Current Status and Correlation of Physical Activity and Tendency to Problematic Mobile Phone Use in College Students
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Measurement
2.2.1. Physical Activity
2.2.2. Problematic Mobile Phone Use
2.3. Data Analysis
3. Results
3.1. Descriptive Analysis
3.2. Analysis of Problematic Mobile Phone Use Tendency to Mobile Phones of College Students with Different Intensities of Physical Activity
3.3. Correlation Analysis
3.4. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toda, M.; Ezoe, S.; Nishi, A.; Mukai, T.; Goto, M.; Morimoto, K. Mobile phone dependence of female students and perceived parental rearing attitudes. Soc. Behav. Personal. Int. J. 2008, 36, 765–770. [Google Scholar] [CrossRef]
- Bianchi, A.; Phillips, J.G. Psychological predictors of problem mobile phone use. Cyberpsychol. Behav. 2005, 8, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Chóliz, M. Mobile phone addiction: A point of issue. Addiction 2010, 105, 373–374. [Google Scholar] [CrossRef]
- Nikhita, C.S.; Jadhav, P.R.; Ajinkya, S.A. Prevalence of Mobile Phone Dependence in Secondary School Adolescents. J. Clin. Diagn. Res. 2015, 9, VC06–VC09. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wei, R. Maintaining social connectedness in a fast-changing world: Examining the effects of mobile phone uses on loneliness among teens in Tibet. Mob. Media Commun. 2014, 2, 318–334. [Google Scholar] [CrossRef]
- Servick, K. Mind the phone. Science 2015, 350, 1306–1309. [Google Scholar] [CrossRef]
- Jiang, W.N.; Luo, J.; Guan, H.N.; Jiang, F.; Tang, Y.L. Problematic Mobile Phone Use and Life Satisfaction Among University Students During the COVID-19 Pandemic in Shanghai, China. Front. Public Health 2022, 9, 805529. [Google Scholar] [CrossRef]
- Chen, L.L.; Li, J.; Huang, J.H. COVID-19 Victimization Experience and College Students’ Mobile Phone Addiction: A Moderated Mediation Effect of Future Anxiety and Mindfulness. Int. J. Environ. Res. Public Health 2022, 19, 7578. [Google Scholar] [CrossRef]
- Ma, A.N.; Yang, Y.; Guo, S.X.; Li, X.; Zhang, S.H.; Chang, H.J. The Impact of Adolescent Resilience on Mobile Phone Addiction During COVID-19 Normalization and Flooding in China: A Chain Mediating. Front. Psychol. 2022, 13, 865306. [Google Scholar] [CrossRef]
- Mei, S.; Hu, Y.; Wu, X.; Cao, R.; Kong, Y.; Zhang, L.; Lin, X.; Liu, Q.; Hu, Y.; Li, L. Health Risks of Mobile Phone Addiction Among College Students in China. Int. J. Ment. Health Addict. 2022, 11, 1–16. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Z.; Zhu, Y.; Shi, X. The Prevalence and Psychosocial Factors of Problematic Smartphone Use Among Chinese College Students: A Three-Wave Longitudinal Study. Front. Psychol. 2022, 13, 877277. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ahn, H.; Choi, S.; Choi, W. The SAMS: Smartphone Addiction Management System and verification. J. Med. Syst. 2014, 38, 1. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhao, X. Self-control and problematic mobile phone use in Chinese college students: The mediating role of mobile phone use patterns. BMC Psychiatry 2016, 16, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penglee, N.; Christiana, R.W.; Battista, R.A.; Rosenberg, E. Smartphone Use and Physical Activity among College Students in Health Science-Related Majors in the United States and Thailand. Int. J. Environ. Res. Public Health 2019, 16, 1315. [Google Scholar] [CrossRef] [Green Version]
