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Abstract: Cultivated land utilization around the world is accompanied by the cultivated land frag-
mentation, which is a significant agricultural feature of countries with economies in transition.
Thereby, governments of the PRC have successively promulgated a series of relevant policies to pro-
mote the cultivated land transfer (CLT) and stimulate the transformation of cultivated land utilization
to be both green and efficient. In the context of large-scale CLT and the implementation of a rural
revitalization strategy for China, it is of great significance to explore the effect of CLT on cultivated
land green utilization efficiency (CLGUE). In this work, 30 provinces of China were selected as the
objects of investigation; the super-efficiency SBM model was used to evaluate CLGUE; the mediation
effect model and threshold regression model were used to gain a more comprehensive understanding
of the CLT’s influence on CLGUE. According to the results of this study, the following conclusions
were drawn. First of all, the CLGUE in China as a whole showed an upward trend improvement
from 2005 to 2019. Due to the different natural and economic conditions, the CLGUE trends showed
significant spatial disparities at both the grain functional areas level and provincial level. Secondly,
the CLT could promote CLGUE directly, and the mediation regression results demonstrated that CLT
was able to enhance CLGUE indirectly through the mediator of cultivated land management scale.
Thirdly, the threshold effect test confirmed the existence of a single threshold, indicating that when
the level of CLT gradually crossed the threshold, the promotion effects of CLT on CLGUE would slow
down. Lastly, the heterogeneity analysis indicated that the promotion effects of CLT on CLGUE in
different geographical location areas and grain functional areas were positive, and that there were
significant differences in regression coefficients.

Keywords: cultivated land transfer; cultivated land green utilization efficiency; cultivated land
management scale

1. Introduction

According to the UN statistics, more than 1.86 billion people will live in urban areas
from 2009 to 2050, and the urbanization rate is estimated to increase from 50 to 69% [1]. In
China, the urbanization rate, reflected by urban population, increased from 10.64% in 1949
to 63.89% in 2020. Urbanization is an important way of promoting and effective carrier of
agricultural surplus labor transfer in the process of economic transition [2,3]. However,
considering the basic national conditions in China with a large population and little land,
the contradiction of the expansions of urban construction and cultivated land protection
is becoming prominent. The large-scale spatial expansion of urbanization has brought
the reduction of cultivated land and food security. The rapid process of urbanization has
caused a huge quantity of cultivated land to be lost [4], especially after 2010 (Figure 1).
According to the “China Land and Resources Statistical Yearbook (2017)”, the area of
cultivated land in China had reduced to 134,863,200 hectares (2.023 billion mu). The

Int. J. Environ. Res. Public Health 2022, 19, 12786. https://doi.org/10.3390/ijerph191912786 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph191912786
https://doi.org/10.3390/ijerph191912786
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-0227-0779
https://doi.org/10.3390/ijerph191912786
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph191912786?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 12786 2 of 20

shortage of cultivated land has become more and more serious, which is threatening the
food security and social stability. In addition, with the transfer of young and middle-aged
rural labor from agricultural to non-agricultural sectors during the process of urbanization,
the problem of who will farm the cultivated land in future has become another focus of
urgent attention in China.
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Figure 1. Cultivated land area and cultivated land area reduced in China.

The Chinese government has successively promulgated a number of related laws and
regulations, such as improving the eco-friendly utilization of cultivated land, implementing
the policy of agricultural subsidies, encouraging the practice of cultivated land transfer
(CLT), to alleviate the shortage of cultivated land and solve the problem of who farm
cultivated land. Based on “Statistics from China Rural Statistical Yearbook (2021)”, grain
yield of China had grown from 318.7 kg per capita in 1978 to 474.4 kg per capita in 2020.
However, high yields may be the results of unsustainable farming methods [5]. For example,
the use of cultivated land has contributed to massive carbon emissions growth in China.
The carbon emissions from agricultural land utilization in mainland China is on the rise,
from 5232.83 thousand tons in 2000 to 7613.31 thousand tons in 2017 [6]. Moreover, the
fertilizer amount applied per unit of cultivated land is much higher than the world average
level and the maximum limit, and the as the applied amount of chemical fertilizer is
1.6 times of the world average [7]. Excessive use of fertilizers has become the main source
of agricultural non-point source pollution in China [8], which seriously threatens soil
safety [9].

More attention should be paid to the ecological and environmental effects of the pro-
cess of cultivated land utilization. Since Schaltegger and Sturm (1990) [10] proposed the
conception of ecological efficiency in the 1990s, the core of eco-efficiency lies in the introduc-
tion of economic and ecological dimensions into the terms of production evaluation [11].
The concept of eco-efficiency has been applied to solve problems in various fields, especially
in industrial research [12] and regional research [13]. As for the eco-efficiency of cultivated
land use, the relevant literature covers the following aspects: (1) The design and method of
evaluation. The existing research usually measures the ecological efficiency of cultivated
land use comprehensively, and the evaluation indexes were selected from “input”, “de-
sirable output”, and “undesirable outputs” [14]. The carbon emission and agricultural
pollution were included in the evaluation of ecological efficiency of cultivated land use as
the undesired output [15–17]. In terms of evaluation method of the cultivated land utiliza-
tion eco-efficiency, super-efficient SBM model [14,16], comprehensive index evaluation [18],
SFA model [19], three-stage super-efficiency SBM-U model [20], and non-radial directional
distance function (NDDF) approach [21] were used. (2) The spatial-temporal evolution of
cultivated land utilization eco-efficiency. Ma et al. (2022) [17] explored the characteristics
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of spatial–temporal changes of ecological efficiency of cultivated land use in thirty-one
provinces in China from 2000 to 2019. The result indicated that the ecological efficiency
of cultivated land use in all provinces reduced from 0.408–3.976 to 0.353–2.046. However,
Ke et al. (2022) [14] reported a rise in eco-efficiency of cultivated land use from 0.4393 to
0.8929 from 2000 to 2019 in China. (3) The determining issues of cultivated land utilization
eco-efficiency. Empirical studies revealed that the eco-efficiency of cultivated land use
was affected by resource endowments, economic development level, natural conditions,
production conditions [17], household livelihoods, adjustment of planting structure, the
stability of land property rights and the household cultivated land scale [22]. Taking the
Yangtze River Economic Belt in China as the research target, Hou et al. (2019) [16] discussed
the relationship between urbanization and ecological efficiency of cultivated land use. The
research concluded that urbanization affects the cultivated land utilization eco-efficiency
by affecting the combination of input and output.

