Key Parameters Affecting Kick Start Performance in Competitive Swimming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Protocol
- (1)
- lateral margin of the left transverse tarsal joint,
- (2)
- lateral left and right malleolus,
- (3)
- lateral left and right knee condyles,
- (4)
- left and right greater trochanters,
- (5)
- lateral margins of the left and right scapular spine,
- (6)
- lateral left and right elbow epicondyles,
- (7)
- ulnar styloid processes of the left and right wrist, and
- (8)
- medial side of the 5th metacarpal phalanx joint.
3. Results
3.1. Relationships between Selected Parameters during Kick Start
3.1.1. Block Phase
3.1.2. Flight Phase
3.1.3. Underwater Phase
3.2. Effect of Start Phases on the Time to 5 m
3.2.1. Block Phase
3.2.2. Flight Phase
3.2.3. Underwater Phase
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mason, B.; Alcock, A.; Fowlie, J. A Kinetic Analysis and Recommendations for Elite Swimmers Performing the Sprint Start. In Proceedings of the XXV ISBS Symposium, Ouro Preto, Brazil, 23–27 August 2007; Menzel, H.J., Chagas, M.H., Eds.; Australia Australian Institute of Sport: Canberra, Australia, 2007; pp. 192–195. [Google Scholar]
- Tor, E.; Pease, D.L.; Ball, K.A. Key parameters of the swimming start and their relationship to start performance. J. Sports Sci. 2015, 33, 1313–1321. [Google Scholar] [CrossRef]
- Morais, J.E.; Marinho, D.A.; Arellano, R.; Barbosa, M. Start and turn performances of elite sprinters at the 2016 European Championships in swimming. Sports Biomech. 2018, 18, 100–114. [Google Scholar] [CrossRef]
- Cossor, J.; Slawson, S.; Shillabeer, B.; Conway, P.; West, A. Are land tests a good predictor of swim start performance? Port. J. Sport Sci. 2011, 11, 183–186. [Google Scholar]
- Cossor, J.; Mason, B. Swim Start Performances at the Sydney 2000 Olympic Games. In Proceedings of the XXV International Symposium on Biomechanics in Sports, San Francisco, CA, USA, 8–13 July 2001; Blackwell, J.R., Sanders, R.H., Eds.; University of California: San Francisco, CA, USA, 2001; pp. 25–30. [Google Scholar]
- Slawson, S.E.; Conway, P.P.; Cossor, J.; Chakravorti, N.; West, A.A. The categorisation of swimming start performance with reference to force generation on the main plate block and footrest components of Omega OSB11 start blocks. J. Sports Sci. 2013, 31, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Tor, E.; Pease, D.; Ball, K. Characteristics of an Elite Swimming Start. In Proceedings of the XIIth International Symposium on Biomechanics and Medicine in Swimming, Canberra, Australia, 28 April–2 May 2014; Mason, B., Ed.; Australian Institute of Sport: Canberra, Australia, 2014; pp. 257–263. [Google Scholar]
- Honda, K.; Sinclair, P.; Mason, B.; Pease, D. A Biomechanical Comparison of Elite Swimmers Start Performance Using the Traditional Track Start and the New Kick Start. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo, Norway, 16–19 June 2010; Kjendlie, P., Stallman, R.K., Cabri, J., Eds.; Norwegian School of Sports Sciences: Oslo, Norway, 2010; pp. 94–96. [Google Scholar]
- Issurin, V.; Verbitsky, O. Track Start Versus Grab Start: Evidence from the Sydney Olympic Games. In Proceedings of the Biomechanics and Medicine in Swimming IX, Etienne, France, 21–23 June 2002; Chatard, J.C., Ed.; University of Saint Etienne: Etienne, France, 2002; pp. 213–217. [Google Scholar]
- Biel, K.; Fischer, S.; Kibele, A. Kinematic Analysis of Take-Off Performance in Elite Swimmers: New OSB11 versus Traditional Starting Block. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming 2010, Oslo, Norway, 16–19 June 2010; Kjendlie, P., Stallman, R.K., Cabri, J., Eds.; Norwegian School of Sports Sciences: Oslo, Norway, 2010; p. 91. [Google Scholar]