- Akin, A.; Altundağ, Y.; Turan, M.E.; Akın, U. The Validity and Reliability of the Turkish Version of the Smart Phone Addiction Scale-short Form for Adolescent. Procedia-Soc. Behav. Sci. 2014, 152, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Bian, M.; Leung, L. Linking Loneliness, Shyness, Smartphone Addiction Symptoms, and Patterns of Smartphone Use to Social Capital. Soc. Sci. Comput. Rev. 2014, 33, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Chai, J.; Wang, S.B.; Ng, C.H.; Ungvari, G.S.; Xiang, Y.T. Mobile Phone Dependence, Social Support and Impulsivity in Chinese University Students. Int. J. Environ. Res. Public Health 2018, 15, 504. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-E.; Kim, J.-W.; Jee, Y.-S. Relationship between smartphone addiction and physical activity in Chinese international students in Korea. J. Behav. Addict. 2015, 4, 200–205. [Google Scholar] [CrossRef]
- Lepp, A.; Barkley, J.E.; Sanders, G.J.; Rebold, M.; Gates, P. The relationship between cell phone use, physical and sedentary activity, and cardiorespiratory fitness in a sample of U.S. college students. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Lopez-Valenciano, A.; Iglesias, D.S.; Sanchez-Lastra, M.A.; Ayán, C. Impact of COVID-19 Pandemic on University Students’ Physical Activity Levels: An Early Systematic Review. Front. Psychol. 2021, 11, 624567. [Google Scholar] [CrossRef]
- Reigal, R.E.; Paez-Maldonado, J.A.; Pastrana-Brincones, J.L.; Morillo-Baro, J.P.; Hernandez-Mendo, A.; Morales-Sanchez, V. Physical Activity Is Related to Mood States, Anxiety State and Self-Rated Health in COVID-19 Lockdown. Sustainability 2021, 13, 5444. [Google Scholar] [CrossRef]
- Puccinelli, P.J.; da Costa, T.S.; Seffrin, A.; de Lira, C.A.B.; Vancini, R.L.; Nikolaidis, P.T.; Knechtle, B.; Rosemann, T.; Hill, L.; Andrade, M.S. Reduced level of physical activity during COVID-19 pandemic is associated with depression and anxiety levels: An internet-based survey. BMC Public Health 2021, 21, 425. [Google Scholar] [CrossRef]
- Diamond, R.; Byrd, E. Standing up for health—Improving mental wellbeing during COVID-19 isolation by reducing sedentary behaviour. J. Affect. Disord. 2020, 277, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.H.; Yan, Z.; Zhao, L. Physical Activity, Screen Time, and Mood Disturbance Among Chinese Adolescents During COVID-19. J. Psychosoc. Nurs. Ment. Health Serv. 2021, 59, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.Q. Methods for determining sample size in sampling surveys. Stat. Decis.-Mak. 2012, 2, 12–14. [Google Scholar] [CrossRef]
- Qu, N.N.; Li, K.J. Reliability and validity of the Chinese edition of the International Physical Activity Questionnaire. Chin. J. Epidemiol. 2004, 25, 265–268. [Google Scholar]
- Xu, J.F.; Lin, Y. A study on the reliability and validity test of the International Physical Activity Questionnaire in College Students. J. Chang. Norm. Univ. 2018, 37, 106–108. [Google Scholar]
- Fang, M.J.; Lv, Y.; He, P.P. Calculation method of physical activity level in the International Physical Activity Questionnaire. Chin. J. Epidemiol. 2014, 35, 961–964. [Google Scholar]
- Xiong, J.; Zhou, Z.K.; Chen, W.; You, Z.L.; Zhai, Z.Y. Development of a mobile phone addiction tendency scale for college students. Chin. J. Ment. Health 2012, 26, 4–10. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Technometrics 1988, 31, 499–500. [Google Scholar]
- Yang, G.; Li, Y.X.; Liu, H.Y.; Wang, S.T. Analysis of the relationship between physical exercise and mobile phone dependence of college students in Guangzhou. J. Phys. Educ. 2020, 27, 117–125. [Google Scholar] [CrossRef]
- Buizza, C.; Bazzoli, L.; Ghilardi, A. Changes in College Students Mental Health and Lifestyle During the COVID-19 Pandemic: A Systematic Review of Longitudinal Studies. Adolesc. Res. Rev. 2022, 7, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, M.; Wang, L.C.; Qin, N.B. Cross-lag analysis of depression and Internet addiction among college students during the epidemic period. Chin. J. Clin. Psychol. 2022, 30, 295–300. [Google Scholar] [CrossRef]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Zheng, J. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. 2020, 287, 112934. [Google Scholar] [CrossRef]