At present, in the general trend of eco-friendly and sustainable utilization of resources,
China has been supporting the transformation of cultivated land use to become green and
efficient [23]. However, the concept and meaning of the cultivated land green utilization
efficiency (CLGUE) are still unclear [24]. Xie et al. (2018) interpreted CLGUE as combining
the largest economic and ecological effects that are generated with the lowest cost from
cultivated land use [21]. In other words, CLGUE is not only involves the economic outputs,
but also takes the positive and negative externalities during cultivated land utilization into
account. Ke et al. (2021) integrated the concept of “green” and “low-carbon” involved into
the measurement of CLGUE [25].

Centralizing cultivated land from aged farm households to young professional in-
vestors, and implementation of farmland professional, technical and moderate-scale man-
agement are effective paths to solve the problem of who farm cultivated land in the future
China. In 2014, the central governments of CPC issued “Opinions on Guiding the Orderly
Circulation of Rural Land Management Rights to Develop Moderate Scale Operation of
Agriculture”, which required that CLT and moderate-scale of cultivated land management
should be energetically developed. In addition, the China’s government promulgated the
“Three Rights Separation Policy” to further separate the right to manage cultivated land
from the right to contract the management of cultivated land. Ownership, contract right
and management right are separated from each other. With the progress of rural reform,
the action supporting cultivated land as an advantage has been unceasingly strengthened,
and the CLT has developed rapidly [8]. As evidence thereof, the area of contracted land has
exceeded 104 million hectares, and the area of cultivated land with transferred use rights
was 35.48 million hectares, accounting for more than one third of the total contracted land,
in 2020.

In recent years, scholars have shown mounting interest in the performance of CLT, and
most of the current research mainly involves the following aspects: (1) The current literature
focuses more on the influence of CLT on the agricultural environment [26], income of rural
households [27], households’ behaviors for cultivated land utilization [28], pollution from
non-point agricultural source [29], fertilizer utilization and PM 2.5 pollutants [30]. (2) The
investigation methods, including the mediating effect model [26], agent-based model
(ABM), substance flow analysis (SFA) [31], endogenous switching model [32] and Granger
causality test [30] were used. In addition, there is also some of the literature that explored
the impact of CLT on cultivated land utilization. Taking Daligang Township (located in the
typical subtropical hilly area of China) as a case study area, Yuan et al. (2016) performed an
empirical study on the synergistic effects of CLT on rice planting and nitrogen utilization.
The results found that along with CLT, the circulated cultivated land was gradually taken
over by balanced households, farming-oriented households or large-scale households. They
increased the double-rice planting rates and rice yields [31]. The study of Gu et al. (2017)
found that an increase in plot size implies a decrease in the cost of machine utilization, an
increase in the possibility of mechanical utilization and cultivated land investment, and a
decrease in the labor input per unit area [33]. After collecting the information of 30 provinces
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in China from 2000 to 2017, Fei et al. (2021) constructed a counterfactual framework using
PSM method to analyze the impact of CLT on cultivated land utilization efficiency. The
analysis showed that the cultivated land utilization efficiency in the provinces with CLT
was higher than that in the provinces without CLT [34]. According to the information of
892 farmers from ten counties in Shandong, China, Zheng et al. (2021) estimated the impact
of different CLT characteristics on farmers’ fertilizer application. The results showed that
farmer’s chemical fertilizer input decreased significantly after CLT introduction, while
increased significantly after CLT removal, and CLT mainly affected farmers’ fertilizer
application by controlling the supply of agricultural labor [32]. The empirical research of
Guo et al. (2022) also showed that CLT could reduce the quantity of fertilizer used, and the
influence of CLT on PM 2.5 pollution was negative [30].

With the acceleration of urbanization, CLT has become an increasingly common
strategy to increase the circulated land utilization efficiency and mitigate the fragmentation
of small farmland [31]. The change of cultivated land management scale (CLMS) brought
by CLT will change the allocation of resources, and how this change will affect CLGUE
is rarely paid attention by scholars. In conclusion, the existing literature has paved the
way for the development of our work, but at least the following two points need to be
further improved. Firstly, the research on the influence and mechanism of CLT on CLGUE
needs to be strengthened. Secondly, the existing literature usually ignored the relationship
between CLT and CLGUE, one-sided analysis of a single link not being conducive to an
accurate understanding of the effect of CLT on CLGUE. The influence of CLT on CLGUE is
an interlocking process; therefore, the direct estimation of the impact of CLT on CLGUE
may lead to errors in the estimation results.

In view of China’s large-scale CLT and rural vitalization strategy, it is significant
to explore the effect of CLT on CLGUE and its underlying mechanisms. The possible
contributions to the literature of this work were mainly made in three points. Firstly,
considering the influence of CLT on CLGUE is an interlocking process, this paper uses the
mediation effect model to measure the impact of CLT on CLGUE, which can effectively
solve the errors of the direct estimation and can be deemed as an improvement over
previous research. Secondly, compared with the traditional method of regional division,
the classified method of food functional areas is used in this paper, which has advantages
in objectively reflecting the level of regional cultivated land resource utilization, and food
production and distribution. Lastly, this paper conducted an in-depth analysis on the
influence of CLT on CLGUE, so as to provide a basis for targeted policy formulation
on the improvement of CLGUE. The main contents of this work are as follows. Firstly,
thirty provinces in Chinese Mainland are taken as the research objects of this work, and
the mediation effect model is used for an overall view of the CLT’s impact on CLGUE.
Secondly, a threshold regression model is used to test the threshold effect between CLT and
CLGUE. Lastly, this study considers the regional differences in CLT on CLGUE from the
perspectives of both geographical location and grain functional areas.

2. Analytical Framework and Research Hypotheses
2.1. Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency

The influence path of CLT on CLGUE mainly includes the following aspects. Firstly,
the level of cultivated land fragmentation can be reduced by concentrating cultivated
land. Under the background of the national resource situations of large population and
little-cultivated land, the assignment of cultivated land in accordance with the Household
Responsibility System (HRS) according to quality and location makes China’s cultivated
land fragmented [35]. Due to the increasing area of ridges and ditches, fragmentation of
cultivated land wastes cultivated land resources and agricultural operation time, reduces
irrigation efficiency, and causes inconvenience in field management [36]. In addition, there
are some studies demonstrating that the fragmented cultivated land is crucial for losing
agricultural production technical efficiency [37]. CLT enables farmers to adjust the scale of
cultivated land management and reduce the fragmentation of cultivated land [38].