- Beretić, I.; Ðurović, M.; Okičić, T. Influence of the back plate on kinematical starting parameter changes in elite male Serbian swimmers. Facta Univ. Ser. Phys. Educ. Sport 2012, 10, 135–140. [Google Scholar]
- Formicola, D.; Rainoldi, A. A kinematic analysis to evaluate the start techniques’ efficacy in swimming. Sport Sci. Health 2015, 11, 57–66. [Google Scholar] [CrossRef]
- Nomura, T.; Takeda, T.; Takagi, H. Influences of the Back Plate on Competitive Swimming Starting Motion in Particular Projection Skill. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo, Norway, 16–19 June 2010; Kjendlie, P., Stallman, R.K., Cabri, J., Eds.; Norwegian School of Sports Sciences: Oslo, Norway, 2010; pp. 135–137. [Google Scholar]
- Ozeki, K.; Sakurai, S.; Taguchi, M.; Takise, S. Kicking the back plate of the starting block improves start phase performance in competitive swimming. In Proceedings of the 30th Annual Conference of the International Society of Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012; pp. 373–376. [Google Scholar]
- Barlow, H.; Halaki, M.; Stuelcken, M.; Greene, A.; Sinclair, H. The effect of different kick start positions on OMEGA OSB11 blocks on free swimming time to 15m in developmental level swimmers. Hum. Mov. Sci. 2014, 34, 178–186. [Google Scholar] [CrossRef]
- Honda, K.; Sinclair, P.; Mason, B.; Pease, D. The effect of starting position on elite swim start performance using an angled kick plate. In Proceedings of the 30th Annual Conference of the International Society of Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012; pp. 72–75. [Google Scholar]
- García-Ramos, A.; Feriche, B.; de la Fuente, B.; Arguelles-Cienfuegos, J.; Strojnik, V.; Strumbelj, B.; Štirn, I. Relationship between different push-off variables and start performance in experienced swimmers. Eur. J. Sport Sci. 2015, 15, 687–695. [Google Scholar] [CrossRef]
- Takeda, T.; Sakai, S.; Takagi, H.; Okuno, K.; Tsubakimoto, S. Contribution of hand and foot force to take-off velocity for the kick-start in competitive swimming. J. Sports Sci. 2017, 35, 565–571. [Google Scholar] [CrossRef]
- Silveira, R.P.; Stergiou, P.; Figueiredo, P.; Castro, F.S.; Katz, L.; Stefanyshyn, J. Key determinants of time to 5 m in different ventral swimming start techniques. Eur. J. Sport Sci. 2018, 18, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, D.; Born, D.; Singh, N.B.; Oberhofer, K.; Carradori, S.; Sinistaj, S.; Lorenzetti, S. Key performance indicators and leg positioning for the kick-start in competitive swimmers. Sports Biomech. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ðurović, M.; Vranešić-Hadžimehmedović, D.; Paunović, M.; Stojanović, N.; Madić, D.; Okičić, T. The influence of starting parameters on time to 10 m in male sprint swimmers. In Proceedings of the International Scientific Congress Applied Sports Sciences and the Balkan Scientific Congress Physical Education, Sports, Health; Iancheva, T., Djobova, S., Kuleva, M., Eds.; National Sports Academy “Vassil Levski”: Sofia, Bulgaria, 2019; pp. 159–162. [Google Scholar]
- Seifert, L.; Vantorre, J.; Lemaitre, F.; Chollet, D.; Toussaint, H.M.; Vilas-Boas, J. Different profiles of the aerial start phase in front crawl. J. Strength Cond. Res. 2010, 24, 507–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, B.S.; Olson, S.L. Concurrent validity and reliability of two-dimensional video analysis of hip and knee joint motion during mechanical lifting. Physiother. Theory Pract. 2011, 27, 521–530. [Google Scholar] [CrossRef]