- Haroon, M.Z.; Zeb, Z.; Javed, Z.; Awan, Z.; Talat, W. Internet Addiction in Medical Students. J. Ayub Med. Coll. Abbottabad 2018, 30, S659–S663. [Google Scholar]
- Servidio, R. Self-control and problematic smartphone use among Italian University students: The mediating role of the fear of missing out and of smartphone use patterns. Curr. Psychol. 2019, 40, 4101–4111. [Google Scholar] [CrossRef]
- Omari, O.; Qadire, M.A. The relationship between smartphone use, insomnia, stress, and anxiety among university students: A cross-sectional study. Clin. Nurs. Res. 2020, 30, 734–740. [Google Scholar] [CrossRef]
- He, A.M.; Wan, J.J.; Hui, Q.P. The relationship between mobile phone dependence and adolescent mental health: The mediating role of academic burnout and the moderating role of coping styles. Psychol. Dev. Educ. 2022, 38, 391–398. [Google Scholar] [CrossRef]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef]
- Qin, H.Q. The mechanism of participating in sports on college students’ Internet addiction and the construction of a diversified rescue system. Sport. Res. Educ. 2019, 34, 92–96. [Google Scholar] [CrossRef]
- Lin, X.G.; Xu, J.Q. The impact of physical exercise on the mental health of college students under the novel coronavirus pneumonia epidemic. Sch. Health China 2020, 41, 1682–1687. [Google Scholar] [CrossRef]
- Hu, G.D.; Zhang, J. The role and mechanism of exercise correction in the treatment of adolescent Internet addiction from the perspective of human instinct. China Sport. Sci. Technol. 2016, 52, 68–77. [Google Scholar] [CrossRef]
- Li, S.S.; Wu, Q.J.; Tang, C.; Chen, Z.C.; Liu, L. Exercise-Based Interventions for Internet Addiction: Neurobiological and Neuropsychological Evidence. Front. Psychol. 2020, 11, 1296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, R. Effect of Exercise Intervention on Internet Addiction and Autonomic Nervous Function in College Students. BioMed Res. Int. 2022, 2022, 5935353. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liu, J.; Cao, X.; Wen, S.; Xu, J.; Xue, Z.; Lu, J. Internet addiction mediates the association between cyber victimization and psychological and physical symptoms:moderation by physical exercise. BMC Psychiatry 2020, 20, 144. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.; Kim, S.M.; Kang, K.D.; Han, D.H.; Kim, J.S.; Hwang, H.; Min, K.J.; Choi, T.Y.; Lee, Y.S. Effect of physical exercise intervention on mood and frontal alpha asymmetry in internet gaming disorder. Ment. Health Phys. Act. 2020, 18, 100318. [Google Scholar] [CrossRef]
- Zhi, J.C.; Fei, F.; Zhang, S.W.; Huang, M.L.; Zhao, M.Y.; Wang, Y. Psychobehavioral problems in children and adolescents during the novel coronavirus pneumonia epidemic: A Scoping review. Chin. J. Contemp. Pediatr. 2022, 24, 728–735. [Google Scholar]
- Gao, J.; Sun, J.H.; Xiao, K.P. An empirical study on the effect of sports intervention on internet addiction in college students. J. Shenyang Univ. Phys. Educ. 2012, 31, 55–59. [Google Scholar]
- Li, G.; Hou, G.; Yang, D.; Jian, H.; Wang, W. Relationship between anxiety, depression, sex, obesity, and internet addiction in Chinese adolescents: A short-term longitudinal study. Addict. Behav. 2019, 9, 421–427. [Google Scholar] [CrossRef]
- Shaw, A.J.; Lubetzky, A.V. A Short Bout of Exercise with and Without an Immersive Virtual Reality Game Can Reduce Stress and Anxiety in Adolescents: A Pilot Randomized Controlled Trial. Front. Virtual Real. 2021, 1, 598506. [Google Scholar] [CrossRef]
