Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Future LUCC Simulation Based on the PLUS Model
- Selection of driving factors for LUCC. The landscape pattern of the Yellow River Basin is affected not only by natural factors but also by socioeconomic and spatial location factors [34,35,36]. Considering the availability, diversity, and representativeness of the data, 14 driving factors were finally selected in this study, including rainfall, temperature, elevation, slope, aspect, population density, GDP density, nighttime light, soil type, NDVI, and distances to provincial governments, prefectural governments, railways, and highways.
- Cost matrix and setting of restricted expansion areas. The cost matrix can be used to represent the cost of conversion between different land-use types (see Table S1 in Supplementary Materials). A value of 0 indicates that this land-use conversion is not allowed, while 1 means it is allowed [37]. In this study, the cost matrix and the restricted expansion area were set based on previous studies and realistic conditions. In reality, construction land is rarely converted to other land-use types. Therefore, this study assumes that the conversion of construction land to other land-use types is not allowed. To ensure food security, this study prohibits the conversion of cultivated land to unused land. To promote ecological protection, the 1000 m buffer zone along the main stream of the Yellow River was set as a restricted expansion area, and conversion of landscape types in this area was prohibited.
- Setting of neighborhood weight parameters. The neighborhood weight parameter indicates the expansion intensity of each land-use type. The parameter ranges from 0 to 1, where values closer to 1 have stronger expansion abilities. In this study, the expansion intensity of each land-use type was determined based on the experience of existing studies and the characteristics of landscape evolution in the Yellow River Basin (see Table S2 in Supplementary Materials).
- Land-use demand prediction. This study used Markov models to predict the land-use structure in 2031 based on the probability matrix of land-use changes from 2005–2018 and the current land-use development patterns in the Yellow River Basin.
- Model validation. Based on the land-use data in 2005, we simulated the land use of the Yellow River Basin in 2018 using the model parameters specified above and compared it with the classified land-use map in 2018 from Landsat remote sensing images. The kappa coefficient and figure of merit (FoM) were used to verify the simulation accuracy. The validation results showed that the kappa coefficient and FOM were 0.84 and 0.28, respectively. The simulation accuracy achieved a high level, which indicated that the PLUS model is reliable for future land-use simulations in 2031.
2.3.2. Landscape Pattern Indexes Analysis
2.3.3. Habitat Quality Evaluation
2.3.4. Spatial Autocorrelation Analysis
2.3.5. Spatial Regression Analysis
3. Results
3.1. Spatiotemporal Characteristics of Landscape Patterns from 2005 to 2031
3.1.1. Predicted Land-Use Changes
3.1.2. Landscape Pattern Metrics
3.2. Spatiotemporal Characteristics of Habitat Quality from 2005 to 2031
3.2.1. Temporal Changes of Habitat Quality
3.2.2. Spatial Evolution of Habitat Quality
3.3. Spatial Clustering Characteristics and Spatial Relationships
3.3.1. Univariate Spatial Autocorrelation Analysis
- (1)
- Spatial autocorrelation of habitat quality
- (2)
- Spatial autocorrelation of the rate of change in habitat quality
3.3.2. Spatial Regression Analysis
4. Discussion
4.1. Spatiotemporal Characteristics of Habitat Quality and Landscape Pattern
4.2. Impact of Landscape Pattern Change on Habitat Quality
