Bone Mineral Density in Adolescent Boys: Cross-Sectional Observational Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Ethical Approval
2.3. Measurements
2.3.1. Somatic Measurements, Body Composition and Birth Factors
2.3.2. Bone Tissue Measurement Method
2.3.3. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [Green Version]
- Hovi, P.; Andersson, S.; Jarvenpaa, A.L.; Eriksson, J.G.; Strang-Karlsson, S.; Kajantie, E.; Makitie, O. Decreased bone mineral density in adults born with very low birth weight: A cohort study. PLoS Med. 2009, 6, e1000135. [Google Scholar] [CrossRef] [Green Version]
- Saad, F.A. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann. N. Y. Acad. Sci. 2019, 1462, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhou, W.; Wang, P.; Zuo, E.; Ying, X.; Chai, S.; Fei, T.; Jin, L.; Chen, C.; Ma, G.; et al. Comprehensive Analysis of the Genetic and Epigenetic Mechanisms of Osteoporosis and Bone Mineral Density. Front. Cell Dev. Biol. 2020, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Winzenberg, T.M.; Callisaya, M.L.; Laslett, L.L. Lifestyle modifications to improve musculoskeletal and bone health and reduce disability—A life-course approach. Best Pract. Res. Clin. Rheumatol. 2014, 28, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Kopiczko, A.; Gryko, K.; Łopuszańska-Dawid, M. Bone mineral density, hand grip strength, smoking status and physical activity in Polish young men. HOMO J. Comp. Hum. Biol. 2018, 69, 209–216. [Google Scholar] [CrossRef]
- Mędraś, M.; Jankowska, E.A.; Rogucka, E.; Łopuszańska, M. The effects of sex steroids and some elements of lifestyle on the normal variation of bone mineral content in younger versus older healthy Polish males. Aging Male 2000, 3, 65–74. [Google Scholar] [CrossRef]
- Szklarska, A.; Jankowska, E.A.; Łopuszańska, M. The effects of menstrual and menopausal factors on bone mineral content in healthy Polish women. Anthropol. Rev. 2002, 65, 43–56. [Google Scholar]
- Lim, H.-S.; Ji, S.-I.; Hwang, H.; Kang, J.; Park, Y.-H.; Lee, H.-H.; Kim, T.-H. Relationship between Bone Density, Eating Habit, and Nutritional Intake in College Students. J. Bone Metab. 2018, 25, 181–186. [Google Scholar] [CrossRef]
- Kopiczko, A. Bone mineral density in old age: The influence of age at menarche, menopause status and habitual past and present physical activity. Arch. Med. Sci. 2020, 16, 657–665. [Google Scholar] [CrossRef]
- Burt, L.A.; Billington, E.O.; Rose, M.S.; Raymond, D.A.; Hanley, D.A.; Boyd, S.K. Effect of High-Dose Vitamin D Supplementation on Volumetric Bone Density and Bone Strength: A Randomized Clinical Trial. JAMA 2019, 322, 736–745. [Google Scholar] [CrossRef] [PubMed]
- McVey, M.K.; Geraghty, A.A.; O’Brien, E.C.; McKenna, M.J.; Kilbane, M.T.; Crowley, R.K.; Twomey, P.J.; McAuliffe, F.M. The impact of diet, body composition, and physical activity on child bone mineral density at five years of age findings from the ROLO Kids Study. Eur J. Pediatr. 2020, 179, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80, 1678–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopiczko, A.; Łopuszańska-Dawid, M.; Gryko, K. Bone mineral density in young adults: The influence of vitamin D status, biochemical indicators, physical activity and body composition. Arch. Osteoporos. 2020, 15, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarska, A.; Lipowicz, A. BMI, hypertension and low bone mineral density in adult men and women. Homo 2012, 63, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Kerr, D.A.; Papalia, S.; Morton, A.; Dick, I.; Dhaliwal, S.; Prince, R.L. Bone mass in young women is dependent on lean body mass. J. Clin. Densitom. 2007, 10, 319–326. [Google Scholar] [CrossRef]
