Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models
Abstract
:1. Introduction
2. Analytical Framework and Research Hypotheses
2.1. Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency
2.2. Cultivated Land Transfer and Cultivated Land Management Scale
2.3. Cultivated Land Management Scale and Cultivated Land Green Utilization Efficiency
3. Materials and Methods
3.1. Model Construction
3.1.1. CLGUE Evaluation Model
3.1.2. Mediating Effect Model
3.1.3. Threshold Regression Model
3.2. Variable Selection and Data Description
- (1)
- Explained Variables. For CLGUE, the super-efficient SBM model was used to evaluate its index. In view of CLGUE, the availability of research data and the relevant literature [9,16,25], twelve variables were selected in our work to construct the evaluation criteria for CLGUE, involving three categories of input indicators (i.e., desirable and undesirable output indicators) (Table 1).
- (2)
- Explanatory Variables. The core explanatory variable was CLT, expressed as the area proportion of CLT to household contracted cultivated land under the HRS.
- (3)
- (4)
- Control Variables. The control variables were put forward in order to more accurately measure the effect of CLT on CLGUE. Combining the existing relevant studies [25,26], the control variables of the present paper were selected as following: natural conditions (MCI), which is represented by multiple crop index; the level of regional science and technology (RST), which is represented by the ratio of financial expenditure on science and technology; financial expenditure for agriculture (FEA), which is represented by the proportion of financial expenditure for agriculture; the level of industrialization (IL), expressed as the ratio of industrial added value to GDP; geographical conditions (GCR), which is represented by the ratio of affected area of crops in the total sown area.
3.3. Research Region and Data Source
4. Results and Discussion
4.1. Measurement and Analysis of CLGUE
4.2. The Results of Correlation Analysis and Linear Fitting
4.3. Mediating Effect Regression Results
4.4. Threshold Effect Regression Results
4.5. Heterogeneity Analysis
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Zhang, J.P.; Li, Z.H. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Wang, L.G.; Hong, Y.X.; Shi, D.; Hong, Y.M.; Liu, Q.; Zhou, W. The talks on paper of the study of the spirit of the sixth plenary session of the 19th Communist Party of China Central Committee. Chin. Ind. Econ. 2021, 12, 5–30. [Google Scholar]
- Song, H.Y.; Jiang, F. Land system arrangement and urbanization process—A comparative analysis based on China and Latin American Countries. J. Huazhong Agric. Univ. Soc. Sci. Ed. 2022, 3, 1–9. [Google Scholar]
- Yuan, J.J.; Lu, Y.L.; Ferrier, R.C.; Liu, Z.Y.; Su, H.Q.; Meng, J.; Song, S.; Jenkins, A. Urbanization, rural development and environmental health in China. Environ. Dev. 2018, 28, 101–110. [Google Scholar] [CrossRef]
- Lin, H.C.; Hülsbergen, K.J. A new method for analyzing agricultural land-use efficiency, and its application in organic and conventional farming systems in southern Germany. Eur. J. Agron. 2017, 83, 15–27. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, B.X. Decoupling of carbon emissions from agricultural land utilisation from economic growth in China. Agric. Econ. 2020, 11, 510–518. [Google Scholar] [CrossRef]
- Qiu, H.G.; Luan, H.; Li, J.; Wang, Y.J. Impact of risk aversion on farmers’ excessive fertilizer application. Chin. Rural. Econ. 2014, 3, 85–96. [Google Scholar]
- Lu, H.; Xie, H.L. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China. J. Environ. Manag. 2018, 207, 134–140. [Google Scholar] [CrossRef]
- Chen, Q.R.; Xie, H.L. Temporal-Spatial differentiation and optimization analysis of cultivated land green utilization efficiency in China. Land 2019, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Schaltegger, S.; Sturm, A. Ökologische Rationalität: Ansatzpunkte zur Ausgestaltung von ökologieorientierten Managementinstrumenten. Die Unternehm. 1990, 44, 273–290. Available online: https://www.jstor.org/stable/24180467 (accessed on 13 June 2022).
