Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Department of Health and Human Services. E-Cigarette Use among Youth and Young Adults: A Report of the Surgeon General. 2016. Available online: https://www.cdc.gov/tobacco/data_statistics/sgr/e-cigarettes/pdfs/2016_sgr_entire_report_508.pdf (accessed on 23 January 2020).
- Cullen, K.A.; Ambrose, K.; Gentzke, A.S.; Apelberg, B.J.; Jamal, A.; King, B.A. Notes from the Field: Increase in use of electronic cigarettes and any tobacco product among middle and high school students—United States, 2011–2018. MMWR Morbid. Mortal. Wkly. Rep. 2018, 67, 1276–1277. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, W.; Liao, J.; Matsuo, T.; Ito, K.; Fowles, J.; Shusterman, D.; Mendell, M.; Kumagai, K. A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS ONE 2017, 12, e0169811. [Google Scholar] [CrossRef] [PubMed]
- Higham, A.; Rattray, N.; Dewhurst, J.; Trivedi, D.; Fowler, S.; Goodacre, R.; Singh, D. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir. Res. 2016, 17, 56. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, S.; Dieken, H.; Krischenowski, O.; Aufderheide, M. Cytotoxic evaluation of e-liquid aerosol using different lung-derived cell models. Int. J. Environ. Res. Pub. Health 2015, 12, 12466–12474. [Google Scholar] [CrossRef]
- Gerloff, J.; Sundar, I.; Freter, R.; Sekera, E.; Freidman, A.; Robinson, R.; Pagano, T.; Rahman, I. Inflammatory response and barrier dysfunction by different e-cigarette flavoring chemicals identified by gas chromatography–mass spectrometry in e-liquids and e-vapors on human lung epithelial cells and fibroblasts. Appl. In Vitro Toxicol. 2017, 3, 28–40. [Google Scholar] [CrossRef]
- Lim, H.; Kim, S. Inhalation of e-cigarette cartridge solution aggravates allergen-induced airway inflammation and hyper-responsiveness in mice. Toxicol. Res. 2014, 30, 13–18. [Google Scholar] [CrossRef]
- Morris, A.; Olgun, N.; Attfield, K.; Fowles, J.; Leonard, S. Effects of E-Cigarette Flavoring Chemicals on Human Macrophages and Bronchial Epithelial Cells. In Proceedings of the Society of Toxicology Annual Meeting, Bethesda, MD, USA, 10–14 March 2019. [Google Scholar]
- Behar, R.; Davis, B.; Wang, Y.; Bahl, V.; Lin, S.; Talbot, P. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol. In Vitro 2014, 28, 198–208. [Google Scholar] [CrossRef]
- Putzhammer, R.; Doppler, C.; Jakschitz, T.; Heinz, K.; Forste, J.; Danzl, K.; Messner, B.; Bernhard, D. Vapours of US and EU market leader electronic cigarette brands and liquids are cytotoxic for human vascular endothelial cells. PLoS ONE 2016, 11, e0157337. [Google Scholar] [CrossRef]
- Cho, J.; Paik, S. Association between electronic cigarette use and asthma among high school students in South Korea. PLoS ONE 2016, 11, e0151022. [Google Scholar] [CrossRef]
- Schweitzer, R.; Wills, T.A.; Tam, E.; Pagano, I.; Choi, K. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev. Med. 2017, 105, 226–231. [Google Scholar] [CrossRef]
- Madison, M.C.; Landers, C.T.; Gu, B.-H. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J. Clin. Investig. 2019, 129, 4290–4304. [Google Scholar] [CrossRef] [PubMed]
- U.S. Centers for Disease Control and Prevention. Outbreak of Lung Injury Associated with the Use of E-Cigarette, or Vaping, Products. Available online: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html (accessed on 23 January 2020).