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios -based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Zlinszky, A.; Heilmeier, H.; Balzter, H.; Czucz, B.; Pfeifer, N. Remote Sensing and GIS for Habitat Quality Monitoring: New Approaches and Future Research. Remote Sens. 2015, 7, 7987–7994. [Google Scholar] [CrossRef]
- Ye, X.P.; Skidmore, A.K.; Wang, T.J. Within-patch habitat quality determines the resilience of specialist species in fragmented landscapes. Landsc. Ecol. 2013, 28, 135–147. [Google Scholar] [CrossRef]
- Ahmadi Mirghaed, F.; Souri, B. Relationships between habitat quality and ecological properties across Ziarat Basin in northern Iran. Environ. Dev. Sustain. 2021, 23, 16192–16207. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Wang, J.; Meng, Q.; Zhao, W. Land use structure and ecological processes. Quat. Sci. 2003, 23, 249–254. [Google Scholar]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef]
- Gong, J.; Xie, Y.; Cao, E.; Huang, Q.; Li, H. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province. J. Geogr. Sci. 2019, 29, 1193–1210. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization, biodiversity, and conservation. Bioscience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Robele Gari, S.; Newton, A.; Icely, J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean. Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Boumans, R.; Roman, J.; Altman, I.; Kaufman, L. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosyst. Serv. 2015, 12, 30–41. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafo, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, Z.; Liu, F.; Zhang, D. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Moreira, M.; Fonseca, C.; Vergilio, M.; Calado, H.; Gil, A. Spatial assessment assessment of habitat conservation status in a Macaronesian island based on the InVEST model: A case study of Pico Island (Azores, Portugal). Land Use Policy 2018, 78, 637–649. [Google Scholar] [CrossRef]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef]
- Hack, J.; Molewijk, D.; Beissler, M.R. A Conceptual Approach to Modeling the Geospatial Impact of Typical Urban Threats on the Habitat Quality of River Corridors. Remote Sens. 2020, 12, 1345. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Acuna, V. Identifying regions vulnerable to habitat degradation under future irrigation scenarios. Environ. Res. Lett. 2016, 11, 21. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhou, J.; Li, G.N.; Chen, C.; Li, M.M.; Luo, J.M. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010. J. Geogr. Sci. 2020, 30, 601–620. [Google Scholar] [CrossRef]
- Zhu, J.; Gong, J.; Li, J. Spatiotemporal change of habitat quality in ecologically sensitive areas of eastern Qinghai-Tibet Plateau: A case study of the Hehuang Valley, Qinghai Province. Resour. Sci. 2020, 42, 991–1003. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model-A Case Study from Guangdong-Hong Kong-Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhang, F.; Yu, H.; Kung, H.-t. Quantifying the spatial correlations between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, Xinjiang, China. Ecol. Eng. 2018, 113, 94–104. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, J.; Chu, Y.; Liang, J. Impacts of Landscape Patterns on Ecosystem Services Value: A Multiscale Buffer Gradient Analysis Approach. Remote Sens. 2021, 13, 2551. [Google Scholar] [CrossRef]
- Ding, Q.L.; Chen, Y.; Bu, L.T.; Ye, Y.M. Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.; Inacio, M.; Bogdzevic, K.; Kalinauskas, M.; Karnauskaite, D.; Pereira, P. Future scenarios impact on land use change and habitat quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.; Wang, L.; Zhang, P. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Li, F.X.; Wang, L.Y.; Chen, Z.J.; Clarke, K.C.; Li, M.C.; Jiang, P.H. Extending the SLEUTH model to integrate habitat quality into urban growth simulation. J. Environ. Manag. 2018, 217, 486–498. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 14. [Google Scholar] [CrossRef]
