Analysis of the Ecological Carrying Capacity of Fish Resources in Shengjin Lake, Anhui Province, China
Abstract
:1. Introduction
2. Profile of the Research Area
2.1. Fish Resources in Shengjin Lake
2.2. Fishery Habitat of Shengjin Lake
3. Data and Research Methods
3.1. Data Collection on Aquatic Plants, Phytoplankton, Zooplankton, and Benthic Animals
3.1.1. Aquatic Plants
3.1.2. Phytoplankton
3.1.3. Zooplankter
3.1.4. Benthic Animals
3.2. Research Method
3.2.1. Estimate the Fish Yield According to Wafting Energy and Bait Base
3.2.2. Primary Productivity Estimation Method of Phytoplankton
3.2.3. The Fish Yield Provided by Organic Detritus
4. Results and Analysis
4.1. Plankton-Based Fish Productivity
4.2. Benthic-Animal-Based Fish Productivity
4.3. Fish Productivity Supported by Organic Debris in the Water Body
4.4. Fish Productivity Based on Higher Aquatic Plants
5. Conclusions
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, X.H.; Mao, Z.G.; Ding, H.P. Progress and prospect of lake fishery. J. Lake Sci. 2018, 30, 1–14. [Google Scholar]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.-O.; Levin, S.; Maler, K.L.; Perrings, C.; et al. Economic growth, carrying capacity and the environment. Science 1995, 268, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.E. Population, economics, environmental and culture: An introduction to human carrying capacity. J. Appl. Ecol. 1997, 34, 1325–1333. [Google Scholar] [CrossRef]
- Seidl, I.; Tisdell, C.A. Carrying capacity reconsidered: From Malthus’ population theory to cultural carrying capacity. Ecol. Econ. 1999, 31, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Yang, X.B. Research on the carrying capacity of resources space of city-mountain resorts: A case study of Yuelu mountain. China Popul. Resour. Environ. 2014, 24, 301–304. [Google Scholar]
- Jung, C.; Kim, C.; Kim, S.; Suh, K. Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island. Sustainability 2018, 10, 1681. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.R.; Mao, X.Q. Review of land carrying capacity calculating methods China. Adv. Earth Sci. 2000, 15, 705–711. [Google Scholar]
- Long, T.R.; Jiang, W.C.; He, Q. Water resources carrying capacity: New perspectives based on economic analysis and sustainable development. J. Hydraul. Eng. 2004, 35, 38–46. [Google Scholar]
- Li, J.; Convertino, M. Temperature increase drives critical slowing down of fish ecosystems. PLoS ONE 2021, 16, e0246222. [Google Scholar] [CrossRef]
- Gordon, H.S. The economics of a common property resource: The fishery. J. Political Econ. 1954, 62, 124–142. [Google Scholar] [CrossRef]
- Pinkas, L.; Oliphant, M.S.; Iverson, I.L.K. Food Habits of Albacore, Bluefin Tuna, and Bonito in California Waters; California Department of Fish and Game Fish Bulletin: Sacramento, CA, USA, 1971; Volume 152, pp. 1–105.
- Oglesby, R.T. Relationships of fish yield to lake phytoplankton standing crop, production, and morphoedaphic factors. J. Fish. Board Can. 1977, 34, 2271–2279. [Google Scholar] [CrossRef]
- Hanson, J.M.; Leggett, W.C. Empirical prediction of fish biomass and yield. Can. J. Fish. Aquat. Sci. 1982, 39, 257–263. [Google Scholar] [CrossRef]
- Reynolds, C. Eutrophication of fresh waters: Principles, problems and restoration. Rev. Fish Biol. Fish. 1993, 3, 376–377. [Google Scholar] [CrossRef]
- Lucas, M.C.; Baras, E. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish. 2000, 1, 283–316. [Google Scholar] [CrossRef]
- Rose, K.A.; Cowan, J.H.; Winemiller, K.O. Compensatory density dependence in fish populations: Importance, controversy, understanding and prognosis. Fish Fish. 2001, 2, 293–327. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, K. Understanding and managing enhancement fisheries systems. Rev. Fish. Sci. 2008, 16, 10–23. [Google Scholar] [CrossRef]