- Kopiczko, A.; Gryko, K. Body mass index, general fatness, lipid profile and bone mineral density in young women and men. Anthropol. Rev. 2017, 80, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Pollock, N.K.; Laing, E.M.; Baile, C.A.; Hamrick, M.W.; Hall, D.B.; Lewis, R.D. Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females 1–3. Am. J. Clin. Nutr. 2007, 86, 1530–1538. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Choi, H.J.; Kim, M.J.; Shin, C.S.; Cho, N.H. Fat mass is negatively associated with bone mineral content in Koreans. Osteoporos. Int. 2012, 23, 2009–2016. [Google Scholar] [CrossRef]
- Clark, E.M.; Ness, A.R.; Tobias, J.H. Adipose tissue stimulates bone growth in prepubertal children. J. Clin. Endocrinol. Metab. 2006, 91, 2534–2541. [Google Scholar] [CrossRef]
- Górnicka, M.; Hamulka, J.; Wadolowska, L.; Kowalkowska, J.; Kostyra, E.; Tomaszewska, M.; Czeczelewski, J.; Bronkowska, M. Activity–Inactivity Patterns, Screen Time, and Physical Activity: The Association with Overweight, Central Obesity and Muscle Strength in Polish Teenagers. Report from the ABC of Healthy Eating Study. Int. J. Environ. Res. Public Health 2020, 17, 7842. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Kim, J.Y. Changes in physical fitness and body composition according to the physical activities of Korean adolescents. J. Exerc. Rehabil. 2017, 13, 568–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasuriya, C.N.D.; Evensen, K.A.I.; Mosti, M.P.; Brubakk, A.M.; Jacobsen, G.W.; Indredavik, M.S.; Schei, B.; Stunes, A.K.; Syversen, U. Peak Bone Mass and Bone Microarchitecture in Adults Born With Low Birth Weight Preterm or at Term: A Cohort Study. J. Clin. Endocrinol. Metab. 2017, 102, 2491–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, C.; Eriksson, J.G.; Forsen, T.; Osmond, C.; Tuomilehto, J.; Barker, D.J. Maternal height, childhood growth and risk of hip fracture in later life: A longitudinal study. Osteoporos. Int. 2001, 12, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Riley, M.; Dwyer, T. Breastfeeding in early life and bone mass in prepubertal children: A longitudinal study. Osteoporos. Int. 2000, 11, 146–152. [Google Scholar] [CrossRef]
- Molgaard, C.; Larnkjaer, A.; Mark, A.B.; Michaelsen, K.F. Are early growth and nutrition related to bone health in adolescence? The Copenhagen Cohort Study of infant nutrition and growth. Am. J. Clin. Nutr. 2011, 94, 1865–1869. [Google Scholar] [CrossRef] [Green Version]
- Pirila, S.; Taskinen, M.; Viljakainen, H.; Kajosaari, M.; Turanlahti, M.; Saarinen-Pihkala, U.M.; Mäkitie, O. Infant milk feeding influences adult bone health: A prospective study from birth to 32 years. PLoS ONE 2011, 6, e19068. [Google Scholar] [CrossRef] [Green Version]