- Ma, H.; Xu, X. High-Quality Development Assessment and Spatial Heterogeneity of Urban Agglomeration in the Yellow River Basin. Econ. Geogr. 2020, 40, 11–18. [Google Scholar]
- Zhao, J.; Liu, Y.; Zhu, Y.; Qin, S.; Wang, Y.; Miao, C. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin. Resour. Sci. 2020, 42, 159–171. [Google Scholar] [CrossRef]
- Hu, C.; Ran, G.; Li, G.; Yu, Y.; Wu, Q.; Yan, D.; Jian, S. The effects of rainfall characteristics and land use and cover change on runoff in the Yellow River basin, China. J. Hydrol. Hydromech. 2021, 69, 29–40. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Li, M.; Meng, L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Omer, A.; Ma, Z.; Yuan, X.; Zheng, Z.; Saleem, F. A hydrological perspective on drought risk-assessment in the Yellow River Basin under future anthropogenic activities. J. Environ. Manag. 2021, 289, 112429. [Google Scholar]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, H.B.; Wu, J.G. Use and misuse of landscape indices. Landsc. Ecol. 2004, 19, 389–399. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, W.; Wang, Y.; Lien, W.; Huang, T.; Hsu, C.; Schmeller, D.S.; Crossman, N.D. Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environ. Model. Softw. 2017, 90, 126–146. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2016, 221, 285. [Google Scholar] [CrossRef]
- Fu, B.; Xu, P.; Wang, Y.K.; Yan, K.; Chaudhary, S. Assessment of the ecosystem services provided by ponds in hilly areas. Sci. Total Environ. 2018, 642, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, J.; Li, M. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta Geogr. Sin. 2020, 75, 160–178. [Google Scholar]
- Ruiz, A.R.; Pascual, U.; Romero, M. An exploratory spatial analysis of illegal coca cultivation in Colombia using local indicators of spatial association and socioecological variables. Ecol. Indic. 2013, 34, 103–112. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Zhu, G.B.; Yuan, Q.Q. Spatio-Temporal Relationship and Evolvement of Socioeconomic Factors and PM2.5 in China During 1998–2016. Int. J. Environ. Res. Public Health 2019, 16, 1149. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Yeh, A.G.; Zhang, A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Econometrics: Methods and Models. Econ. Geogr. 2016, 65, 160–162. [Google Scholar] [CrossRef]
- Chi, G.; Zhu, J. Spatial Regression Models for Demographic Analysis. Popul. Res. Policy Rev. 2008, 27, 17–42. [Google Scholar] [CrossRef]
- Bai, L.M.; Xiu, C.L.; Feng, X.H.; Liu, D.Q. Influence of urbanization on regional habitat quality:a case study of Changchun City. Habitat Int. 2019, 93, 102042. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, Y. Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Xu, X.B.; Tan, Y.; Yang, G.S.; Barnett, J. China’s ambitious ecological red lines. Land Use Policy 2018, 79, 447–451. [Google Scholar] [CrossRef]
Data Type | Data Name | Data Source and Preprocessing |
---|---|---|
Land-use data | Basic land-use data at 30 m (2005) | Chinese Academy of Sciences Data Center for Resources and Environmental Sciences (http://www.resdc.cn, accessed on 12 May 2022) |
Basic land-use data at 30 m (2018) | ||
Driving factors Of LUCC | Spatial distribution of population density | |
Spatial distribution of GDP | ||
Nighttime light | ||
Rainfall | ||
Temperature | ||
Soil type | ||
NDVI | ||
DEM | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 12 May 2022) | |
Slope | Extract from DEM by Using ArcGIS 10.2 | |
Aspect | ||
Distance to railway | Extract by using ArcGIS Euclidean distance function | |
Distance to highway | ||
Distance to provincial governments | ||
Distance to prefectural governments |