- Elhai, J.D.; Levine, J.C.; Dvorak, R.D.; Hall, B.J. Fear of missing out, need for touch, anxiety and depression are related to problematic smartphone use. Comput. Hum. Behav. 2016, 63, 509–516. [Google Scholar] [CrossRef]
- Yuan, G.Z.; Elhai, J.D.; Hall, B.J. The influence of depressive symptoms and fear of missing out on severity of problematic smartphone use and Internet gaming disorder among Chinese young adults: A three-wave mediation model. Addict. Behav. 2021, 112, 106648. [Google Scholar] [CrossRef] [PubMed]
- Li, T.T.; Zhang, D.; Qu, Y.; Zhai, S.; Xie, Y.; Tao, S.; Zou, L.; Tao, F.; Wu, X. Association between trajectories of problematic mobile phone use and chronotype among Chinese college students. Addict. Behav. 2022, 134, 107398. [Google Scholar] [CrossRef] [PubMed]
Frequency | Percentage | ||
---|---|---|---|
Gender | |||
males | 1891 | 52.4 | |
females | 1718 | 47.6 | |
Grade | |||
1 | 1353 | 37.5 | |
2 | 976 | 27.0 | |
3 | 1050 | 29.1 | |
4 | 230 | 6.4 | |
Total | Total | 3609 | 100 |
Low | Middle | High | X2 | p | Cramer’s V | |||
---|---|---|---|---|---|---|---|---|
Total | ||||||||
n | 3015 | 386 | 208 | |||||
% | 83.5 | 10.7 | 5.8 | |||||
Gender | ||||||||
male | 203.6 | <0.001 | 0.238 | |||||
(n = 1891) | n | 1427 | 279 | 185 | ||||
% | 75.5 | 14.8 | 9.8 | |||||
female | ||||||||
(n = 1718) | n | 1588 | 107 | 23 | ||||
% | 92.4 | 6.2 | 1.3 | |||||
Grade | ||||||||
1 | n | 1165 | 125 | 63 | 12.1 | 0.06 | 0.058 | |
(n = 1353) | % | 86.1 | 9.2 | 4.7 | ||||
2 | n | 804 | 114 | 58 | ||||
(n = 976) | % | 82.4 | 11.7 | 5.9 | ||||
3 | n | 862 | 117 | 71 | ||||
(n = 1050) | % | 82.1 | 11.1 | 6.8 | ||||
4 | n | 184 | 30 | 16 | ||||
(n = 230) | % | 80 | 13 | 7 |
Aggregate Score | M | SD | F | p | η² | |
---|---|---|---|---|---|---|
38.725 | 15.139 | |||||
Gender | ||||||
male (n = 1891) | 39.077 | 15.793 | 2.139 | 0.144 | 0.001 | |
female (n = 1718) | 38.339 | 14.379 | ||||
Grade | ||||||
1 (n = 1353) | 38.334 | 14.226 | 1.477 | 0.219 | 0.001 | |
2 (n = 976) | 39.551 | 15.523 | ||||
3 (n = 1050) | 38.390 | 15.789 | ||||
4 (n = 230) | 39.052 | 15.605 | ||||
Withdrawal symptoms | 15.516 | 5.925 | ||||
Gender | ||||||
male (n = 1891) | 15.491 | 6.079 | 1.095 | 0.35 | 0.001 | |
female (n = 1718) | 15.543 | 5.752 | ||||
Grade | ||||||
1 (n = 1353) | 15.580 | 5.672 | 0.069 | 0.793 | <0.001 | |
2 (n = 976) | 15.725 | 6.001 | ||||
3 (n = 1050) | 15.278 | 6.145 | ||||
4 (n = 230) | 15.335 | 6.029 | ||||
Highlight behavior | 8.523 | 4.080 | ||||
Gender | ||||||
male (n = 1891) | 8.831 | 4.276 | 22.68 | <0.001 | 0.006 | |
female (n = 1718) | 8.185 | 3.827 | ||||
Grade | ||||||
1 (n = 1353) | 8.038 | 3.789 | 11.44 | <0.001 | 0.008 | |
2 (n = 976) | 8.906 | 4.199 | ||||
3 (n = 1050) | 8.661 | 4.236 | ||||
4 (n = 230) | 9.130 | 4.224 | ||||
Social comfort | 7.636 | 3.224 | ||||
Gender | ||||||
male (n = 1891) | 7.635 | 3.295 | <0.001 | 0.983 | <0.001 | |
female (n = 1718) | 7.637 | 3.145 | ||||
Grade | ||||||
1 (n = 1353) | 7.738 | 3.189 | 2.34 | 0.071 | 0.002 | |
2 (n = 976) | 7.746 | 3.207 | ||||
3 (n = 1050) | 7.444 | 3.285 | ||||
4 (n = 230) | 7.448 | 3.188 | ||||
Mood alteration | 7.050 | 3.110 | ||||
Gender | ||||||
male (n = 1891) | 7.120 | 3.207 | 11.99 | <0.001 | 0.008 | |
female (n = 1718) | 6.973 | 3.000 | ||||
Grade | ||||||
1 (n = 1353) | 6.978 | 3.009 | 8.889 | 0.006 | 0.006 | |
2 (n = 976) | 7.174 | 3.163 | ||||
3 (n = 1050) | 7.008 | 3.177 | ||||
4 (n = 230) | 7.139 | 3.169 |
Low (n = 3015) | Middle (n = 386) | High (n = 208) | |||||
---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | ||
Totality | |||||||
mark | 39.230 | 14.838 | 35.352 | 15.043 | 37.668 | 18.488 | |