- Wang, S.Y. Evaluation on eco-efficiency from human development in the central China. Econ. Geogr. 2011, 31, 827–832. [Google Scholar]
- Zhang, R.J.; Dong, H.Z. Spatial and temporal evolution and influencing factors of China’s industrial eco-efficiency based on provincial scale. Econ. Geogr. 2020, 40, 124–132+173. [Google Scholar]
- Yu, W.; Zhang, P.; Ji, Z.H. Study on regional difference, distribution dynamics and convergence of eco-efficiency of urban clusters in China. Quant. Tech. Econ. 2021, 1, 23–41. [Google Scholar]
- Ke, N.; Zhang, X.P.; Lu, X.H.; Kuang, B.; Jiang, B. Regional disparities and influencing factors of eco-efficiency of arable land utilization in China. Land 2022, 11, 257. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.Q.; Zou, L.; Zou, L.L.; Zhang, H.W. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939. [Google Scholar] [CrossRef]
- Hou, X.H.; Liu, J.M.; Zhang, D.J.; Zhao, M.J.; Xia, C.Y. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- Ma, L.Y.; Zhang, R.H.; Pan, Z.C.; Wei, F. Analysis of the Evolution and Influencing Factors of Temporal and Spatial Pattern of Eco-efficiency of Cultivated Land Use among Provinces in China: Based on Panel Data from 2000 to 2019. China Land Sci. 2022, 36, 74–85. [Google Scholar]
- Zhou, X.; Yu, J.; Li, J.F.; Li, S.C.; Zhang, D.; Wu, D.; Pan, S.P.; Chen, W.X. Spatial correlation among cultivated land intensive use and carbon emission efficiency: A case study in the Yellow River Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 43341–43360. [Google Scholar] [CrossRef]
- Zhao, D.D.; Zhou, H.; Gu, J.L. Agricultural production agglomeration: Can it promote cultivated land use efficiency?—Re—inspection based on a panel threshold model. J. Agric. Econ. 2022, 3, 49–60. [Google Scholar]
- Yin, Y.Q.; Hou, X.H.; Liu, J.M.; Zhou, X.; Zhang, D.J. Detection and attribution of changes in cultivated land use ecological efficiency: A case study on Yangtze River Economic Belt, China. Ecol. Indic. 2022, 207, 134–140. [Google Scholar] [CrossRef]
- Xie, H.L.; Chen, Q.R.; Wang, W.; He, Y.F. Analyzing the green efficiency of arable land use in China. Technol. Forecast. Soc. Chang. 2018, 133, 15–28. [Google Scholar] [CrossRef]
- Liang, L.T.; Zhai, B.; Fan, P.F. Household land use efficiency based on environment factor and its influence factors: A case of grain production core areas in Henan Province. Sci. Geogr. Sin. 2016, 36, 1522–1530. [Google Scholar]
- Lu, X.; Qu, Y.; Sun, P.L.; Yu, W.; Peng, W.L. Green transition of cultivated land use in the Yellow River Basin: A perspective of green utilization efficiency evaluation. Land 2020, 9, 475. [Google Scholar] [CrossRef]
- Qu, Y.; Lyu, X.; Peng, W.; Xin, Z. How to evaluate the green utilization efficiency of cultivated land in a farming household? A case study of shandong province, China. Land 2021, 10, 789. [Google Scholar] [CrossRef]
- Ke, N.; Lu, X.H.; Kuang, B.; Han, J. Regional Differences and Influencing Factors of Green and Low-carbon Utilization of Cultivated Land under the Carbon Neutrality Target in China. China Land Sci. 2021, 35, 67–76. [Google Scholar]
- Ma, X.L.; Che, X.C.; Li, N.; Tang, L. Has Cultivated Land Transfer and Scale Operation Improved the Agricultural Environment? An Empirical Test on Impact of Cultivated Land Use on Agricultural Environment Efficiency. China Land Sci. 2019, 33, 62–70. [Google Scholar]