- Vantorre, J.; Seifert, L.; Bideau, B.; Nicolas, G.; Fernandes, R.J.; Vilas-Boas, J.P.; Chollet, D. Influence of Swimming Start Styles on Biomechanics and Angular Momentum. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo, Norway, 16–19 June 2010; Kjendlie, P., Stallman, R.K., Cabri, J., Eds.; Norwegian School of Sports Sciences: Oslo, Norway, 2010; pp. 180–182. [Google Scholar]
- Thow, J.; Naemi, R.; Sanders, R. Comparison of modes of feedback on glide performance in swimming. J. Sports Sci. 2012, 30, 43–52. [Google Scholar] [CrossRef]
- Breed, R.; McElroy, G.K. A biomechanical comparison of the grab, swing and track starts in swimming. J. Hum. Mov. Stud. 2000, 39, 277–293. [Google Scholar]
- Blanksby, B.; Nicholson, L.; Elliot, B. Biomechanical analysis of the grab, track and handle swimming starts: An intervention study. Sports Biomech. 2008, 1, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, H.; Scurr, J.; Hencken, C.; Wood, L.; Graham-Smith, P. Biomechanical comparison of the track start and the modified one-handed track start in competition swimming: An intervention study. J. Appl. Biomech. 2008, 24, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Vantorre, J.; Seifert, L.; Fernandes, R.J.; Vilas-Boas, J.P.; Chollet, D. Biomechanical influence of start technique preference for elite track starters in front crawl. Open Sports Sci. J. 2010, 11, 137–139. [Google Scholar] [CrossRef]
- Vantorre, J.; Seifert, L.; Fernandes, R.J.; Vilas-Boas, J.P.; Chollet, D. Kinematical profiling of the front crawl start. Int. J. Sports Med. 2010, 31, 16–21. [Google Scholar] [CrossRef]
- Slawson, S.E.; Conway, P.P.; Cossor, J.; West, A.A. The effect of knee angle on force production, in swimming starts, using the OSB11 block. Proc. Eng. 2012, 34, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Hermoso, A.; Escalante, Y.; Arellano, R.; Navarro, F.; Dominguez, A.M.; Saavedra, J.M. Relationship between final performance and block times with the traditional and the new starting platforms with a back plate in international swimming championship 50-m and 100-m freestyle events. J. Sports Sci. Med. 2013, 12, 698–706. [Google Scholar]
- Matúš, I.; Kandráč, R. Kinematic analysis of the kick start from OSB12. Phys. Act. Rev. 2020, 8, 86–96. [Google Scholar] [CrossRef]
- Matúš, I.; Kandráč, R.; Ružbarský, P.; Vadašová, B.; Čech, P. Úroveň rýchlostných parametrov plavcov v rôznych modifikáciách štartového skoku. Phys. Educ. Sport 2019, 29, 24–28, (In Slovak with English Abstract). [Google Scholar]
- Vilas-Boas, J.P.; Cruz, M.J.; Conceicao, F.; Carcalho, J. Integrated kinematic and dynamic analysis of two track-start techniques. In Proceedings of the XVIII International Symposium on Biomechanics in Sports, Hong Kong, China, 25–30 June 2000; pp. 113–117. [Google Scholar]
- Arellano, R.; Garcia, F.; Gavilán, A.; Pardillo, S. Temporal analysis of the starting technique in freestyle swimming. In Proceedings of the XIV International Symposium on Biomechanics in Sports, Madeira, Portugal, 25–29 June 1996; pp. 289–292. [Google Scholar]
- Detanico, D.; Heidorn, S.I.; Dal Pupo, J.; Diefenthaeler, F.; dos Santos, S.G. Kinematical and neuromuscular aspect related to performance during the swimming start. Port. J. Sport Sci. 2011, 11, 199–201. [Google Scholar] [CrossRef]