Int. J. Environ. Res. Public Health 2022, 19, 12786 5 of 20

Secondly, the efficiency of the allocation of cultivated land resources can be increased
by CLT. According to neoclassical theory, homogeneous elements need to be rewarded
equally in the perfectly competitive markets. This stands for the marginal output of factors
being equal for all producers regardless of their production efficiency. However, factors will
be transferred to the producers with higher marginal output. On the one hand, CLT makes it
possible for farmers with high efficiency to expand the scale of cultivated land management.
On the other hand, due to the low marginal output of cultivated land, farmers with low
efficiency can reduce their scale of cultivated land management by transferring out their
cultivated land. Therefore, the transformation of cultivated land from inefficient farmers
to efficient farmers can increase the allocation efficiency of cultivated land resources [39].
In addition, CLT promotes the transformation of agricultural management from part-time
and small-scale farmers to specialized and large-scale farmers, improving agricultural
management capacity and agricultural planting technology while extending the scope of
cultivated land management [40].

Lastly, the practices of cultivated land utilization are being made more eco-friendly.
CLT transfers the cultivated land from part-time and small-scale farmers to large growers,
family farms, cooperatives and other specialized cultivation direction concentration. The
operators who have higher operational capacity and rich production experience are more
likely to adopt advanced agricultural machinery and eco-friendly and environmental
planting technology. Based on the questionnaire survey of 191 respondents in four counties
of Jiangsu Province, Zhu et al. (2017) explored the influence of the cultivated land size in
circulation on fertilizer input, and the result showed that farmland’s scale has an obvious
negative effect on fertilizer input [41]. In addition, based on the agricultural production
data covering 26 provinces from 2007 to 2016, Ma et al. (2019) studied the effect of CLT on
agricultural environmental efficiency. They found that CLT shows a positive and direct
impact on agricultural environmental efficiency under the “non-point source pollution”
and “carbon emissions”. CLT can effectively improve production efficiency with more
rational resource allocation and make up for the shortcomings in the application of green
technologies so as to promote the ecological and effectual use of cultivated land [26].
Therefore, this study put forward the following assumption:

Hypothesis 1 (H1). CLT shows a substantial positive effect on CLGUE.

2.2. Cultivated Land Transfer and Cultivated Land Management Scale

As urbanization and industrialization accelerate, many rural laborers are transferred
to urban areas, leading to the growth of CLT. For the past decade, more and more farmers
are engaged in CLT to expand CLMS in China. According to the data from the “China
Rural Management Statistical Annual Report” from 2005 to 2020, the area of transferred
farmland increased from 3.64 million hectares to 35.48 million hectares, with a substantial
increase of the proportion from 4.57% to 36.16%. CLT is essential for management in scale
of cultivated land [42]. CLT scales up the operation of cultivated land. In the future, the
proportion of large-scale households in agricultural production will continuously grow
and become larger [43]. According to the data of 26 provinces in China from 2007 to
2016, Ma et al. (2019) evaluated the influence of CLT on CLMS, which suggested that CLT
helped to extend CLMS (size per agricultural labor) [26]. Therefore, this study proposes
the following assumption:

Hypothesis 2 (H2). CLT has a positive effect on CLMS.

2.3. Cultivated Land Management Scale and Cultivated Land Green Utilization Efficiency

The influence path of CLMS on CLGUE mainly includes the following aspects. Firstly,
the total production cost per unit area can be reduced by the amplification of CLMS. Due to
the inseparability of agricultural infrastructure and other production issues, the miniature
cultivated land management restricts the efficiency of resource utilization and has input
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redundancy. The expansion of management scale has a significant impact on the optimal
allocation of resources [44]. According to the survey data of 331 rice growers in northeastern
Jiangxi Province, China, Tan et al. (2008) reported that the increase in farm size decreases
the total production costs per ton, and the production cost per unit yield would be reduced
by 1.4% if the CLMS increased by 1 mu [45]. On the basis of the field survey data of
1049 farmers in 100 villages in 5 provinces, China, Xu et al. (2011) found that, except for
japonica rice, the development of cultivated land management had a considerable negative
effect on the total production cost per unit yield [46]. According to the micro-survey data on
farmers from eight major grain-producing provinces from 2003 to 2013 at fixed observation
points in rural areas of the Ministry of Agriculture of China, the research of Tang et al.
(2017) found that the development of farmers’ CLMS significantly reduced the production
cost per unit mu [47].

Secondly, the carbon and pollution emissions from cultivated land use can be lowered
though agricultural chemical reduction. During the rapid development of urbanization,
the continuous transfer of rural laborers to non-agricultural industries leads to the relative
shortage and rising price of labor. However, the amplification of CLMS further aggravates
the shortage of labor after large-scale CLT. Under the condition of inelastic labor supply,
the labor-saving technology (labors were substituted by agricultural machinery) has been a
realistic choice for agricultural development and micro-farmers [48]. Studies have shown
that mechanized operations such as mechanical land preparation, deep tillage and me-
chanical fertilization had a considerable effect on cultivated land quality and fertilizer
utilization efficiency [49]. Furthermore, the estimation results of Zhu et al. (2017) showed
that farmland’s scale has an obvious negative influence on fertilizer input [41].

Lastly, the cultivated land productivity can be increased by the deepening division of
labor and specialization. The amplification of CLMS leads to the deepening of the division
of labor and specialization [44], which has a significant on improving cultivated land
productivity. Mugera and Langemeier (2011) examined the technical and scale efficiency
scores for a balanced panel of 564 farms in Kansas, USA, from 1993 to 2007. The empirical
results showed that the larger farms were industrially more efficient than the smaller
ones [50]. On the basis of household surveys of the core region of food production in
Henan Province, China, Liang et al (2016) explored the influencing issues of household
cultivated land utilization efficiency which considering the environmental factors. The
investigation reflected that the development of household cultivated land provides a
positive effect for cultivated land utilization efficiency, but actually, small-scale cultivated
land and fragmentation land are widespread, which reduces the positive impact they
have [22].