- Du, X.; Wang, C.H. The Effects of Land Transfer on Grain Output and Net Income of Rural Households. Price Theory Pract. 2021, 11, 21–26. [Google Scholar]
- Li, X.G.; Huo, X.X.; Liu, J.D.; Zhang, H.L. Impact of farmland transfer and stability of rental contracts in apple production areas on apple growers’ behaviors for improvement of land quality. Trans. CSAE 2019, 35, 275–283. [Google Scholar]
- Long, Y.; Ren, L. The Effects of farmland transfer on agricultural non-point source pollution. Economist 2016, 8, 81–87. [Google Scholar]
- Guo, L.L.; Song, Y.T.; Tang, M.Q.; Tang, J.Y.; Dogbe, B.S.; Su, M.Y.; Li, H.J. Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China. Int. J. Environ. Res. Public Health 2022, 19, 8387. [Google Scholar] [CrossRef]
- Yuan, C.C.; Liu, L.M.; Ren, G.P.; Fu, Y.H.; Yin, G.Y. Impacts of farmland transfer on rice yield and nitrogen pollution in Dongting Lake district. Trans. CSAE 2016, 32, 182–190. [Google Scholar]
- Zheng, J.G.; Zhang, R.X.; Zeng, F. Impact of farmland transfer on fertilizer input: Taking Shandong province as an example. Resour. Sci. 2021, 43, 921–931. [Google Scholar]
- Gu, T.Z.; Ji, Y.Q.; Zhong, P.N. The sources of economies of scale in China’s agricultural production. Chin. Rural. Econ. 2017, 2, 30–43. [Google Scholar]
- Fei, R.L.; Lin, Z.Y.; Chunga, J. How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy 2021, 103, 105300. [Google Scholar] [CrossRef]
- Li, G.C.; Feng, Z.C.; Fan, L.X. Is the Small sized Rural Household More Efficient? The empirical evidence from Hubei province. China Econ. Q. 2009, 9, 95–124. [Google Scholar]
- Xu, Q.; Tian, S.C.; Xu, Z.G.; Shao, T. Rural land system, land fragmentation and farmer’s income inequality. Econ. Res. 2008, 2, 83–92. [Google Scholar]
- Rahman, S.; Rahman, M. Impact of land fragmentation and resource ownership on productivity and efficiency: The case of rice producers in Bangladesh. Land Use Policy 2009, 26, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Wang, J. Involution Effect: Does China’s rural land transfer market still have efficiency? Land 2022, 11, 704. [Google Scholar] [CrossRef]
- Gai, Q.E.; Cheng, M.W.; Zhu, X.; Shi, Q.H. Can land rent improve land allocation’s efficiency?—Evidence from national fixed point survey. China Econ. Q. 2020, 20, 32–341. [Google Scholar]
- Zhu, M.Y.; Wang, Z.; Li, H.Y. Transfer of land management right, farmers’ planting preference and agricultural economic benefit—An empirical study based on the micro-survey data of 779 households in 8 provinces. Rural. Econ. 2018, 9, 28–35. [Google Scholar]
- Zhu, P.X.; Su, M.; Yan, J. Impact of farmland scale and stability on fertilizer input: Taking rice production of four counties of Jiangsu province as example. J. Nanjing Agric. Univ. Soc. Sci. Ed. 2017, 17, 85–94. [Google Scholar]
- Xiao, X.Y.; Shang, L.X.; Liu, Y.Q. Comparative study on farmland circulation between plains and mountainous areas in an arid region: A case study of Zhangye city in Northwest China. Land 2022, 11, 571. [Google Scholar] [CrossRef]
- Su, B.; Li, Y.; Li, L.; Wang, Y. How does nonfarm employment stability influence farmers’ farmland transfer decisions? Implications for China’s land use policy. Land Use Policy 2018, 74, 66–72. [Google Scholar] [CrossRef]
- Lu, B.; Xiong, J. Rural Finance, Agricultural land scale management and agricultural green efficiency. J. South China Agric. Univ. Soc. Sci. Ed. 2021, 20, 63–75. [Google Scholar]