- Vantorre, J.; Seifert, L.; Fernandes, R.J.; Vilas-Boas, J.P.; Chollet, D. Comparison of grab start between elite and trained swimmers. Int. J. Sports Med. 2010, 31, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Naemi, R.; Sanders, R.A. A ‘hydro-kinematic’ method of measuring glide efficiency of a human swimmer. J. Biomech. Eng. 2008, 130, 10–16. [Google Scholar] [CrossRef]
- Elipot, M.; Hellard, P.; Taïar, R.; Boissière, E.; Rey, J.L.; Lecat, S.; Houel, N. Analysis swimmers’ velocity during the underwater gliding motion following grab start. J. Biomech. 2009, 42, 1367–1370. [Google Scholar] [CrossRef]
- Tor, E.; Pease, D.L.; Ball, K.A. How does drag affect the underwater phase of a swimming start? J. Appl. Biomech. 2015, 31, 8–12. [Google Scholar] [CrossRef]
- Houel, N.; Elipot, M.; Andrée, F.; Hellard, H. Kinematic Analysis of Undulatory Underwater Swimming during a Grab Start of National Level Swimmers. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo, Norway, 16–19 June 2010; Kjendlie, P., Stallman, R.K., Cabri, J., Eds.; Norwegian School of Sports Sciences: Oslo, Norway, 2010; pp. 97–101. [Google Scholar]
- Houel, N.; Elipot, M.; Andre, F.; Hellard, P. Influence of angles of attack, frequency and kick amplitude on swimmer’s horizontal velocity during the underwater phase of a grab start. J. Appl. Biomech. 2012, 29, 49–54. [Google Scholar] [CrossRef]
Block Phase | Definition | Authors | ||
---|---|---|---|---|
Front knee angle | FKA | (°) | Hip/ankle at the set positon | [11,13] |
Front ankle angle | FAA | (°) | Knee/ankle/finger toe at the set position | [11,13] |
Rear knee angle | RKA | (°) | Hip/ankle at the set positon | [11,13] |
Rear ankle angle | RAA | (°) | Knee/ankle/finger toe at the set position | [11,13] |
Hip angle | HA | (°) | Ankle/hip/shoulder | [22] |
Shoulder position | SP | (°) | Shoulders in front of/above/behind hands | [16] |
Block time | BT | (s) | Starting signal—feet separation from the platform | [11,13,14,24] |
Flight phase | ||||
Take-off angle | TA | (°) | Ankle/hip/horizontal | [22] |
Take-off head position | HP | (m) | Water surface/head | - |
Time to 2 m | T2 | (s) | Starting signal/head cross the 2 m | - |
Entry angle | EA | (°) | Horizontal/fingertips/hip joint | [15] |
Flight time | FT | (s) | Take-off/hand entry | [11,13,14,24] |
Flight distance | FD | (m) | Take-off/hands touch the water | [11,13,14,24] |
Underwater phase | ||||
Glide time | GT | (s) | Hand entry/head cross the 5 m | |
Glide distance | GD | (m) | Hands touch the water/head cross the 5 m | |
Maximal depth | MaxH | (m) | Head reaches the maximum depth | [2] |
Time to 5 m | T5 | (s) | Starting signal—head cross the 5 m |
FKA | FAA | RKA | RAA | HA | SP | BT | TA | HP | T2 | EA | FT | FD | GT | GD | MaxH | T5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(°) | (°) | (°) | (°) | (°) | (°) | (s) | (°) | (m) | (s) | (°) | (s) | (m) | (s) | (m) | (m) | (s) | |
M | 133.2 | 128.4 | 79.5 | 96.6 | 44.7 | 5.7 | 0.79 | 40.6 | 1.3 | 1.05 | 37.5 | 0.35 | 2.73 | 0.55 | 2.27 | −0.90 | 1.70 |
SE | 1.4 | 0.9 | 1.1 | 1.7 | 1.0 | 0.5 | 0.06 | 1.5 | 0.0 | 0.05 | 0.9 | 0.03 | 0.11 | 0.04 | 0.11 | 0.02 | 0.08 |
Block Phase | Flight Phase | Underwater Phase | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FKA | FAA | RKA | RAA | HA | SP | BT | TA | HP | T2 | EA | FT | FD | GT | GD | MaxH | T5 | ||
Block phase | FKA | 1.00 | ||||||||||||||||
FAA | 0.18 | 1.00 | ||||||||||||||||
RKA | 0.50 * | 0.43 | 1.00 | |||||||||||||||
RAA | −0.56 * | 0.15 | 0.01 | 1.00 | ||||||||||||||
HA | −0.27 | 0.03 | 0.35 | 0.42 | 1.00 | |||||||||||||
SP | −0.28 | 0.11 | 0.22 | 0.56 * | 0.56 * | 1.00 | ||||||||||||
BT | −0.04 | 0.63 ** | 0.29 | 0.47 * | 0.29 | 0.24 | 1.00 | |||||||||||