Additionally, the CLMS in most provinces and regions of China has not reached the
optimal level [51]. In view of the limited CLMS brought by the basic national situations
of large population and little cultivated land, the allocation of cultivated land under HRS
based on quality and location will inevitably cause a series of fragmented cultivated land
plots [38]. As evidence thereof, each rural household manages a small piece of cultivated
land allocated from the rural collective to which it belongs, averaging 0.5 hectares per
household under HRS [52]. The ultra-small-scale operation of cultivated land especially
occurs in the grain production core area, the research in Henan province has shown that
the average number of plots per household is 4.13, and the average area of each cultivated
land is lower than 0.1 hectares [22]. Compared with the requirements of agricultural
modernization, these small plots seriously impede the widespread application of large farm
machinery [53], and the excessively scattered agricultural ultra-small-scale management has
shown remarkable inadaptability in China. CLT is the most important means to promote
appropriate management scales of cultivated land in China [54]. In conclusion, the present
study put forward the following assumptions:
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Hypotheses 3 (H3). CLMS is positively related to CLGUE.

Hypotheses 4 (H4). CLT can enhance CLGUE through the mediator of CLMS.

The overall analytical framework is shown in Figure 2.
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3. Materials and Methods
3.1. Model Construction
3.1.1. CLGUE Evaluation Model

Charnes et al. (1978) initially proposed the data envelopment analysis (DEA) model [55].
The DEA model is a holistic factor analysis model with multiple indicators, and it is fa-
vored because it can objectively determine the weight of the parameters and evaluate the
efficiency of the system [21]. Efficiency measurement with the traditional DEA model is pri-
marily based on the radial and angle levels of homogeneous units to minimize the input or
maximize the output. However, it largely ignores the undesirable output (i.e., inefficiency)
in the evaluation process [15]. Tone developed a non-radial and non-angular slack-based
measure (SBM) model to improve this problem [56]. The super-efficiency SBM model has
the advantages of both the SBM model and the super-efficiency of DEA model, which
can measure efficiency incorporating undesirable outputs, and also distinguish and com-
pare the effective decision-making units so as to avoid the loss of information of effective
decision-making units [25,57].

Therefore, we used the super-efficient SBM model to evaluate the CLGUE. The fol-
lowing formula describes the principle of the model with unexpected output. The number
of decision-making units (DMUs) of the cultivated land use is n. m is the number of
input types; S1 and S2 are the number of desirable and undesirable output types, respec-
tively. x ∈ Rm, yg ∈ Rs1 , yb ∈ Rs2 correspond to the input, desirable output and unde-
sirable output, respectively. The matrix can be described as: X = [x1, · · · , xn] ∈ Rm×n ,
Y g =

[
yg

1 , · · · , yg
n

]
∈ Rs1×n, Y b =

[
yb

1, · · · , yb
n

]
∈ Rs2×n. The super-efficiency SBM model

containing the unexpected output can be detailed by following formula [25]:

ρ∗ = min
1 + 1

m ∑m
i=1

D−i
xih

1− 1
S1+S2

(
∑S1

r=1
Dg

r
yg

rh
+ ∑S2

k=1
Db

k
yb

kh

) (1)

s.t.



xik ≥ ∑n
j=1, j 6=h λjxij − D−i , i = 1, · · · , m

yg
rh ≥ ∑n

j=1, j 6=h λjy
g
rj + Dg

r , r = 1, · · · , s1

yb
kh ≥ ∑n

j=1, j 6=h λjyb
kj − Db

r , k = 1, · · · , s2

1− 1
s1+s2

(
∑s1

r=1
Dg

r
yg

rh
+ ∑s2

k=1
Db

k
yb

kh

)
> 0

D− ≥ 0, Dg ≥ 0, Db ≥ 0

(2)
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where, D−, Dg and Db represent the slack variable of input, desirable output and unde-
sirable output, respectively. λ symbolizes the weighting vector. ρ∗ is a coefficient related
to CLGUE.

3.1.2. Mediating Effect Model

On a basis of previous analysis, CLT could prompt CLGUE through the mediator
of management scale. Referring to the mediation effect analysis framework proposed by
Baron and Kenny (1986) [58], combined with the research hypothesis of this paper, the
following hierarchical regression model was constructed:

CLGUEi,t = α0 + α1CLTi,t + α2Controli,t + εi,t (3)

CLMSi,t = β0 + β1CLTi,t + β2Controli,t + εi,t (4)

CLGUEi,t = γ0 + γ1CLTi,t + γ2CLMSi,t + γ3Controli,t + εi,t (5)

where i represents the region; t signifies the year; CLGUEi,t is CLGUE for region i within
time t; CLTi,t means the proportion of CLT in the total cultivated area for region i within
time t; CLMSi,t means the rural per capita sown area for region i within time t; Controli,t
represents the control variables, including natural conditions (MCI), the level of regional
science and technology (RST), financial expenditure on agriculture (FEA), the level of
industrialization (IL), and geographical conditions (GCR), and εi,t is the error term.

According to Baron and Kenny (1986) [58], the mediation effect is supported if the
following preconditions can be achieved: Firstly, the regression coefficient α1 in Formula (3)
should be significant, which indicates that the explanatory variable is significantly related
to the explained variable. Secondly, the regression coefficient β1 in Formula (4) should
be significant, which indicates explanatory variable is significantly related to mediating
variable. Thirdly, the regression coefficient γ2 in Formula (5) should be significant, and
simultaneously γ1 in Formula (5) needs to be NOT significant (complete mediating effect),
or γ1 in Formula (5) is significant and the regression coefficient value needs to be less than
α1 in Formula (3) (partial mediating effect).

3.1.3. Threshold Regression Model

As mentioned above, the relationship between CLT and CLGUE might be non-linear.
Thus, panel threshold modeling proposed by Hansen (1999) [59] is further utilized in the
analysis. Specifically, this research selected CLT as the threshold variable to investigate the
non-linear affiliation between CLT and CLGUE. The model is established as follows:

CLGUEi,t = δ0 + δ1CLTi,t I(CLT ≤ ϕ1) + δ2CLTi,t I(ϕ1 < CLT ≤ ϕ2) + · · ·
+δnCLTi,t I(ϕn−1 < CLT ≤ ϕn) + δn+1CLTi,t I(CLT > ϕn)

+δωControli,t + εi,t

(6)

where I(·) is an indicator function, ϕ1 ϕ2 ϕ3 . . . ϕn are the specific threshold values. The
threshold regression test in Formula (6) consists of two components: First, it is necessary
to verify whether there is a threshold effect, and the numbers of thresholds. Second, the
paper will check the theoretical asymptotic distribution, establish confidence intervals
for parameters to be estimated, and use the bootstrap analysis to evaluate the statistical
significance of the threshold.