- Hess, C.; Olmedo, P.; Navas-Acien, A.; Goessler, W.; Cohen, J.; Rule, A. E-cigarettes as a source of toxic and potentially carcinogenic metals. Environ. Res. 2017, 152, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Olmedo, P.; Goessler, W.; Tanda, S.; Grau-Perez, M.; Jarmul, S.; Aherrera, A.; Chen, R.; Hilpert, M.; Cohen, J.; Navas-Acien, A. Metal concentrations in e-cigarette liquid and aerosol samples: The contribution of metallic coils. Environ. Health Perspect. 2018, 126, 027010. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Bozhilov, K.; Ghai, S.; Talbot, P. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS ONE 2017, 12, e0175430. [Google Scholar] [CrossRef]
- Goniewicz, M.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef]
- Kamilari, E.; Farsalinos, K.; Poulas, K.; Kontoyannis, C.; Orkoula, M. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry. Food Chem. Toxicol. 2018, 116, 233. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Ruprecht, A.; DeMarco, C.; Pozzi, P.; Boffi, R. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: Comparison of emission rates and secondhand exposure. Environ. Sci. Process. Impacts 2014, 16, 2259–2267. [Google Scholar] [CrossRef]
- Zhao, D.; Navas-Acien, A.; Ilievski, V.; Slavkovich, V.; Olmedo, P.; Adria-Mora, B.; Domingo-Relloso, A.; Aherrera, A.; Kleiman, N.; Rule, A. Metal concentrations in electronic cigarette aerosol: Effect of open-system and closed-system devices and power settings. Environ. Res. 2019, 174, 125–134. [Google Scholar] [CrossRef]
- Mikheev, V.; Brinkman, M.; Granville, C.; Gordon, S.; Clark, P. Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob. Res. 2016, 18, 1895–1902. [Google Scholar] [CrossRef]
- Gaur, S.; Agnihotri, R. Health effects of trace metals in electronic cigarette aerosols—A systematic review. Biol. Trace Elem. Res. 2019, 188, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Elliot, D.; Shah, R.; Hess, C.; Elicker, B.; Henry, T.; Rule, A.; Chen, R.; Golozer, M.; Jones, K. Giant cell interstitial pneumonia secondary to cobalt exposure from e-cigarette use. Eur. Respir. J. 2019, 54, 6. [Google Scholar]
- United States Environmental Protection Agency. Integrated Risk Information System (IRIS). 2019. Available online: https://www.epa.gov/iris (accessed on 6 June 2019).
- Office of Environmental Health Hazard Assessment (OEHHA); California Environmental Protection Agency (CalEPA). Cancer Potency Factors. 2011. Available online: www.oehha.ca.gov (accessed on 21 October 2019).
- OEHHA; CalEPA. OEHHA Acute, 8-hour and Chronic Reference Exposure Level (REL) Summary. 2019. Available online: https://oehha.ca.gov/air/general-info/oehha-acute-8-hour-and-chronic-reference-exposure-level-rel-summary (accessed on 20 February 2020).
- Canadavapes Website. Available online: https://canadavapes.com/ (accessed on 21 October 2019).
- Dautzenberg, B.; Bricard, D. Real-time characterization of e-cigarettes use: The 1 million puffs study. J. Add. Res. Ther. 2015, 6, 4172. [Google Scholar] [CrossRef]
- EPA. Exposure Factors Handbook 2011 Edition (Final); EPA/600/R-09/052F; US Environmental Protection Agency: Washington, DC, USA, 2011. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=20563 (accessed on 14 February 2020).
- EPA. National Ambient Air Quality Standard for Lead. 2016. Available online: https://www.epa.gov/lead-air-pollution/national-ambient-air-quality-standards-naaqs-lead-pb (accessed on 12 December 2019).
- OEHHA. Lead and lead compounds (Maximum Allowed Daily Limit). 2001. Available online: https://oehha.ca.gov/chemicals/lead-and-lead-compounds (accessed on 1 March 2020).
- EPA. National Air Toxics Assessment. 2014. Available online: https://www.epa.gov/national-air-toxics-assessment/nata-frequent-questions#risk2 (accessed on 12 December 2019).
- Farsalinos, K.E.; Rodu, B. Metal emissions from e-cigarettes: A risk assessment analysis of a recently-published study. Inhal. Toxicol. 2018, 30, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Chiba, M.; Masironi, R. Toxic and trace elements in tobacco and tobacco smoke. Bull. World Health Org. 1992, 70, 269–275. [Google Scholar]
- Na, C.; Jo, S.; Kim, K.; Sohn, J.; Son, Y. The transfer characteristics of heavy metals in electronic cigarette e-liquid. Environ. Res. 2019, 174, 152–159. [Google Scholar] [CrossRef]
- Visser, W.; Klerx, W.; Cremers, H.W.; Ramlal, R.; Schwillens, P.; Talhout, R. The Health Risks of Electronic Cigarette Use to Bystanders. Int. J. Environ. Res. Pub. Health 2019, 16, 1525. [Google Scholar] [CrossRef]
- Badea, M.; Luzardo, O.; Gonzales-Antuna, A.; Zumbado, M.; Rogozea, L.; Floroian, L.; Alexandrescu, D.; Moga, M.; Gaman, L.; Radoi, M. Body burden of toxic metals and rare earth elements in non-smokers, cigarette smokers and electronic cigarette users. Environ. Res. 2018, 166, 269–275. [Google Scholar] [CrossRef]
- Aherrera, A.; Olmedo, P.; Grau-Perez, M.; Tanda, S.; Goessler, W.; Jarmul, S.; Chen, R.; Cohen, J.; Rule, A.; Navas-Acien, A. The association of e-cigarette use with exposure to nickel and chromium: A preliminary study of non-invasive biomarkers. Environ. Res. 2017, 159, 313–320. [Google Scholar] [CrossRef]
- Chang, X.; Zhu, A.; Liu, F.; Zhu, L.; Su, L.; Liu, S.; Zhou, H.; Sun, Y.; Han, A. Nickel oxide nanoparticles induced pulmonary fibrosis via TGF-1 activation in rats. Hum. Exp. Toxicol. 2017, 36, 802–812. [Google Scholar] [CrossRef]
- Mo, Y.; Jiang, M.; Zhang, Y.; Wan, R.; Li, J.; Zhong, C. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J. Nanobiotechnol. 2019, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. E-cigarettes: An Evidence Update. Report for Public Health England. 2015. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/457102/Ecigarettes_an_evidence_update_A_report_commissioned_by_Public_Health_England_FINAL.pdf (accessed on 6 July 2019).