- Tan, S.H.; Heerink, N.; Kruseman, G. Do fragmented landholdings have higher production costs? Evidence from rice farmers in North—eastern Jiangxi Province, P.R. China. China Econ. Rev. 2008, 19, 347–358. [Google Scholar]
- Xu, Q.; Yin, R.L.; Zhang, H. Economies of scale, returns to scale and the problem of optimum-scale farm management: An empirical study based on grain production in China. Econ. Res. 2011, 3, 59–71. [Google Scholar]
- Tang, K.; Wang, J.Y.; Chen, Z.G. The influence of farming scale on grain yield and production cost—Based on empirical research across time periods and regions. Manag. World 2017, 5, 79–91. [Google Scholar]
- Ji, L.; Xu, C.C.; Li, F.B.; Fang, F.P. Impact of farmland management on fertilizer reduction in rice production. Resour. Sci. 2018, 40, 2401–2413. [Google Scholar]
- Meng, X.F. Analysis of the effect of mechanical subsoiling on the increase of grain production. China Agric. Inf. 2016, 5, 89–90. [Google Scholar]
- Mugera, A.W.; Langemeier, M.R. Does farm size and specialization matter for productive efficiency? Results from Kansas. J. Agric. Appl. Econ. 2011, 43, 515–528. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.S.; Li, H.Y. Analysis of the impact of large-scale management on grain yield of cultivated land in China. Agric. Econ. 2022, 3, 3–5. [Google Scholar]
- Ni, H. New thoughts about China’s agricultural trade. Pap. Rural. Econ. 2015, 3, 26–32. [Google Scholar]
- Xu, Y.; Xin, L.J.; Li, M.B.; Tan, M.D.; Wang, Y.H. Exploring a moderate operation scale in China’s grain production: A perspective on the costs of machinery services. Sustainability 2019, 11, 2213. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yan, B.J.; Wang, Y.; Zhou, Y.Z. Will land transfer always increase technical efficiency in China?—A land cost perspective. Land Use Policy 2019, 82, 414–421. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Hansen, B. Testing for Linearity. J. Econ. Surv. 1999, 13, 551–576. [Google Scholar] [CrossRef]
- Lu, X.H.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic evolution of regional discrepancies in carbon emissions from agricultural land utilization: Evidence from Chinese provincial data. Sustainability 2018, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- West, T.O.; Marland, G.A. Synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Ajwang’ Ondiek, R.; Hayes, D.S.; Kinyua, D.N.; Kitaka, N.; Lautsch, E.; Mutuo, P.; Hein, T. Influence of land-use change and season on soil greenhouse gas emissions from a tropical wetland: A stepwise explorative assessment. Sci. Total Environ. 2021, 787, 147701. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B.Q. Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model. Energy Policy 2017, 104, 404–414. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Shi, K.F.; Yang, Q.Y.; Li, Y.Q.; Sun, X.F. Mapping and evaluating cultivated land fallow in Southwest China using multisource data. Sci. Total. Environ. 2019, 654, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.G. The coordination of environment, resources and industrial growth. Econ. Res. J. 2008, 2, 93–105. [Google Scholar]
- Gong, X.W.; Li, X.M. Construction and measurement of agricultural green development index: 2005–2018. Reform 2020, 311, 133–145. [Google Scholar]