- Fewtrell, M.S.; Kennedy, K.; Murgatroyd, P.R.; Williams, J.E.; Chomtho, S.; Lucas, A. Breast-feeding and formula feeding in healthy term infants and bone health at age 10 years. Br. J. Nutr. 2013, 110, 1–7. [Google Scholar] [CrossRef]
- Muniz, L.C.; Menezes, A.M.; Buffarini, R.; Wehrmeister, F.C.; Assunção, M.C. Effect of breastfeeding on bone mass from childhood to adulthood: A systematic review of the literature. Int. Breastfeed. J. 2015, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Frost, H.M. Wolff’s Law and bone’s structural adaptations to mechanical usage: An overview for clinicians. Angle Orthod. 1994, 64, 175–188. [Google Scholar]
- Daly, R.M.; Dalla Via, J.; Duckham, R.L.; Fraser, S.F.; Helge, E.W. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Braz. J. Phys. Ther. 2019, 23, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Guadalupe-Grau, A.; Fuentes, T.; Guerra, B.; Calbet, J.A. Exercise and bone mass in adults. Sports Med. 2009, 39, 439–468. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.H.; Robling, A.G. Designing exercise regimens to increase bone strength. Exerc. Sport Sci. Rev. 2003, 31, 45–50. [Google Scholar] [CrossRef]
- Ribeiro-dos-Santos, M.R.; Lynch, K.R.; Agostinete, R.R.; Maillane-Vanegas, S.; Turi-Lynch, B.; Ito, I.H.; Luiz-de-Marco, R.; Rodrigues-Junior, M.A.; Fernandes, R.A. Prolonged Practice of Swimming Is Negatively Related to Bone Mineral Density Gains in Adolescents. J. Bone Metab. 2016, 23, 149–155. [Google Scholar] [CrossRef] [Green Version]
- International Society for the Advancement of Kinanthropometry (ISAK). International Standards for Anthropometric Assessment; Australia ISAK: Adelaide, Australia, 2012. [Google Scholar]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- World Health Organization. The World Health Organization’s Infant Feeding Recommendation. As Stated in the Global Strategy on Infant and Young Child Feeding 2001; World Health Organization: Geneva, Switzerland, 2001; WHA55 A55/15, Paragraph 10. [Google Scholar]
- World Health Organization. Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Lewiecki, E.; Gordon, C.M.; Baim, S.; Leonard, M.B.; Bishop, N.J.; Bianchi, L.M.; Kalkwarf, H.J.; Langman, C.B.; Plotkin, H.; Rauch, F.; et al. International Society for Clinical Densitometry 2007. Adult and Pediatric Official Positions. Bone 2008, 43, 1115–1121. [Google Scholar] [CrossRef]
- Borkan, G.A.; Norris, A.H. Assessment of biological age using a profile of physical parameters. J. Gerontol. 1980, 35, 177–184. [Google Scholar] [CrossRef]
- Łopuszańska-Dawid, M.; Szklarska, A.; Kołodziej, H.; Lipowicz, A.; Jankowska, E.A. The relationship between: Occupational status, biological condition and androgen hormone level among Polish adult men: The Wroclaw Male Study. Aging Male 2016, 19, 231–238. [Google Scholar] [CrossRef]
- Szklarska, A.; Lipowicz, A.; Łopuszańska, M.; Jankowska, E.A.; Bielicki, T.; Koziel, S. Biological condition of adult migrants and non-migrants in Wroclaw, Poland. Am. J. Hum. Biol. 2008, 20, 139–145. [Google Scholar] [CrossRef]
- Lopuszanska-Dawid, M. Life satisfaction as a health determinant among Polish adult population. Anthropol. Anz. 2018, 75, 175–184. [Google Scholar] [CrossRef]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. 2014. Available online: www.statsoft.com (accessed on 1 October 2020).