Study. | Metric | Metals (Range) | Comments |
---|---|---|---|
Aerosol Studies | |||
Williams 2013 [17] | Aerosol: μg/10 puffs | Cr (0.007) | Single brand/design. Cartomizer |
Ni (0.005) | |||
Mn (0.002) | |||
Pb (0.017) | |||
Cu (0.002) | |||
Zn (0.058) | |||
Sn (0.037) | |||
Al (0.394) | |||
Fe (0.52) | |||
Ba (0.012) | |||
Goniewicz 2014 [19] | Aerosol: μg/10 puffs | Ni (0.007–0.019) | 12 e-cigarettes from Poland and the UK |
Cd (0.001–0.015) | |||
Pb (0.002–0.038) | |||
Mikheev 2016 [23] | Aerosol: ng/mg TPM | Cr (1.0–3.0) | Blu brand, 7 flavors |
Ni (0.1–0.2) | |||
Pb nd | |||
Cd nd | |||
Mn nm | |||
Cu (0.6–0.7) | |||
Zn (2.0–3.0) | |||
Sn (0.08–0.09) | |||
Sb (0.1–0.4) | |||
As (0.07–0.09) | |||
Gaur 2019 [24] | Aerosol: μg/10 puffs | Cr (0.007–0.2) | Review of 12 studies |
Ni (0.005–0.007) | |||
Mn (0.002–0.035) | |||
Pb (0.002–0.038) | |||
Cd (0.0004–0.0146) | |||
Cu (0.011–2.2) | |||
Sn (0.036–6.0) | |||
Al (0.266–0.394) | |||
Liquid Studies | |||
Hess 2017 [15] | Liquid: μg/L | Cr (56–726) | Cigalike refill liquids, N = 5 |
Ni (58–15400) | |||
Mn (26–918) | |||
Pb (4.98–1630) | |||
Cd (0.2–12.4) | |||
Olmedo 2018 [16] | Liquid: μg/L | Cr (55.4) | Multiple types of device. N = 56 aerosols and dispensers, N = 49 tanks |
Ni (233) | |||
Mn (31.9) | |||
Pb (40.2) | |||
Cu (148) | |||
Zn (426) | |||
Sn (20.3) | |||
Cd (0.126) | |||
Sb (0.563) | |||
Al (31.2) | |||
Fe (382) | |||
Kamilari 2018 [20] | Liquid: μg/L | Cr (4–32) | Refill liquids, N = 22 |
Ni (2–92) | |||
Pb (1–11) | |||
Cd (4.8–175) | |||
As (nd–4) | |||
Zhao 2019 [22] | Liquid (from aerosol): μg/L | Cr (0.39–15.6) | Range of medians of 2 closed and 2 open devices |
Ni (1.3–2148) | |||
Mn (0.39–64) | |||
Pb (0.9–541) | |||
Cd (0.04–0.16) | |||
Cu (6.0–542) | |||
Sb (0.15–4.6) | |||
Sn (0.35–322) | |||
Zn (683–3114) | |||
Fe (3.4–153) | |||
Al (4.1–17.7) |
Cancer Potency (μg/kg/day)−1 | Unit Risk (μg/m3)−1 | Non-Cancer REL (μg/m3) | Target System | |
---|---|---|---|---|
Cr | 0.51a | 0.15a 0.012b | 0.2a 0.008b (soluble) 0.1b (particulate) | Respiratory system |
Ni (subsulfide) | 0.00091a | 0.00026a 0.00048b | 0.014a | Respiratory, immunologic systems |
Pb | 0.000042a | 0.000015a | 0.5 (μg/d) (MADL)a 0.15 (AAQS)b | CNS, reproductive, development |
As | 0.012a 0.0015b | 0.0033a 0.0043b | 0.015a | Development, cardiovascular, CNS, respiratory |
Cd | 0.015a | 0.0042a 0.0018b | 0.02 a | Kidney |
Mn | NA | NA | 0.09a 0.05b | CNS |
Estimated intakes* (μ g/kg/day) | Cancer Risks | Non-Cancer Hazard Quotients | |||||
---|---|---|---|---|---|---|---|
Range | Low | High | Ave | Low | High | Ave | |