3.2. Variable Selection and Data Description

(1) Explained Variables. For CLGUE, the super-efficient SBM model was used to evaluate
its index. In view of CLGUE, the availability of research data and the relevant litera-
ture [9,16,25], twelve variables were selected in our work to construct the evaluation
criteria for CLGUE, involving three categories of input indicators (i.e., desirable and
undesirable output indicators) (Table 1).
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Table 1. The statistics for measuring CLGUE.

Primary Indicators Secondary Indicators Variables and Descriptions

Inputs

Labor input AFAHF ×(Total agricultural output/TO) (104 people)

Land input Total sown area of crops (103 hectare)

Capital input

Fertilizer consumption (104 tons)

Pesticide consumption (104 tons)

Consumption of agricultural film (104 tons)

Total agricultural machinery power (104 kw)

Effective irrigation area (103 hm2)

Desirable
Outputs

Economic output Total agricultural output (104 Yuan)

Social output Total agricultural output (104 tons)

Environmental output The total carbon sink (104 tons)

Undesirable
Outputs

Pollution emission The total loss of fertilizer nitrogen (phosphorous),
pesticides and agricultural film (104 tons)

Carbon emission The carbon emissions from cultivated land utilization
(104 tons)

Note: AFAHF represents the abbreviation of agricultural, forestry, animal husbandry and fishery practitioners;
TO represents the abbreviation of total output values of agriculture, forestry, animal husbandry and fishery.

Chemical fertilizers, pesticides, agricultural films, agricultural diesel fuel, agricultural
irrigation, agricultural farming and agricultural machinery were regarded as the carbon
emission sources for the use of cultivated land in this work. Multiplying the above indica-
tors by the related carbon emission coefficient, the total carbon emission of cultivated land
use was gained. It is calculated by the following formula [6]:

CECLUi = ∑ Ci = ∑ Ti·δi (7)

where, CECLUi is the carbon emission for all varieties of carbon sources of cultivated land
utilization; Ti means the amount of the i-th carbon source; δi represents the coefficient of the
i-th carbon source. It is known from references [6,60,61] the carbon source and coefficient
involve chemical fertilizer (0.895 6, kg C/kg), pesticide (4.394 1, kg C/kg), agricultural film
(5.180, kg C/kg), agricultural machinery gross power (312.6 kg, C/kW), agricultural irriga-
tion (5, kg/hm2), agricultural cultivation (312.6, kg C/km2) and agricultural machinery
(25 kg C/hm2).

The pollution of cultivated land use is generally non-point source pollution in the pro-
cess of cultivated land use, which refers to the environmental pollution from pollutants by
land runoff and subsurface filtration, with the features of dispersion and concealment [14].
It is reflected in nitrogen and phosphorous losses in fertilizers (10,000 tons), pesticide
losses (10,000 tons) and agricultural plastic film residues (10,000 tons). According to ref-
erence [9,25], losses of nitrogen (phosphorous) fertilizers, pesticides and agricultural film
were utilized to indicate the pollutant emissions from cultivated land use. Based on the man-
ual of agricultural pollution source coefficients published by the National Pollution Source
Survey, and considering regional differences, the relevant loss coefficient was evaluated.

(2) Explanatory Variables. The core explanatory variable was CLT, expressed as the area
proportion of CLT to household contracted cultivated land under the HRS.

(3) Mediating Variables. The purpose of the CLT was to complete the large-scale manage-
ment of cultivated land [38]. The CLMS can directly represent the purpose, and the
present study selected the per capita sown area to represent CLMS in accordance with
the work by Ma et al. (2019) [26].

(4) Control Variables. The control variables were put forward in order to more accurately
measure the effect of CLT on CLGUE. Combining the existing relevant studies [25,26],
the control variables of the present paper were selected as following: natural con-
ditions (MCI), which is represented by multiple crop index; the level of regional
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science and technology (RST), which is represented by the ratio of financial expendi-
ture on science and technology; financial expenditure for agriculture (FEA), which
is represented by the proportion of financial expenditure for agriculture; the level
of industrialization (IL), expressed as the ratio of industrial added value to GDP;
geographical conditions (GCR), which is represented by the ratio of affected area of
crops in the total sown area.

Table 2 provides the summary statistics of the variables employed in the empirical analysis.

Table 2. Descriptive Statistics of Variables.

Variables Mean Std. Dev. Minimum Maximum

Cultivated land green utilization efficiency
(CLGUE) 0.585 0.216 0.254 1.069

Cultivated land transfer (CLT) 0.227 0.175 0.0136 0.873
Cultivated land management scale (CLMS) 0.346 0.269 0.0437 1.657

Regional natural conditions (MCI) 128.3 35.66 41.46 221.7
The level of regional science and technology

(RST) 1.807 1.416 0.223 7.202

Financial expenditure for agriculture (FEA) 10.47 3.338 2.133 18.97
The level of industrialization (IL) 45.54 8.472 16.16 61.50

Regional geographical conditions (GCR) 32.01 24.61 0 174.3

3.3. Research Region and Data Source

China has thirty-four provincial-level administrative institutions, and the level of
cropland resources, grain production and agriculture development vary greatly among
different regions [14,62]. Given the data availability, Hong Kong, Macao, Taiwan and Tibet
were not involved in the empirical research. Thirty provinces of the Chinese mainland were
selected as the research objects of this work. It can be known from “National Economic
and Social Development Seventh Five–Year Plan” (1985) by CPC Central Committee that
these thirty provinces are divided into three regions in accordance with their locations in
eastern, central and western China (Figure 3a) [63]. In addition, referring to the Chinese
government documents of “Opinions on Reforming and Improving Policies and Measures
for Comprehensive Agricultural Development” and “the Outline of the Medium and Long-
term Program for National Food Security (2008–2020)”, based on the real situation of grain
production and sales volumes in the 30 provinces in recent years, the 30 provinces can be
divided into three food function areas: main grain-producing areas (MGPAs), main grain-
marketing areas (MGMAs) and grain-producing and marketing balance areas (GPMBAs)
(Figure 3b). MGPAs are exclusive economic zones with geographical, soil, climate and
technical conditions for planting food crops [38].
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The data were collected mostly from the “China Land and Resources Statistical Year-
book”, “China Rural Statistical Yearbook”, “China Environmental Statistical Yearbook”,
“China Rural Management Statistical Annual Report” and “China Statistical Yearbook” of
the relevant years, as well as from the website of the National Bureau of Statistics of China.
The interpolation method was adopted to make up the missing data of the individual years.
The data used in our work is the macro-panel data of thirty provinces, which avoids the
sample deviation caused by the selection of micro-data [38], so as to better explain the effect
of the CLT on CLGUE.