- Schlüssel, M.M.; Vaz, J.S.; Kac, G. Birth weight and adult bone mass: A systematic literature review. Osteoporos. Int. 2010, 21, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, T.; Ahmed, L.A.; Daltveit, A.K.; Dennison, E.M.; Evensen, E.K.; Furberg, A.S.; Gracia-Marco, L.; Grimnes, G.; Nilsen, O.A.; Schei, B.; et al. The influence of birth weight and length on bone mineral density and content in adolescence: The Tromsø Study, Fit Futures. Arch. Osteoporos. 2017, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Heidemann, M.; Mølgaard, C.; Husby, S.; Schou, A.J.; Klakk, H.; Møller, N.C.; Holst, R.; Wedderkopp, N. The intensity of physical activity influences bone mineral accrual in childhood: The childhood health, activity and motor performance school (the CHAMPS) study, Denmark. BMC Pediatr. 2013, 13, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopiczko, A.; Gryko, K.; Łopuszańska-Dawid, M.; Laskin, J.J. The incidence of osteopenia among men with different levels of physical activity. Adv. Rehab. 2018, 2018, 5–11. [Google Scholar]
- Silva, L.A.D.; Doyenart, R.; Henrique, S.P.; Rodrigues, W.; Felipe, L.J.; Gomes, K.; Thirupathi, A.; Pinho, R.A.; Silveira, P.C. Swimming training improves mental health parameters, cognition and motor coordination in children with Attention Deficit Hyperactivity Disorder. Int. J. Environ. Health Res. 2020, 30, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Morel, J.; Combe, B.; Francisco, J.; Bernard, J. Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos. Int. 2001, 12, 152–157. [Google Scholar] [CrossRef]
- Blatsis, P.; Saraslanidis, P.; Barkoukis, V.; Manou, V.; Tzavidas, K.; Palla, S.; Hatzivassileiou, C. The effect of IAAF Kids Athletics on the physical fitness and motivation of elementary school students in track and field. J. Phys. Educ. Sport JPES 2016, 16, 883–896. [Google Scholar]
- Lappe, J.M.; Watson, P.; Gilsanz, V.; Hangartner, T.; Kalkwarf, H.J.; Oberfield, S.; Shepherd, J.; Winer, K.K.; Zemel, B. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development. J. Bone Miner. Res. 2015, 30, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Vandermeulen, J.; Atkinson, S.A. Early life factors predict abnormal growth and bone accretion at prepuberty in former premature infants with/without neonatal dexamethasone exposure. Pediatr. Res. 2007, 61, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Andres, A.; Casey, P.H.; Cleves, M.A.; Badger, T.M. Body fat and bone mineral content of infants fed breast milk, cow’s milk formula, or soy formula during the first year of life. J. Pediatr. 2013, 163, 49–54. [Google Scholar] [CrossRef]
- Jones, G.; Hynes, K.L.; Dwyer, T. The association between breastfeeding, maternal smoking in utero, and birth weight with bone mass and fractures in adolescents: A 16-year longitudinal study. Osteoporos. Int. 2013, 24, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Morley, R.; Lucas, A. Influence of early diet on outcome in preterm infants. Acta Paediatr. 1994, 405, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.C.; Robinson, S.M.; Crozier, S.R.; Marriott, L.D.; Gale, C.R.; Cole, Z.A.; Inskip, H.M.; Godfrey, K.M.; Cooper, C. Breast-feeding and adherence to infant feeding guidelines do not influence bone mass at age 4 years. Br. J. Nutr. 2009, 102, 915–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Track & Field Athletes (n = 32) | Swimmers (n = 30) | Non-Athletes (n = 34) | F Test (p) |