Cr | 1.1 × 10−5 to 6.0 × 10−2 | 5.68 × 10−6 | 3.07 × 10−2** | 3.10 × 10−3 | 1.95 × 10−4 | 1.06 × 10+0 | 1.06 × 10−1 |
Ni | 3.7 × 10−5 to 6.5 × 10−1 | 3.38 × 10−8 | 5.88 × 10−4 | 5.24 × 10−5 | 9.29 × 10−3 | 1.61 × 10+2 | 1.44 × 10+1 |
Pb | 1.4 × 10−5 to 5.0 × 10−2 | 5.71 × 10−10 | 1.96 × 10−6 | 2.87 × 10−7 | 1.90 × 10−3a | 6.54 × 10+0 | 9.58 × 10−1 |
Cd | 3.6 × 10−6 to 3.5 × 10−4 | 5.40 × 10−8 | 5.12 × 10−5 | 1.23 × 10−5 | 6.30 × 10−4 | 5.98 × 10−1 | 1.43 × 10−1 |
As | 0 to 1.1 × 10−4 | - | 1.37 × 10−6 | 6.86 × 10−7 | - | 2.67 × 10−2 | 2.67 × 10−2 |
Mn | 3.1 × 10−5 to 2.6 × 10−2 | NA | NA | NA | 1.21 × 10−3 | 1.02 × 10+0 | 1.84 × 10−1 |
Estimated Intakes* (μg/kg/day) | Cancer Risks | Non-Cancer Hazard Quotients | |||||
---|---|---|---|---|---|---|---|
Range | Low | High | Ave | Low | High | Ave | |
Cr | 1.1 × 10−5 to 6.0 × 10−2 | 4.68 × 10−7 | 2.53 × 10−3** | 2.55 × 10−4 | 3.90 × 10−4 | 2.11 × 10+0 | 2.13 × 10−1 |
Ni | 3.7 × 10−5 to 6.5 × 10−1 | 6.24 × 10−8 | 1.08 × 10−3 | 9.67 × 10−5 | - | - | - |
Pb | 1.4 × 10−5 to 5.0 × 10−2 | 5.71 × 10−10 | 1.96 × 10−6 | 2.87 × 10−7 | 3.17 × 10−4a | 1.09 × 10+0a | 1.61 × 10−1a |
Cd | 3.6 × 10−6 to 3.5 × 10−4 | 2.27 × 10−8 | 2.15 × 10−5 | 5.15 × 10−6 | 7.20 × 10−6 | 6.83 × 10−3 | 1.64 × 10−3 |
As | 0 to 1.1 × 10−4 | - | 1.72 × 10−6 | 8.60 × 10−7 | - | 3.81 × 10−4 | 1.90 × 10−4 |
Mn | 3.1 × 10−5 to 2.6 × 10−2 | NA | NA | NA | 2.18 × 10−3 | 1.84 × 10+0 | 3.32 × 10−1 |
Endpoint | Low | Average | High | Metals |
---|---|---|---|---|
Respiratory | 9.5 × 10−3 | 14.5 | 162 | Cr, Ni |
CNS | 3.0 × 10−2 | 1.2 | 7.6 | Pb, Mn, As |
Reproduction | 2.9 × 10−2 | 9.8 × 10−1 | 6.6 | Pb, As |
Renal | 6.3 × 10−4 | 1.4 × 10−1 | 6.0 × 10−1 | Cd |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fowles, J.; Barreau, T.; Wu, N. Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols. Int. J. Environ. Res. Public Health 2020, 17, 2146. https://doi.org/10.3390/ijerph17062146
Fowles J, Barreau T, Wu N. Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols. International Journal of Environmental Research and Public Health. 2020; 17(6):2146. https://doi.org/10.3390/ijerph17062146
Chicago/Turabian StyleFowles, Jefferson, Tracy Barreau, and Nerissa Wu. 2020. "Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols" International Journal of Environmental Research and Public Health 17, no. 6: 2146. https://doi.org/10.3390/ijerph17062146
APA StyleFowles, J., Barreau, T., & Wu, N. (2020). Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols. International Journal of Environmental Research and Public Health, 17(6), 2146. https://doi.org/10.3390/ijerph17062146