- Bryman, A.; Cramer, D. Quantitative Data Analysis with SPSS for Windows: A Guide for Social Scientists; Routledge: London, UK, 1997. [Google Scholar]
- Zhang, J.; Ebenstein, A.; McMillan, M.; Chen, K. Migration, Excessive Fertilizer Use and Environmental Consequences. Comp. Econ. Soc. Syst. 2017, 3, 149–160. [Google Scholar]
- Hou, M.Y.; Deng, Y.J.; Yao, S.B. Rural Labor Transfer, Fertilizer Use Intensity and Agroecological Efficiency: Interaction Effects and Spatial Spillover. J. Agrotech. Econ. 2021, 10, 79–94. [Google Scholar]
Primary Indicators | Secondary Indicators | Variables and Descriptions |
---|---|---|
Inputs | Labor input | AFAHF✕(Total agricultural output/TO) (104 people) |
Land input | Total sown area of crops (103 hectare) | |
Capital input | Fertilizer consumption (104 tons) | |
Pesticide consumption (104 tons) | ||
Consumption of agricultural film (104 tons) | ||
Total agricultural machinery power (104 kw) | ||
Effective irrigation area (103 hm2) | ||
Desirable Outputs | Economic output | Total agricultural output (104 Yuan) |
Social output | Total agricultural output (104 tons) | |
Environmental output | The total carbon sink (104 tons) | |
Undesirable Outputs | Pollution emission | The total loss of fertilizer nitrogen (phosphorous), pesticides and agricultural film (104 tons) |
Carbon emission | The carbon emissions from cultivated land utilization (104 tons) |
Variables | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|
Cultivated land green utilization efficiency (CLGUE) | 0.585 | 0.216 | 0.254 | 1.069 |
Cultivated land transfer (CLT) | 0.227 | 0.175 | 0.0136 | 0.873 |
Cultivated land management scale (CLMS) | 0.346 | 0.269 | 0.0437 | 1.657 |
Regional natural conditions (MCI) | 128.3 | 35.66 | 41.46 | 221.7 |
The level of regional science and technology (RST) | 1.807 | 1.416 | 0.223 | 7.202 |
Financial expenditure for agriculture (FEA) | 10.47 | 3.338 | 2.133 | 18.97 |
The level of industrialization (IL) | 45.54 | 8.472 | 16.16 | 61.50 |
Regional geographical conditions (GCR) | 32.01 | 24.61 | 0 | 174.3 |
CLGUE | CLT | CLMS | MCI | RST | FEA | IL | GCR | |
---|---|---|---|---|---|---|---|---|
CLGUE | 1 | |||||||
CLT | 0.613 *** | 1 | ||||||
CLMS | 0.223 *** | 0.093 ** | 1 | |||||
MCI | −0.0670 | 0.160 *** | −0.322 *** | 1 | ||||
RST | 0.346 *** | 0.654 *** | −0.244 *** | 0.185 *** | 1 | |||
FEA | 0.085 * | −0.094 ** | 0.395 *** | −0.307 *** | −0.434 *** | 1 | ||
IL | −0.390 *** | −0.350 *** | 0.0540 | 0.150 *** | −0.271 *** | −0.121 *** | 1 | |
GCR | −0.405 *** | −0.457 *** | −0.0470 | −0.163 *** | −0.304 *** | 0.117 ** | 0.082 * | 1 |
Variables | Model (1) | Model (2) | Model (3) |
---|---|---|---|
CLGUE | CLMS | CLGUE | |
CLT | 0.6361 *** | 0.6504 *** | 0.5636 *** |
(10.0718) | (5.4464) | (8.1720) | |
CLMS | 0.1115 *** | ||
(3.0206) | |||
MCI | −0.0007 *** | −0.0022 *** | −0.0005 ** |
(−3.5498) | (−7.3549) | (−2.4322) | |
RST | −0.0063 | −0.0627 *** | 0.0007 |
(−0.6884) | (−5.1407) | (0.0691) | |
FEA | 0.0051 * | 0.0185 *** | 0.0031 |
(1.8402) | (5.2587) | (1.0509) | |
IL | −0.0045 *** | 0.0060 *** | −0.0052 *** |
(−3.9942) | (4.1403) | (−4.4843) | |
GCR | −0.0017 *** | −0.0005 | −0.0017 *** |
(−3.5096) | (−1.0507) | (−3.4155) | |
cons | 0.7535 *** | 0.1449 * | 0.7374 *** |
(9.5532) | (1.7231) | (9.3637) | |
N | 450 | 450 | 450 |
adj. R2 | 0.458 | 0.308 | 0.470 |
F | F (6,443) = 81.82 | F (6,443) = 18.29 | F (7,442) = 68.87 |