---|---|---|---|---|
Mean ± SD | ||||
Age (years) | 15.46 ± 1.19 | 16.18 ± 1.01 | 16.66 ± 0.72 #,*** | 16.22 (0.001) *** |
Somatic and body composition | ||||
Weight (kg) | 68.8 ± 6.4 | 63.8 ± 5.2 ^,* | 73.2 ± 10.0 ~,*** | 20.70 (0.001) *** |
Height (cm) | 170.3 ± 6.1 | 173.9 ± 5.7 | 173.6 ± 7.4 | 4.66 (0.097) |
BMI (kg/m2) | 23.7 ± 1.7 | 21.1 ± 1.2 ^,*** | 24.3 ± 3.4 ~,*** | 30.65 (0.001) *** |
Fat (%) | 15.8 ± 2.1 | 12.8 ± 1.5 ^,*** | 16.8 ± 4.1 ~,*** | 31.41 (0.001) *** |
FM (kg) | 22.9 ± 2.2 | 20.1 ± 1.7 ^,*** | 22.8 ± 3.4 ~,** | 21.40 (0.001) *** |
FFM (kg) | 45.8 ± 6.8 | 43.7 ± 5.6 | 50.4 ± 9.3 ~,** | 11.39 (0.002) ** |
Birth | ||||
Birth weight (g) | 3121.9 ± 669.9 | 2635.5 ± 871.8 | 2535.14 ± 818.1 #,* | 8.64 (0.013) * |
Length of breastfeeding (months) | 9.2 ± 3.2 | 5.1 ± 4.8 ^,** | 4.9 ± 4.6 #,** | 15.84 (0.001) *** |
Bone | ||||
BMD dis (g/cm2) | 0.490 ± 0.106 | 0.388 ± 0.150 ^,*** | 0.411 ± 0.09 #,* | 16.52 (0.001) *** |
BMC dis (g) | 1.993 ± 0.389 | 1.391 ± 0.476 ^,*** | 1.658 ± 0.609 #,* | 20.95 (0.001) ** |
T-score dis | 1.288 ± 1.341 | −0.945 ± 0.874 ^,*** | −0.356 ± 0.988 #,*** | 41.39 (0.001) *** |
Z-score dis | 1.133 ± 1.194 | −0.054 ± 0.505 ^,** | −0.803 ± 0.978 #,***, ~,** | 45.26 (0.001) *** |
% age matched dis | 112.6 ± 16.7 | 90.9 ± 13.0 ^,*** | 87.1 ± 14.4 #,*** | 39.11 (0.001) *** |
BMD prox (g/cm2) | 0.870 ± 0.086 | 0.730 ± 0.257 ^,*** | 0.755 ± 0.177 #,** | 25.48 (0.001) *** |
BMC prox (g) | 2.664 ± 0.580 | 1.705 ± 0.364 ^,*** | 2.143 ± 0.596 #,**, ~,* | 33.63 (0.001) *** |
T-score prox | −0.002 ± 1.027 | −2.254 ± 1.276 ^,*** | −1.464 ± 0.927 #,*** | 42.18 (0.001) *** |
Z-score prox | 0.599 ± 1.034 | −1.439 ± 0.752 ^,*** | −1.580 ± 0.615 #,*** | 49.82 (0.001) *** |
% age matched prox | 98.1 ± 9.7 | 75.5 ± 7.7 ^,*** | 78.7 ± 8.3 #,*** | 53.70 (0.001) *** |
Variables | All (n = 96) | Track & Field Athletes (n = 32) | Swimmers (n = 30) | Non-Athletes (n = 34) |
---|---|---|---|---|
% | ||||
T-Score dis | ||||
Low-osteopenia | 26.0 | 0 | 53.3 | 26.5 |
Norm | 74.0 | 100 | 46.7 | 73.5 |
Chi-square test, p | 29.36, 0.001 | |||
T-Score prox | ||||
Low-osteopenia | 57.3 | 18.7 | 83.3 | 70.6 |
Norm | 42.7 | 81.3 | 16.7 | 29.4 |
Chi-square test, p | 31.92, 0.001 | |||
Body fat | ||||
Low | 0 | 0 | 0 | 0 |
Norm | 89.6 | 93.7 | 100 | 76.5 |
Overweight | 10.4 | 6.3 | 0 | 23.5 |
Chi-square test, p | 12.09, 0.002 | |||
Birth weight | ||||
Large for gestational age | 11.5 | 15.6 | 10.0 | 8.8 |
Norm | 50.0 | 75.0 | 36.7 | 38.2 |
Low | 36.4 | 9.4 | 50.0 | 50.0 |
Very low | 2.1 | 0 | 3.3 | 3.0 |
Extremely low | 0 | 0 | 0 | 0 |
Chi-square test, p | 20.08, 0.003 | |||
Length of breastfeeding | ||||
Too short | 54.2 | 28.1 | 66.7 | 67.7 |
Recommended | 45.8 | 71.9 | 33.3 | 32.3 |
Chi-square test, p | 13.40, 0.001 |
Distal Part | Proximal Part | |||||
---|---|---|---|---|---|---|
Mean Square | F | p | Mean Square | F | p | |
BMD | BMD | |||||
age | 0.0912 | 8.5464 | 0.0044 | 0.1435 | 5.3320 | 0.0233 |
PA | 0.0411 | 3.8476 | 0.0250 | 0.0502 | 1.8655 | 0.1609 |