Threat Factors | Maximum Duress Distance (km) | Weights | Land-Use Types | |||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Water Body | Construction Land | Unused Land | |||
Habitat suitability | ||||||||
0.3 | 1 | 1 | 0.7 | 0.3 | 0.6 | |||
Threat factors | ||||||||
Cultivated land | 4 | 0.6 | 0 | 0.6 | 0.8 | 0.5 | 0 | 0.6 |
Construction land | 8 | 0.4 | 0.8 | 0.4 | 0.6 | 0.4 | 0 | 0.4 |
Unused land | 6 | 0.5 | 0.4 | 0.2 | 0.6 | 0.2 | 0.1 | 0 |
Time | Cultivated Land | Forest | Grassland | Water Body | Construction Land | Unused Land |
---|---|---|---|---|---|---|
2005 | 54.46 | 36.17 | 120.79 | 5.84 | 6.43 | 75.50 |
2018 | 53.88 | 37.29 | 117.05 | 6.42 | 8.84 | 75.71 |
2031 | 53.75 | 38.17 | 113.89 | 6.94 | 10.64 | 75.79 |
2005–2018 | −0.58 | 1.12 | −3.74 | 0.58 | 2.41 | 0.21 |
2005–2018 | −1.07% | 3.10% | −3.10% | 9.93% | 37.48% | 0.28% |
2018–2031 | −0.13 | 0.88 | −3.16 | 0.53 | 1.80 | 0.08 |
2018–2031 | −0.24% | 2.36% | −2.70% | 8.26% | 20.36% | 0.11% |
Landscape Pattern Indexes | 2005 | 2018 | 2031 | 2005–2018 | 2018–2031 | 2005–2031 |
---|---|---|---|---|---|---|
PD | 0.0526 | 0.0535 | 0.0543 | 1.71% | 1.50% | 3.23% |
ED | 5.8669 | 5.7729 | 5.8346 | −1.60% | 1.07% | −0.55% |
LSI | 257.6114 | 253.6939 | 256.3796 | −1.52% | 1.06% | −0.48% |
AREA_MN | 1902.8027 | 1869.4666 | 1842.4869 | −1.75% | −1.44% | −3.17% |
CONTAG | 34.7186 | 33.3331 | 32.3093 | −3.99% | −3.07% | −6.94% |
COHESION | 99.6430 | 99.6361 | 99.6225 | −0.01% | −0.01% | −0.02% |
SHDI | 1.4385 | 1.4696 | 1.4926 | 2.16% | 1.57% | 3.76% |
Landscape Types | 2005 | 2018 | 2031 | Average |
---|---|---|---|---|
Cultivated land | 0.2998 | 0.2997 | 0.2997 | 0.2997 |
Forest | 0.9960 | 0.9960 | 0.9960 | 0.9960 |
Grassland | 0.9881 | 0.9887 | 0.9886 | 0.9885 |
Water body | 0.6943 | 0.6944 | 0.6947 | 0.6945 |
Construction land | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Unused land | 0.5997 | 0.5996 | 0.5996 | 0.5996 |
Yellow River Basin | 0.7388 | 0.7315 | 0.7253 | 0.7319 |
Variable | 2005 | 2018 | 2031 | |||
---|---|---|---|---|---|---|
Habitat Quality | p | Habitat Quality | p | Habitat Quality | p | |
PD | −4.6219 *** | 0.0000 | −3.9258 *** | 0.0000 | −4.0412 *** | 0.0000 |
ED | 0.0313 *** | 0.0002 | 0.0362 ** | 0.0018 | 0.0024 * | 0.0471 |
LSI | 0.0046 *** | 0.0000 | 0.0026 * | 0.0335 | 0.0381 ** | 0.0014 |
COHESION | −0.0381 *** | 0.0000 | −0.0184 * | 0.0233 | −0.0170 * | 0.0366 |
CONSTANT | 4.1951 *** | 0.0000 | 2.1218 ** | 0.0100 | 1.9812 * | 0.0170 |
Spatial lag term | 0.2734 *** | 0.0000 | 0.4368 *** | 0.0000 | 0.4349 *** | 0.0000 |
Measures of fit | ||||||
Log likelihood | 91.1599 | 63.5760 | 61.8309 | |||
AIC | −170.3200 | −115.1520 | −111.6620 | |||
SC | −154.9970 | −99.8288 | −96.3386 | |||
R2 | 0.7814 | 0.6449 | 0.6328 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Wang, J.; Wang, Y.; Xu, L.; Zheng, L.; Zhang, B.; Bi, Y.; Yang, H. Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin. Int. J. Environ. Res. Public Health 2022, 19, 11974. https://doi.org/10.3390/ijerph191911974
Zhang D, Wang J, Wang Y, Xu L, Zheng L, Zhang B, Bi Y, Yang H. Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin. International Journal of Environmental Research and Public Health. 2022; 19(19):11974. https://doi.org/10.3390/ijerph191911974
Chicago/Turabian StyleZhang, Dike, Jianpeng Wang, Ying Wang, Lei Xu, Liang Zheng, Bowen Zhang, Yuzhe Bi, and Hui Yang. 2022. "Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin" International Journal of Environmental Research and Public Health 19, no. 19: 11974. https://doi.org/10.3390/ijerph191911974
APA StyleZhang, D., Wang, J., Wang, Y., Xu, L., Zheng, L., Zhang, B., Bi, Y., & Yang, H. (2022). Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin. International Journal of Environmental Research and Public Health, 19(19), 11974. https://doi.org/10.3390/ijerph191911974