Model | F-Value | p-Value | Critical Value | Threshold Value | 95% Confidence Interval | |||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
Single threshold | 20.40 * | 0.093 | 19.6500 | 23.6583 | 32.0941 | 0.3552 | 0.3493 | 0.3565 |
Double threshold | 4.83 | 0.827 | 15.7092 | 17.9890 | 24.9962 | |||
Triple threshold | 10.90 | 0.473 | 18.8730 | 24.3689 | 30.2588 |
Variables | Regression Coefficients | Standard Error | T-Value | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
CLGUE·I (CLMS ≤ 0.3552) | 0.7645 *** | 0.1334 | 5.73 | 0.000 | 0.4916 | 1.0373 |
CLGUE·I (CLMS > 0.3552) | 0.5296 *** | 0.0849 | 6.24 | 0.000 | 0.3561 | 0.7032 |
MCI | −0.0009 | 0.0010 | 0.97 | 0.340 | −0.0029 | 0.0010 |
RST | 0.0359 *** | 0.0120 | 2.99 | 0.006 | 0.0113 | 0.0604 |
FEA | −0.0066 | 0.0054 | 1.23 | 0.228 | −0.0176 | 0.0044 |
IL | −0.0107 *** | 0.0022 | 4.79 | 0.000 | −0.0153 | −0.0062 |
GCR | −0.0013 *** | 0.0004 | 3.28 | 0.003 | −0.0021 | −0.0005 |
cons | 1.0930 *** | 0.1789 | 6.11 | 0.000 | 0.7271 | 1.4588 |
Variables | Division by Geographical Location | Division by Grain Functional | ||||
---|---|---|---|---|---|---|
Eastern Areas | Central Areas | Western Areas | Main Grain -Producing Areas | Main Grain -Marketing Areas | Grain-Producing & Marketing Balance Areas | |
CLGUE | CLGUE | CLGUE | CLGUE | CLGUE | CLGUE | |
CLT | 0.6699 *** | 0.5860 *** | 0.6675 *** | 0.4382 *** | 0.6783 *** | 0.6481 *** |
(7.9870) | (3.0154) | (5.2826) | (3.5554) | (6.1136) | (4.3950) | |
MCI | −0.0005 | −0.0016 *** | 0.0007 | −0.0020 *** | 0.0007 | 0.0018 ** |
(−1.1732) | (−4.7078) | (1.0382) | (-7.8225) | (1.3163) | (2.3415) | |
RST | 0.0020 | −0.0468 ** | 0.1208 *** | −0.0011 | 0.0034 | 0.0914 *** |
(0.1915) | (−2.1303) | (3.7356) | (−0.0781) | (0.2513) | (2.6983) | |
FEA | 0.0132 *** | 0.0005 | 0.0038 | −0.0018 | 0.0192 *** | 0.0093 |
(2.9591) | (0.0633) | (0.6671) | (−0.3621) | (3.0400) | (1.5791) | |
IL | −0.0040 *** | −0.0056 ** | −0.0024 | −0.0097 *** | −0.0045 *** | −0.0014 |
(−3.0460) | (−1.9957) | (−1.1158) | (−4.6191) | (−2.6961) | (−0.5800) | |
GCR | −0.0007 | −0.0020 ** | −0.0017 *** | −0.0024 *** | −0.0009 | −0.0016 ** |
(−1.5274) | (−2.2258) | (−2.8124) | (−3.9650) | (−1.5338) | (−2.5020) | |
cons | 0.5711 *** | 1.0670 *** | 0.3730 ** | 1.3277 *** | 0.3806 *** | 0.1552 |
(5.9318) | (5.7331) | (2.0906) | (10.4772) | (2.9352) | (0.8061) | |
N | 165 | 120 | 165 | 195 | 105 | 150 |
adj. R2 | 0.554 | 0.460 | 0.475 | 0.570 | 0.513 | 0.454 |
F | 34.99 | 17.91 | 25.72 | 43.92 | 19.27 | 21.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Zhang, H.; Ke, N. Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models. Int. J. Environ. Res. Public Health 2022, 19, 12786. https://doi.org/10.3390/ijerph191912786
Zhou M, Zhang H, Ke N. Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models. International Journal of Environmental Research and Public Health. 2022; 19(19):12786. https://doi.org/10.3390/ijerph191912786
Chicago/Turabian StyleZhou, Min, Hua Zhang, and Nan Ke. 2022. "Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models" International Journal of Environmental Research and Public Health 19, no. 19: 12786. https://doi.org/10.3390/ijerph191912786
APA StyleZhou, M., Zhang, H., & Ke, N. (2022). Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models. International Journal of Environmental Research and Public Health, 19(19), 12786. https://doi.org/10.3390/ijerph191912786