4. Results and Discussion
4.1. Measurement and Analysis of CLGUE

We evaluated the CLGUE of China by Formula (1). Figure 4 shows the overall change
of the average value of CLGUE in China and the functional region of grain production
from 2005 to 2019. The CLGUE as a whole was on the rise, from 0.440 in 2005 to 0.913
in 2019, with the average annual increase rate of 5.47%. Furthermore, CLGUE was on
the rise in all grain functional areas, but the average annual growth rate was significantly
different. The average annual growth rate was 5.35, 8.28, and 4.17 in the MGPAs, MGMAs
and GPMBAs, respectively. This changing trend is attributable to agricultural science and
technology advancements [64], cultivated land fallow [65], the investment in high standard
cultivated land, as well as the policy introductions or amendments promulgated by the
Chinese government, including “Environmental Protection Law”, “Solid Waste Pollution
Prevention Law”, “Soil and Water Conservation Law” and “Water Pollution Control Action
plan” [21].
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Figure 4. Average value of CLGUE in China, MGPAs, MGMAs, and GPMBAs.

In order to better visualize the spatial-temporal evolution of CLGUE, the correspond-
ing geographic distribution of CLGUE is shown in Figure 5. According to reference [66], the
regions with the efficiency of [1, +∞), (0.9, 1), (0.8, 0.9], (0.7, 0.8], (0.6, 0.7] and (0, 0.6] could
be divided into the efficient, high-efficiency, relatively high-efficiency, medium-efficiency,
relatively low-efficiency and low-efficiency groups, respectively.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 5. The spatial-temporal evolution of CLGUE. 

4.2. The Results of Correlation Analysis and Linear Fitting 

Table 3 illustrates the results of the Pearson pairwise product–moment correlation 

matrix between variables. The results demonstrated that there were significant correla-

tions among the major variables (Pearson coefficients ranging from 0.093 to 0.613). Be-

sides, the sample data was free from multi-collinearity (all Pearson coefficients less than 

0.7), a situation which is a fundamental prerequisite of regression analysis [68]. 

Table 3. Correlation Analysis of Variables. 

 CLGUE CLT CLMS MCI RST FEA IL GCR 

CLGUE 1        

CLT 0.613*** 1       

CLMS 0.223*** 0.093** 1      

MCI -0.0670 0.160*** -0.322*** 1     

RST 0.346*** 0.654*** -0.244*** 0.185*** 1    

FEA 0.085* -0.094** 0.395*** -0.307*** -0.434*** 1   

IL -0.390*** -0.350*** 0.0540 0.150*** -0.271*** -0.121*** 1  

GCR -0.405*** -0.457*** -0.0470 -0.163*** -0.304*** 0.117** 0.082* 1 

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. 

In order to preliminary analyze the effects of CLT and CLMS on CLGUE, the paper 

used a linear fitting diagram to display the relationships among the three major variables 

(Figure 6). As shown in the linear fitting diagram, the relationship between CLT and 

CLGUE was positive, the same as the relationship between CLMS and CLGUE.. Hypoth-

esis 1 was preliminarily verified. Ensuring the rigor and accuracy, econometric models 

needed to be tested further in the following research. 

  

Figure 5. The spatial-temporal evolution of CLGUE.

In 2005, only Jilin and Ningxia fell into the efficient groups, while Heilongjiang and
Chongqing belonged to the relatively high-efficiency or medium-efficiency groups. By
contrast, 24 provinces belonged to the low-efficiency groups, and their GUECL values were
lower than 0.6. In 2012, Jilin and Ningxia were removed from the list of the efficient groups,
while Shanghai was moved into the efficient groups. The spatial scope of the relatively
high-efficiency and medium-efficiency groups was extended to the original provinces.
Beijing, Liaoning, Jiangsu, Xinjiang, Chongqing and Hunan were taken out from the low-
efficiency groups. By the contrary, the rest provinces still remained at the low-efficiency
group level. In 2019, with a further expansion in the spatial scope of the efficient groups,
there was a large increase in the number of relevant provinces, of which Hebei, Jiangxi,
Shandong, Hunan, Guangxi, Yunnan and Gansu reached the relatively high-efficiency
groups, the medium-efficiency groups or the relatively low-efficiency groups. With the
number of relevant provinces in decline continuously, the spatial scope of low-efficiency
groups showed a trend of significant shrinkage. Only Shanxi, Anhui, Yuan and Gansu
remained within the low-efficiency groups. On the whole, the CLGUE exhibited an obvious
heterogeny across all provinces in China.
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Over time, more and more provinces have high CLGUE values. The efficient groups
have expanded in general terms and the low-efficiency groups have generally shrunk.
China has successfully promoted the low-carbon and ecological growth of agricultural
economics and improved the utilization efficiency of cultivated land [67]. In the context of
ecological environment friendly and resources sustainable use, the cultivated land use in
China has changed to be green and efficient [23].

4.2. The Results of Correlation Analysis and Linear Fitting

Table 3 illustrates the results of the Pearson pairwise product–moment correlation
matrix between variables. The results demonstrated that there were significant correlations
among the major variables (Pearson coefficients ranging from 0.093 to 0.613). Besides,
the sample data was free from multi-collinearity (all Pearson coefficients less than 0.7), a
situation which is a fundamental prerequisite of regression analysis [68].

Table 3. Correlation Analysis of Variables.

CLGUE CLT CLMS MCI RST FEA IL GCR

CLGUE 1
CLT 0.613 *** 1

CLMS 0.223 *** 0.093 ** 1
MCI −0.0670 0.160 *** −0.322 *** 1
RST 0.346 *** 0.654 *** −0.244 *** 0.185 *** 1
FEA 0.085 * −0.094 ** 0.395 *** −0.307 *** −0.434 *** 1
IL −0.390 *** −0.350 *** 0.0540 0.150 *** −0.271 *** −0.121 *** 1

GCR −0.405 *** −0.457 *** −0.0470 −0.163 *** −0.304 *** 0.117 ** 0.082 * 1

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

In order to preliminary analyze the effects of CLT and CLMS on CLGUE, the paper
used a linear fitting diagram to display the relationships among the three major variables
(Figure 6). As shown in the linear fitting diagram, the relationship between CLT and CLGUE
was positive, the same as the relationship between CLMS and CLGUE.. Hypothesis 1 was
preliminarily verified. Ensuring the rigor and accuracy, econometric models needed to be
tested further in the following research.
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4.3. Mediating Effect Regression Results

According to the test Formulas (3)–(5) of the mediation effect constructed above,
further empirical analysis was performed on the influence mechanism of CLT and CLMS
on CLGUE. The data are presented in Table 4. In Model 1, CLT was positively related to
CLGUE with the regression coefficient of 0.6361 (p < 0.01), indicating that hypothesis 1 was
supported. In Model 2, CLT was positively related to CLMS with the regression coefficient
of 0.6504 (p < 0.01); thereby, hypothesis 2 was verified. Further, in Model 3, when CLT
and CLMS were added in Equation (3) simultaneously, it demonstrated that the regression
coefficient of CLMS on CLGUE was 0.1115 (p < 0.01) and the regression coefficient of CLT
on CLGUE was 0.5636 (less than 0.6361) (p < 0.01). Therefore, CLT could enhance CLGUE
through the partial mediating effect of CLMS. Hypothesis 3 and 4 were supported.

