liu, Y.; Chang, M.; Wang, Q.; Wang, Y.; Liu, J.; Cao, C.; Zheng, W.; Bao, Y.; Rocchi, I. Use of Sulfur-Free Lignin as a novel soil additive: A multi-scale experimental investigation. Eng. Geol. 2020, 269, 105551. [Google Scholar] [CrossRef]
- Afrakoti, M.T.P.; Choobbasti, A.J.; Ghadakpour, M.; Kutanaei, S.S. Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil. Constr. Build. Mater. 2020, 239, 117848. [Google Scholar] [CrossRef]
- Bahmani, S.H.; Huat, B.B.; Asadi, A.; Farzadnia, N. Stabilization of residual soil using SiO2 nanoparticles and cement. Constr. Build. Mater. 2014, 64, 350–359. [Google Scholar] [CrossRef]
Property | Value | |
---|---|---|
Sandy Soil | Clayey Soil | |
Specific gravity | 2.55 | 2.73 |
Maximum dry unit weight (kN/m3) | 17.05 | 16.85 |
Optimum moisture content (%) | 11.00 | 22.00 |
Liquid limit (%) | \ | 18.08 |
Plastic limit (%) | \ | 32.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Cai, X.; Wang, Y.; Guo, D.; Zeng, W. Evaluating the Effect of Nano-SiO2 on Different Types of Soils: A Multi-Scale Study. Int. J. Environ. Res. Public Health 2022, 19, 16805. https://doi.org/10.3390/ijerph192416805
Gu J, Cai X, Wang Y, Guo D, Zeng W. Evaluating the Effect of Nano-SiO2 on Different Types of Soils: A Multi-Scale Study. International Journal of Environmental Research and Public Health. 2022; 19(24):16805. https://doi.org/10.3390/ijerph192416805
Chicago/Turabian StyleGu, Jiayu, Xin Cai, Youqiang Wang, Dahan Guo, and Wen Zeng. 2022. "Evaluating the Effect of Nano-SiO2 on Different Types of Soils: A Multi-Scale Study" International Journal of Environmental Research and Public Health 19, no. 24: 16805. https://doi.org/10.3390/ijerph192416805
APA StyleGu, J., Cai, X., Wang, Y., Guo, D., & Zeng, W. (2022). Evaluating the Effect of Nano-SiO2 on Different Types of Soils: A Multi-Scale Study. International Journal of Environmental Research and Public Health, 19(24), 16805. https://doi.org/10.3390/ijerph192416805