% fat | 0.0125 | 1.1746 | 0.2814 | 0.0283 | 1.0508 | 0.3081 |
birth weight | 0.0909 | 8.5209 | 0.0004 | 0.2377 | 8.8299 | 0.0003 |
breastfeeding | 0.0049 | 0.4599 | 0.4995 | 0.0518 | 1.9234 | 0.1690 |
F (p) | 6.54 (0.001) | 6.11 (0.001) | ||||
R^2 adj. | 0.2897 | 0.2736 | ||||
BMC | BMC | |||||
age | 0.7227 | 3.2956 | 0.0729 | 2.5085 | 9.9681 | 0.0023 |
PA | 1.2226 | 5.5751 | 0.0052 | 5.0654 | 20.1289 | 0.0001 |
% fat | 0.8136 | 3.7100 | 0.0573 | 0.2546 | 1.0117 | 0.3172 |
birth weight | 0.9566 | 4.3621 | 0.0156 | 0.4770 | 1.8955 | 0.1563 |
breastfeeding | 0.3195 | 1.4567 | 0.2307 | 0.3168 | 1.2589 | 0.2649 |
F (p) | 6.40 (0.001) | 10.31 (0.001) | ||||
R^2 adj. | 0.2848 | 0.4069 | ||||
T-score | T-score | |||||
age | 12.6512 | 12.3716 | 0.0007 | 5.3535 | 7.3442 | 0.0081 |
PA | 29.6370 | 28.9820 | 0.0001 | 19.3804 | 26.5869 | 0.0001 |
% fat | 1.6325 | 1.5965 | 0.2097 | 0.0431 | 0.0590 | 0.8087 |
birth weight | 2.3912 | 2.3384 | 0.1024 | 15.0226 | 20.6087 | 0.0001 |
breastfeeding | 1.3514 | 1.3215 | 0.2534 | 2.5274 | 3.4673 | 0.0659 |
F (p) | 14.58 (0.001) | 24.62 (0.001) | ||||
R^2 adj. | 0.5004 | 0.6351 | ||||
Z-score | Z-score | |||||
age | 7.7111 | 9.1404 | 0.0033 | 1.8828 | 3.4356 | 0.0672 |
PA | 23.9460 | 28.3844 | 0.0001 | 24.5771 | 44.8469 | 0.0001 |
% fat | 0.0140 | 0.0166 | 0.8977 | 0.0012 | 0.0022 | 0.9629 |
birth weight | 0.7418 | 0.8793 | 0.4187 | 3.4629 | 6.3188 | 0.0027 |
breastfeeding | 0.3290 | 0.3900 | 0.5339 | 2.6681 | 4.8687 | 0.0300 |
F (p) | 12.10 (0.001) | 28.50 (0.001) | ||||
R^2 adj. | 0.4498 | 0.6696 | ||||
% age matched | % age matched | |||||
age | 1856.4875 | 8.9859 | 0.0035 | 248.9790 | 4.6291 | 0.0342 |
PA | 5204.3858 | 25.1906 | 0.0001 | 2353.5956 | 43.7588 | 0.0001 |
% fat | 0.0466 | 0.0002 | 0.9880 | 10.0730 | 0.1873 | 0.6662 |
birth weight | 214.0252 | 1.0359 | 0.3592 | 389.1474 | 7.2352 | 0.0012 |
breastfeeding | 17.7829 | 0.0861 | 0.7699 | 685.8800 | 12.7521 | 0.0006 |
F (p) | 10.03 (0.001) | 31.05 (0.001) | ||||
R^2 adj. | 0.3995 | 0.6889 |
Variables | Mean Square | F | p |
---|---|---|---|
PA | 4.0773 | 19.2856 | 0.0001 |
Birth weight | 3.5671 | 16.8724 | 0.0001 |
interaction | 0.5122 | 2.4226 | 0.0542 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopiczko, A.; Adamczyk, J.G.; Łopuszańska-Dawid, M. Bone Mineral Density in Adolescent Boys: Cross-Sectional Observational Study. Int. J. Environ. Res. Public Health 2021, 18, 245. https://doi.org/10.3390/ijerph18010245
Kopiczko A, Adamczyk JG, Łopuszańska-Dawid M. Bone Mineral Density in Adolescent Boys: Cross-Sectional Observational Study. International Journal of Environmental Research and Public Health. 2021; 18(1):245. https://doi.org/10.3390/ijerph18010245
Chicago/Turabian StyleKopiczko, Anna, Jakub Grzegorz Adamczyk, and Monika Łopuszańska-Dawid. 2021. "Bone Mineral Density in Adolescent Boys: Cross-Sectional Observational Study" International Journal of Environmental Research and Public Health 18, no. 1: 245. https://doi.org/10.3390/ijerph18010245
APA StyleKopiczko, A., Adamczyk, J. G., & Łopuszańska-Dawid, M. (2021). Bone Mineral Density in Adolescent Boys: Cross-Sectional Observational Study. International Journal of Environmental Research and Public Health, 18(1), 245. https://doi.org/10.3390/ijerph18010245