Table 4. Hierarchical Regression Results.

Variables
Model (1) Model (2) Model (3)
CLGUE CLMS CLGUE

CLT 0.6361 *** 0.6504 *** 0.5636 ***
(10.0718) (5.4464) (8.1720)

CLMS 0.1115 ***
(3.0206)

MCI −0.0007 *** −0.0022 *** −0.0005 **
(−3.5498) (−7.3549) (−2.4322)

RST −0.0063 −0.0627 *** 0.0007
(−0.6884) (−5.1407) (0.0691)

FEA 0.0051 * 0.0185 *** 0.0031
(1.8402) (5.2587) (1.0509)

IL −0.0045 *** 0.0060 *** −0.0052 ***
(−3.9942) (4.1403) (−4.4843)

GCR −0.0017 *** −0.0005 −0.0017 ***
(−3.5096) (−1.0507) (−3.4155)

cons 0.7535 *** 0.1449 * 0.7374 ***
(9.5532) (1.7231) (9.3637)

N 450 450 450
adj. R2 0.458 0.308 0.470

F F (6,443) = 81.82 F (6,443) = 18.29 F (7,442) = 68.87
Note: t statistics in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

4.4. Threshold Effect Regression Results

Referring to the test Formula (6) of the threshold effect constructed, the paper explored
whether there were differences in how CLT promoted CLGUE under different levels of
CLT. The results are shown in Table 5. Accordingly, the single threshold successfully
completed the F-test, but both the double and the triple threshold failed the F-test. It
could be considered that the model had a single threshold with a threshold value of 0.3552.
Therefore, in order to analyze the correlation between variables, a single threshold pattern
needs to be established. The results are presented in Table 6.

Table 5. Thresholds Corresponding to Different CLT Levels.

Model F-Value p-Value
Critical Value Threshold

Value
95% Confidence

Interval10% 5% 1%

Single threshold 20.40 * 0.093 19.6500 23.6583 32.0941 0.3552 0.3493 0.3565
Double threshold 4.83 0.827 15.7092 17.9890 24.9962
Triple threshold 10.90 0.473 18.8730 24.3689 30.2588

Note: * p < 0.1.
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Table 6. Threshold Regression Results.

Variables Regression
Coefficients

Standard
Error T-Value p-Value 95% Confidence

Interval

CLGUE·I (CLMS ≤ 0.3552) 0.7645 *** 0.1334 5.73 0.000 0.4916 1.0373
CLGUE·I (CLMS > 0.3552) 0.5296 *** 0.0849 6.24 0.000 0.3561 0.7032

MCI −0.0009 0.0010 0.97 0.340 −0.0029 0.0010
RST 0.0359 *** 0.0120 2.99 0.006 0.0113 0.0604
FEA −0.0066 0.0054 1.23 0.228 −0.0176 0.0044
IL −0.0107 *** 0.0022 4.79 0.000 −0.0153 −0.0062

GCR −0.0013 *** 0.0004 3.28 0.003 −0.0021 −0.0005
cons 1.0930 *** 0.1789 6.11 0.000 0.7271 1.4588

Note: *** p < 0.01.

As illustrated in Table 6, when CLT was not higher than 0.3552, for each additional
unit of CLT, CLGUE could increase by 0.7645 units (p < 0.01). Nevertheless, when the level
of CLT increased and the regression coefficient was more than 0.3552, for each unit increase
in CLT, the CLGUE could increase 0.5296 units (p < 0.01). This indicated that CLT could
enhance CLGUE comprehensively which was consistent with the results of mediating
effect analysis. Besides, when CLT was at a relatively low level, the promotion effect was
more obvious. One possible interpretation for this phenomenon is that a large number
of rural laborers transferred against the background of the large-scale CLT. The study of
Zhang et al. (2017) found that rural labor out-migration leads to high fertilizer use rate [69],
which will result in higher carbon emissions from cultivated land utilization. Hou et al.
(2021) explored the two-way interaction effect between rural labor transfer and agricultural
ecological efficiency. The results showed that there were significantly negative and positive
interaction effects between agricultural ecological efficiency and rural labor transfer [70].
As a consequence, the impact of CLT on CLGUE is moderated by other factors, such as the
transfer of rural labor.

4.5. Heterogeneity Analysis

The heterogeneity analysis based on different geographical location was used to
explore the different effects of CLT on CLGUE. As shown in Table 7, when the sample was
divided into eastern, central and western areas based on “National Economic and Social
Development Seventh Five–Year Plan (1985)” published by the CPC Central Committee,
the CLT was significant at the level of 1%, and the coefficient was positive in all areas,
which indicated that as the CLT increases, CLGUE has been significantly improved. In
addition, the regression coefficients of CLT on CLGUE in eastern areas were higher than
those in western and central areas. This may be attributed to the characteristics of economic
reproduction in agriculture. In view of the high level of economic and management systems
in the eastern region, and the increasingly active CLT market resulting from the increase in
non-agricultural income [54], it is easy to build a regional advantage of CLT on CLGUE.

In order to study the effect of the grain functional areas on CLGUE, in this study,
MGPAs, MGMAs and GPMBAs in models 3 were regressed, respectively (Table 7). As
shown in Table 6, the CLT was significant at the level of 1%, and the coefficient was positive
in all areas, which indicated that as the CLT increases, CLGUE has been significantly
improved. In addition, the regression coefficients of CLT on CLGUE in MGPAs were lower
than those in MGMAs and GPMBAs. One reason for this phenomenon may be related to
the regional differences in ecological efficiency of cultivated land utilization. In other words,
medium–high efficiency and high–efficiency provinces are frequently spread in MGMAs
and GPMBAs, and low efficiency and medium–low efficiency provinces are concentrated
in MGPAs [14]. Furthermore, the provinces in MGPAs show higher carbon emission from
the utilization of cultivated land and higher increase rates than other provinces [6], as
consumptions and carbon emission in those provinces are higher due to the pressures from
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agricultural production and grain safety [60]. Above factors resulted in the influence of
CLT on CLGUE at a relatively lower level.