- Olin, M.; Malinen, T.; Ruuhijärvi, J. Gillnet catch in estimating the density and structure of fish community—Comparison of gillnet and trawl samples in a eutrophic lake. Fish. Res. 2009, 96, 88–94. [Google Scholar] [CrossRef]
- Gibson-Reinemer, D.K.; Ickes, B.S.; Chick, J.H. Development and assessment of a new method for combining catch per unit effort data from different fish sampling gears: Multigear mean standardization (MGMS). Can. J. Fish. Aquat. Sci. 2017, 74, 8–14. [Google Scholar] [CrossRef]
- FAO. The Development of Indicators of Sustainable Development Fisheries; FAO: Rome, Italy, 2001. [Google Scholar]
- FAO Fishery Resources Division. Indicators for Sustainable Development of Marine Capture Fisheries—FAO Technical Guidelines for Responsible Fisheries-No.8; FAO: Rome, Italy, 1999. [Google Scholar]
- Gallic, B.L. Fisheries Sustainability Indicators: The OECD Experience; Joint Workshop EEA-EC DG Fisheries-DG Environment: Brussels, Belgium, 2002. [Google Scholar]
- Zhang, X.G. Fishery Bioeconomic Analysis; China Agricultural Science and Technology Press: Beijing, China, 1995. [Google Scholar]
- Zhan, B.Y. Fishery Resources Assessment; China Agricultural Press: Beijing, China, 1995; pp. 348–352. [Google Scholar]
- Chen, X.J.; Zhou, Y.Q. Application of Systematic Evaluation Method for Sustainable Utilization of Fishery Resources. J. Shanghai Fish. Univ. 2003, 12, 29–34. [Google Scholar]
- Chen, X.J.; Zhou, Y.Q. Comprehensive Dynamic Evaluation of Sustainable Utilization of Fishery Resources Based on BP Model. J. Zhanjiang Ocean Univ. 2002, 22, 38–44. [Google Scholar]
- Chen, X.J.; Zhou, Y.Q. Grey Comprehensive Evaluation of Sustainable Utilization of Fishery Resources in the East China Sea. J. China Aquat. Sci. 2004, 11, 91–95. [Google Scholar]
- Gu, X.H.; Zhu, S.Q.; Wu, L.K. The natural fishery and the development countermeasures in Lake Taihu. J. Lake Sci. 2009, 21, 94–100. [Google Scholar]
- Mao, Z.G.; Gu, X.H.; Zeng, Q.F. The structure of fish community and changes of fishery resources in Lake Hulun. J. Lake Sci. 2016, 28, 387–394. [Google Scholar]
- He, J.; Gu, X.H.; Wang, X.L. Fish stocking quantities and structures of the fishery resources enhancement in Lake Taihu. J. Lake Sci. 2012, 24, 104–110. [Google Scholar]
- Mao, Z.G.; Gu, X.H.; Gong, Z.J. The structure of fish community and changes of fishery resources in Lake Hongze. J. Lake Sci. 2019, 31, 1109–1119. [Google Scholar]
- Fang, J.; Wang, Z.; Zhao, S. Biodiversity changes in the lakes of the Central Yangtze. Front. Ecol. Environ. 2006, 4, 369–377. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, L.Z.; Song, Y.W. The effects of human activities on diurnal energy expenditure of Tundra Swan Cygnus columbianus foraging in paddy field during the late wintering period. J. Lake Sci. 2019, 31, 195–201. [Google Scholar]
- Liang, Y.L.; Wang, J.; Hu, C.L. Hydrobiology of a Flooding Ecosystem, Lake Chenhu in Hanyang, Hubei, with Preliminary Estimation of its Potential Fishery Production Capacity. Chin. J. Oceanol. Limnol. 1988, 6, 1–14. [Google Scholar]
- Scheffer, M. Alternative attractors of shallow lakes. Sci. World J. 2001, 1, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.D.; Fang, H.Y. Study on potential productivity of bait organisms of the large and middle lakes and reservoirs in Hubei Province. J. Hubei Univ. Nat. Sci. 1995, 17, 422–426. [Google Scholar]
- Gu, X.H.; Bai, X.L.; Jiang, N. Fishery development, regional classification and functional positioning of Lake Taihu. Acta Ecol. Sin. 2006, 26, 2247–2254. [Google Scholar]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environm. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
SN | Site | Habitat | Species of Spawning Fish | Size (Length × Width, km) | Spawning Time |
---|---|---|---|---|---|