Flight phase | TA | 0.31 | 0.05 | 0.23 | 0.25 | 0.23 | 0.34 | 0.22 | 1.00 | |||||||||
HP | 0.10 | 0.48 * | 0.50 * | 0.41 | 0.30 | 0.56 * | 0.24 | 0.36 | 1.00 | |||||||||
T2 | −0.24 | 0.53 * | 0.31 | 0.60 ** | 0.36 | 0.33 | 0.89 ** | 0.04 | 0.36 | 1.00 | ||||||||
EA | 0.18 | 0.16 | −0.08 | −0.28 | −0.49 * | −0.06 | −0.31 | −0.32 | 0.00 | −0.43 | 1.00 | |||||||
FT | −0.23 | 0.17 | −0.05 | 0.26 | −0.14 | 0.05 | 0.25 | 0.21 | 0.26 | 0.38 | −0.20 | 1.00 | ||||||
FD | 0.21 | 0.19 | −0.05 | −0.28 | −0.33 | −0.23 | −0.16 | 0.03 | 0.08 | −0.21 | 0.51 * | 0.38 | 1.00 | |||||
Underwater phase | GT | 0.35 | −0.04 | 0.67 ** | −0.05 | 0.15 | 0.12 | −0.11 | 0.22 | 0.15 | −0.12 | −0.09 | −0.16 | −0.41 | 1.00 | |||
GD | −0.21 | −0.22 | 0.03 | 0.29 | 0.39 | 0.26 | 0.15 | 0.00 | −0.10 | 0.21 | −0.55 * | −0.41 | −0.99 ** | 0.36 | 1.00 | |||
MaxH | −0.31 | −0.04 | −0.18 | 0.19 | 0.07 | 0.17 | −0.15 | −0.01 | 0.30 | −0.02 | −0.09 | 0.48 * | −0.10 | 0.05 | 0.06 | 1.00 | ||
T5 | 0.06 | 0.51 * | 0.56 * | 0.43 | 0.24 | 0.26 | 0.77 ** | 0.37 | 0.36 | 0.74 ** | −0.36 | 0.51 * | −0.18 | 0.41 | 0.14 | 0.12 | 1.00 |
Multiple R = 0.89, R Squared = 0.79, Adjusted R Squared = 0.64, F (7.10) = 5.37, p < 0.00, Standard Error = 0.05 | ||||||
---|---|---|---|---|---|---|
n = 18 | b* | SE b* | b | SE b | t(10) | p-Value |
Intercept | 1.82 | 3.17 | 0.57 | 0.58 | ||
FKA | −0.21 | 0.24 | −0.01 | 0.01 | −0.87 | 0.41 |
FAA | −0.21 | 0.21 | −0.02 | 0.02 | −0.99 | 0.35 |
RKA | 0.65 | 0.24 | 0.05 | 0.02 | 2.76 | 0.00 |
RAA | 0.10 | 0.24 | 0.00 | 0.01 | 0.40 | 0.70 |
HA | −0.31 | 0.21 | −0.02 | 0.02 | −1.45 | 0.18 |
SP | 0.02 | 0.20 | 0.00 | 0.03 | 0.12 | 0.91 |
BT | 0.74 | 0.23 | 1.02 | 0.31 | 3.30 | 0.00 |
Multiple R = 0.88, R Squared = 0.78, Adjusted R Squared = 0.65, F (6.11) = 6.34, p < 0.00, Standard Error = 0.05 | ||||||
---|---|---|---|---|---|---|
n = 18 | b* | SE b* | b | SE b | t(11) | p-Value |
Intercept | −0.18 | 1.10 | −0.17 | 0.87 | ||
TA | 0.42 | 0.18 | 0.02 | 0.01 | 2.39 | 0.00 |
HP | −0.11 | 0.18 | −0.58 | 0.91 | −0.64 | 0.54 |
T2 | 0.69 | 0.19 | 1.03 | 0.29 | 3.58 | 0.00 |
EA | 0.35 | 0.22 | 0.03 | 0.02 | 1.56 | 0.15 |
FT | 0.40 | 0.20 | 0.95 | 0.47 | 2.03 | 0.07 |
FD | −0.37 | 0.21 | −0.27 | 0.16 | −1.75 | 0.11 |
Multiple R = 0.42, R Squared = 0.18, Adjusted R Squared = 0.002, F (3.14) = 1.01, p < 0.416, Standard Error = 0.08 | ||||||
---|---|---|---|---|---|---|
n = 18 | b* | SE b* | b | SE b | t(14) | p-Value |
Intercept | 1.8 | 1.06 | 1.70 | 0.11 | ||
EA | 0.41 | 0.26 | 0.73 | 0.47 | 1.57 | 0.14 |
FT | −0.01 | 0.26 | −0.09 | 0.19 | −0.04 | 0.97 |
FD | 0.10 | 0.24 | 0.45 | 1.06 | 0.43 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matúš, I.; Ružbarský, P.; Vadašová, B. Key Parameters Affecting Kick Start Performance in Competitive Swimming. Int. J. Environ. Res. Public Health 2021, 18, 11909. https://doi.org/10.3390/ijerph182211909
Matúš I, Ružbarský P, Vadašová B. Key Parameters Affecting Kick Start Performance in Competitive Swimming. International Journal of Environmental Research and Public Health. 2021; 18(22):11909. https://doi.org/10.3390/ijerph182211909
Chicago/Turabian StyleMatúš, Ivan, Pavel Ružbarský, and Bibiana Vadašová. 2021. "Key Parameters Affecting Kick Start Performance in Competitive Swimming" International Journal of Environmental Research and Public Health 18, no. 22: 11909. https://doi.org/10.3390/ijerph182211909
APA StyleMatúš, I., Ružbarský, P., & Vadašová, B. (2021). Key Parameters Affecting Kick Start Performance in Competitive Swimming. International Journal of Environmental Research and Public Health, 18(22), 11909. https://doi.org/10.3390/ijerph182211909