Table 7. Heterogeneity analysis of effects of CLT on CLGUE.

Variables

Division by Geographical Location Division by Grain Functional

Eastern
Areas

Central
Areas

Western
Areas

Main Grain
-Producing Areas

Main Grain
-Marketing

Areas

Grain-Producing
& Marketing
Balance Areas

CLGUE CLGUE CLGUE CLGUE CLGUE CLGUE

CLT 0.6699 *** 0.5860 *** 0.6675 *** 0.4382 *** 0.6783 *** 0.6481 ***
(7.9870) (3.0154) (5.2826) (3.5554) (6.1136) (4.3950)

MCI −0.0005 −0.0016 *** 0.0007 −0.0020 *** 0.0007 0.0018 **
(−1.1732) (−4.7078) (1.0382) (-7.8225) (1.3163) (2.3415)

RST 0.0020 −0.0468 ** 0.1208 *** −0.0011 0.0034 0.0914 ***
(0.1915) (−2.1303) (3.7356) (−0.0781) (0.2513) (2.6983)

FEA 0.0132 *** 0.0005 0.0038 −0.0018 0.0192 *** 0.0093
(2.9591) (0.0633) (0.6671) (−0.3621) (3.0400) (1.5791)

IL −0.0040 *** −0.0056 ** −0.0024 −0.0097 *** −0.0045 *** −0.0014
(−3.0460) (−1.9957) (−1.1158) (−4.6191) (−2.6961) (−0.5800)

GCR −0.0007 −0.0020 ** −0.0017 *** −0.0024 *** −0.0009 −0.0016 **
(−1.5274) (−2.2258) (−2.8124) (−3.9650) (−1.5338) (−2.5020)

cons 0.5711 *** 1.0670 *** 0.3730 ** 1.3277 *** 0.3806 *** 0.1552
(5.9318) (5.7331) (2.0906) (10.4772) (2.9352) (0.8061)

N 165 120 165 195 105 150
adj. R2 0.554 0.460 0.475 0.570 0.513 0.454

F 34.99 17.91 25.72 43.92 19.27 21.66

Notes: 1. ** p < 0.05, *** p < 0.01; 2. Eastern areas: Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhe-
jiang, Fujian, Shandong, Guangdong, Hainan; Central areas: Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan,
Hubei, Hunan; Western areas: Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia, Xinjiang. 3. Main grain production areas (MGPAs): Hebei, Inner Mongolia, Liaoning,
Jilin, Heilongjiang, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, Sichuan; Main grain-marketing
areas (MGMAs): Beijing, Tianjin, Shanghai, Zhejiang, Fujian, Guangdong, Hainan; Grain-producing & mar-
keting balance areas (GPMBAs): Shanxi, Ningxia, Qinghai, Gansu, Yunnan, Guizhou, Chongqing, Guangxi,
Shaanxi, Xinjiang.

5. Conclusions and Policy Recommendations
5.1. Conclusions

Using the super-SBM model, the CLGUE of 30 Chinese provinces from 2005 to 2019
was measured with the carbon emission and non-point source pollution as undesirable
outputs. Furthermore, mediating effect model and threshold regression model were em-
ployed to investigate the effect of CLT on CLGUE. Based on the empirical results, the major
conclusions of this study are given below.

(1) The CLGUE at the national level as a whole increased persistently, from 0.440 in
2005 to 0.913 in 2019, with the average annual increase rate of 5.47%. Due to the different
natural and economic conditions, the CLGUE trends showed significant spatial disparities
at both grain functional areas level and provincial level. From a grain functional perspective,
CLGUE in the three regions showed an overall upward trend, with the mean yearly growth
rate in an order of the MGMAs > MGPAs > GPMBAs. From the provincial level, more
and more provinces have high CLGUE values over time. The efficient groups expanded in
general terms and the low-efficiency groups generally shrank.

(2) The benchmark regression results indicated that CLT could promote CLGUE
directly, besides the results passed the robustness test. The mediation regression results
demonstrated that CLT was able to enhance CLGUE indirectly through the mediator of
CLMS. The threshold effect test confirmed the existence single threshold, indicating that
when the level of CLT was gradually crossing the threshold, the promotion effects of CLT on
CLGUE would slow down. Attention should be paid to encouraging the practice of CLT and
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increasing CLMS of household through policies oriented toward highly ecologically friendly
and green-efficient utilization of cultivated land and sustainable regional development.

(3) The heterogeneity analysis indicated that considering geographical location, the
promotion effects of CLT on CLGUE in eastern and western areas were relatively larger
than those in central area. Besides, the promotion effects of CLT on CLGUE in MGMAs
and GPMBAs were much higher than that in MGPAs. For the purpose of enhancing the
influence of CLT on CLGUE in central areas and MGPAs, a balance should be achieved in
policy making between the pressures from grain safety and ecological protection.

5.2. Policy Recommendation

Based on the empirical findings achieved in this work, several initiatives are proposed.
Promoting CLT should be listed as the priority direction of cultivated land utilization

policy of China. The empirical results demonstrated that CLT could promote CLGUE
directly. In the context of HRS and “Three Rights Separation Policy”, the mechanisms of CLT
should be made more standard and formal for the purpose of reducing the opportunistic
behaviors. Furthermore, stabilizing the expectation of tenure security for farmers who have
transferred in cultivated land, and the rental income for farmers who have transferred out
cultivated land. The relevant policies should be issued to improve farmers’ willingness of
the practice in CLT. In addition, decision makers should also practice management measures
such as regulating the behavior of CLT, formulating reasonable CLT pricing models [42],
and a variety of operations including family farm, agricultural cooperative, agricultural
enterprise management should be encouraged. The empirical results demonstrated that
CLT was able to enhance CLGUE indirectly through the mediator of CLMS. Therefore, in
order to promote the transformation of cultivated land use to being green and efficient,
we should expand the CLMS and strengthen the supporting role of CLMS on CLGUE.
Promoting the perfection and maturity of CLT mechanism is a key approach to expand the
CLMS [44].
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