F | 11.839 | ||||||
p | <0.001 | ||||||
η2 | 0.007 | ||||||
Withdrawal symptoms | |||||||
mark | 15.703 | 5.815 | 14.256 | 5.898 | 15.135 | 7.162 | |
F | 10.719 | ||||||
p | <0.001 | ||||||
η2 | 0.006 | ||||||
Highlight behavior | |||||||
mark | 8.605 | 4.031 | 7.829 | 3.979 | 8.635 | 4.810 | |
F | 6.282 | ||||||
p | 0.002 | ||||||
η2 | 0.003 | ||||||
Social comfort | |||||||
mark | 7.783 | 3.178 | 6.839 | 3.168 | 6.981 | 3.682 | |
F | 19.428 | ||||||
p | <0.001 | ||||||
η2 | 0.011 | ||||||
Mood alteration | |||||||
mark | 7.139 | 3.058 | 6.427 | 3.119 | 6.918 | 3.680 | |
F | 9.183 | ||||||
p | <0.001 | ||||||
η2 | 0.005 |
Statistics | IPAQ Grade | MPATS Total Points | Withdrawal Symptoms | Highlight Behavior | Social Comfort | Mood Alteration | |
---|---|---|---|---|---|---|---|
IPAQ grade | r | −0.173 ** | −0.165 ** | −0.151 ** | −0.193 ** | −0.164 ** | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
MPATS total points | r | −0.173 ** | 0.848 ** | 0.776 ** | 0.737 ** | 0.806 ** | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Withdrawal symptoms | r | −0.165 ** | 0.848 ** | 0.662 ** | 0.643 ** | 0.715 ** | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Highlight behavior | r | −0.151 ** | 0.776 ** | 0.662 ** | 0.597 ** | 0.704 ** | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Social comfort | r | −0.193 ** | 0.737 ** | 0.643 ** | 0.597 ** | 0.633 ** | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Mood alteration | r | −0.164 ** | 0.806 ** | 0.715 ** | 0.704 ** | 0.633 ** | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Consequent Variable | Model Category | Model Summary | Significance of Predictor Variables | |||
---|---|---|---|---|---|---|
R | R2 | F | p | |||
MPATS total points | ||||||
1 | 0.083 | 0.007 | F (2,3606) = 1.132 | 0.322 | gender (β = −0.05, t = −2.928, p = 0.003) | |
2 | 0.096 | 0.009 | F (3,3605) = 11.296 | <0.001 | ||
Withdrawal symptoms | ||||||
1 | 0.021 | 0.001 | F (2,3606) = 0.787 | 0.455 | ||
2 | 0.08 | 0.006 | F (3,3605) = 7.651 | <0.001 | ||
Highlight behavior | ||||||
1 | 0.109 | 0.012 | F (2,3606) = 21.764 | <0.001 | gender (β = −0.1, t = −5.859, p < 0.001) | |
2 | 0.136 | 0.018 | F (3,3605) = 22.511 | <0.001 | grader (β = 0.079, t = 4.802, p < 0.001) | |
Social comfort | ||||||
1 | 0.038 | 0.001 | F (2,3606) = 2.646 | 0.071 | gender (β = −0.34, t = −1.974, p = 0.048) | |
2 | 0.126 | 0.016 | F (3,3605) = 19.331 | <0.001 | ||
Mood alteration | ||||||
1 | 0.025 | 0.001 | F (2,3606) = 1.123 | 0.326 | gender (β = −0.045, t = −2.619, p = 0.009) | |
2 | 0.082 | 0.007 | F (3,3605) = 8.053 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, W.-X.; Li, B.; Han, S.-S.; Han, Y.-H.; Meng, S.-Q.; Guo, Q.; Ke, Y.-Z.; Zhang, J.-Y.; Cui, Z.-L.; Ye, Y.-P.; et al. Current Status and Correlation of Physical Activity and Tendency to Problematic Mobile Phone Use in College Students. Int. J. Environ. Res. Public Health 2022, 19, 15849. https://doi.org/10.3390/ijerph192315849
Tong W-X, Li B, Han S-S, Han Y-H, Meng S-Q, Guo Q, Ke Y-Z, Zhang J-Y, Cui Z-L, Ye Y-P, et al. Current Status and Correlation of Physical Activity and Tendency to Problematic Mobile Phone Use in College Students. International Journal of Environmental Research and Public Health. 2022; 19(23):15849. https://doi.org/10.3390/ijerph192315849
Chicago/Turabian StyleTong, Wen-Xia, Bo Li, Shan-Shan Han, Ya-Hui Han, Shu-Qiao Meng, Qiang Guo, You-Zhi Ke, Jun-Yong Zhang, Zhong-Lei Cui, Yu-Peng Ye, and et al. 2022. "Current Status and Correlation of Physical Activity and Tendency to Problematic Mobile Phone Use in College Students" International Journal of Environmental Research and Public Health 19, no. 23: 15849. https://doi.org/10.3390/ijerph192315849