1 | Yangetou–Landaochen | Marsh | Spualiobarbus Curriculus, Megalobrama skolkovii, Xenocypris davidi, etc. | 6 × 0.5 | June–August |
2 | Huangpen Gate–Babaizhang | Marsh | Crucian carp hybrid, Culter alburnus, Odontobutis obscurus, etc. | 6 × 0.5 |
Family | Name of Species | Coverage (%) | Biomass per m2 (Wet Weight) g |
---|---|---|---|
Umbelliferae | Wild carrot | 80 | 486 |
Shechuangzi | 85 | 462 | |
Trapaceae | Water chestnut | 70 | 538 |
Compositae | Artemisia selegensis | 75 | 398 |
Potamogetonaceae | Curled pondweed | 45 | 356 |
Haloragaceae | Whorled water-milfoil | 60 | 481 |
Hydrocharitaceae | Hydrilla | 25 | 196 |
Lemnaceae | Spirodela polyrhiza | 40 | 95 |
Ceratophyllaceae | Hornwort | 35 | 237 |
Poaceae | Zizania latifolia | 75 | 448 |
Stinkgrass | 90 | 406 | |
Cyperaceae | Carex thunbergii | 95 | 628 |
Dominant Species | Dominance | |||
---|---|---|---|---|
14.8 | 14.11 | 15.1 | 15.3 | |
Rotifera | ||||
Keratella cochlearis | - | 0.106 | - | 0.1 |
Asplachna priodonta | 0.175 | 0.023 | - | 0.104 |
Polyarthra trigla | 0.159 | 0.308 | 0.2244 | 0.223 |
Brachionus diversicornis | 0.347 | 0.083 | - | - |
Filinia maio | - | 0.028 | 0.0323 | 0.035 |
Brachionus calyciflorus | 0.045 | - | 0.2253 | 0.23 |
Brachionus falcatus | 0.042 | - | - | - |
Keratella valga | 0.034 | - | - | - |
Trichocerca cylindrica | 0.021 | - | - | - |
Rotoria tardigrada | - | - | - | 0.041 |
Brachionus urceus | - | - | - | 0.055 |
Brachionus angularis | - | - | 0.1594 | - |
Notholon labis | - | - | 0.0587 | - |
Copepods | ||||
Thermocyclops hyalinus | 0.518 | 0.153 | - | - |
Sinocalanus dorrii | - | 0.171 | 0.1167 | - |
Mesocyclops leuckarti | 0.167 | - | - | - |
Cyclops vicinus | - | - | 0.7268 | - |
Cladocera | ||||
Bosmina | - | 0.166 | 0.1016 | - |
Diaphanosoma | 0.846 | 0.247 | - | - |
Bosminopsis deitersi | 0.022 | - | - | - |
Pleuroxus hamulatus | - | - | 0.2083 | - |
Biomass | Utilization % | P/B Ratio | Bait Ratio | Fish Yield | Carrying Capacity | Fish Fed on Bait Resources | Ratio of Releasing | Regions | |
---|---|---|---|---|---|---|---|---|---|
Phytoplankton | 8.33 (mg/L) | 30 | 300 | 100 | 150.0 | 150.0 | Mainly of Hypophthalmichthys molitrix (silver carp) | 55–60% | Open water |
Zooplankter | 2.59 (mg/L) | 50 | 50 | 10 | 129.5 | 129.5 | Mainly of bighead carp (spotted silver carp) | 25–30% | Open water |
Benthos | 2.44 (g/m2) | 25 | 5 | 20 | 31.0 | 31.0 | Mainly of black carp, carp, crucian carp, and Pelteobagrus fulvidraco | 10–20% Release Xenocypris, Cyprinus carpio, crucian carp, and Pelteobagrus fulvidraco rather than black carp | Shallow water area along the bank |
Organic detritus | The fish yield is about 10–15% of that of filter-feeding fish | 28.0 | 28.0 | Mainly of Xenocypris, Cyprinus carpio, and crucian carp | |||||
Higher aquatic plants | 332 (g/m2) | 20 | 1.5 | 100 | 18.1 | Mainly of Eriocheir sinensis, Ctenopharyngodon idellus, and Megalobrama amblycephala | No release in the early period until the coverage rate of aquatic plant is greater than 30% | ||
Total | 356.6 | 338.5 | 677.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Lu, Y.; Fang, Z.; Yang, H.; Wei, Z. Analysis of the Ecological Carrying Capacity of Fish Resources in Shengjin Lake, Anhui Province, China. Int. J. Environ. Res. Public Health 2022, 19, 8177. https://doi.org/10.3390/ijerph19138177
Zhang G, Lu Y, Fang Z, Yang H, Wei Z. Analysis of the Ecological Carrying Capacity of Fish Resources in Shengjin Lake, Anhui Province, China. International Journal of Environmental Research and Public Health. 2022; 19(13):8177. https://doi.org/10.3390/ijerph19138177
Chicago/Turabian StyleZhang, Guiyou, Yan Lu, Zijun Fang, Hong Yang, and Zhong Wei. 2022. "Analysis of the Ecological Carrying Capacity of Fish Resources in Shengjin Lake, Anhui Province, China" International Journal of Environmental Research and Public Health 19, no. 13: 8177. https://doi.org/10.3390/ijerph19138177