Children’s Environmental Health: A Systems Approach for Anticipating Impacts from Chemicals
Abstract
1. Introduction
2. The Complex Problem
2.1. Global Burden of Environmental Disease
2.2. Children’s Environmental Health in the United States
2.3. Additional Complexity
3. Conceptual Model of Children’s Environmental Health
4. A Systems Approach to Evaluate Impacts of Chemicals on Children’s Health
4.1. Children’s Environmental Health System Orienters
4.2. Children’s Environmental Health Indicators
4.3. Implementing a System-Of-Systems Approach for Children’s Environmental Health
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Pool, R.; Rusch, E. Identifying and Reducing Environmental Health Risks of Chemicals in Our Society: Workshop Summary; Institue of Medicine/The National Academic Presses: Washington, DC, USA, 2014; p. 167. [Google Scholar]
- UNEP. Global Chemicals Outlook—Towards Sound Management of Chemicals. In Global Chemicals Outlook; UNEP: Geneva, Switzerland, 2013; p. 266. [Google Scholar]
- US EPA. Comptox Chemicals Dashboard. 2020. Available online: https://comptox.epa.gov/dashboard/chemical_lists (accessed on 21 May 2019).
- NAS. A Framework to Guide Selection of Chemical Alternatives: Committee on the Design and Evaluation of Safer Chemical Substitutions: A Framework to Inform Government and Industry Decisions; The National Academies Press: Washington, DC, USA, 2014; p. 264. [Google Scholar]
- NAS. Using 21st Century Science to Improve Risk-Related Evaluations; National Academy of the Sciences (NAS): Washington, DC, USA, 2017. [Google Scholar]
- Grandjean, P. Delayed discovery, dissemination, and decisions on intervention in environmental health: A case study on immunotoxicity of perfluorinated alkylate substances. Environ. Health 2018, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.S.; Bahadori, T.; Buckley, T.J.; Cowden, J.; Deisenroth, C.; Dionisio, K.L.; Frithsen, J.B.; Grulke, C.M.; Gwinn, M.R.; Harrill, J.A.; et al. The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicol. Sci. 2019, 169, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Suh, S. Health risks of chemicals in consumer products: A review. Environ. Int. 2019, 123, 580–587. [Google Scholar] [CrossRef]
- Lazarevic, N.; Barnett, A.G.; Sly, P.D.; Knibbs, L.D. Statistical Methodology in Studies of Prenatal Exposure to Mixtures of Endocrine-Disrupting Chemicals: A Review of Existing Approaches and New Alternatives. Environ. Health Perspect. 2019, 127, 026001. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef]
- Moosa, A.; Shu, H.; Sarachana, T.; Hu, V.W. Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder? Horm. Behav. 2018, 101, 13–21. [Google Scholar] [CrossRef]
- Nowak, K.; Jabłońska, E.; Ratajczak-Wrona, W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. Environ. Int. 2019, 125, 350–364. [Google Scholar] [CrossRef]
- Gwinn, M.R.; Axelrad, D.A.; Bahadori, T.; Bussard, D.; Cascio, W.E.; Deener, K.; Dix, D.; Thomas, R.S.; Kavlock, R.J.; Burke, T.A. Chemical Risk Assessment: Traditional vs Public Health Perspectives. Am. J. Public Health 2017, 107, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Tulve, N. Development of a Conceptual Framework Depicting a Childs Total (Built, Natural, Social) Environment in Order to Optimize Health and Well-Being. J. Environ. Health Sci. 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Lang, T.; Rayner, G. Ecological public health: The 21st century’s big idea? An essay by Tim Lang and Geof Rayner. BMJ 2012, 345, e5466. [Google Scholar] [CrossRef] [PubMed]
- Little, J.C.; Hester, E.T.; ElSawah, S.; Filz, G.M.; Sandu, A.; Carey, C.C.; Iwanaga, T.; Jakeman, A.J. A tiered, system-of-systems modeling framework for resolving complex socio-environmental policy issues. Environ. Model. Softw. 2019, 112, 82–94. [Google Scholar] [CrossRef]
- Neira, M.; Prüss-Ustün, A. Preventing Disease through Healthy Environments: A Global Assessment of the Environmental Burden of Disease; World Health Organization: France, Paris, 2016; p. 176. [Google Scholar]
- WHO. The Public Health Impact of Chemicals: Knowns and Unknowns. In International Programme on Chemical Safety; WHO: Geneva, Switzerland, 2016; p. 16. [Google Scholar]
- UNEP. Global Chemicals Outlook II—From Legacies to Innovatie Solutions. In Global Chemicals Outlook; UNEP: Geneva, Switzerland, 2019; p. 102. [Google Scholar]
- US EPA. Children’s Environmental Health Cross-Cutting Research Roadmap; US EPA: Washington, DC, USA, 2015; p. 128.
- CDC. Data & Statistics on Birth Defects. 23 January 2020. Available online: https://www.cdc.gov/ncbddd/birthdefects/data.html (accessed on 16 June 2020).
- Dadvand, P.; Parker, J.; Bell, M.L.; Bonzini, M.; Brauer, M.; Darrow, L.A.; Gehring, U.; Glinianaia, S.V.; Gouveia, N.; Ha, E.-H.; et al. Maternal Exposure to Particulate Air Pollution and Term Birth Weight: A Multi-Country Evaluation of Effect and Heterogeneity. Environ. Health Perspect. 2013, 121, 267–373. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, N.L.; Merialdi, M.; Van Donkelaar, A.; Vadillo-Ortega, F.; Martin, R.V.; Betran, A.P.; Souza, J.P.; O’neill, M.S. Outdoor Air Pollution, Preterm Birth, and Low Birth Weight: Analysis of the World Health Organization Global Survey on Maternal and Perinatal Health. Environ. Health Perspect. 2014, 122, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Stieb, D.M.; Chen, L.; Eshoul, M.; Judek, S. Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ. Res. 2012, 117, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Boekelheide, K.; Blumberg, B.; Chapin, R.E.; Cote, I.; Graziano, J.H.; Janesick, A.; Lane, R.; Lillycrop, K.; Myatt, L.; States, J.C.; et al. Predicting Later-Life Outcomes of Early-Life Exposures. Environ. Health Perspect. 2012, 120, 1353–1361. [Google Scholar] [CrossRef]
- Gorini, F.; Chiappa, E.; Gargani, L.; Picano, E. Potential Effects of Environmental Chemical Contamination in Congenital Heart Disease. Pediatr. Cardiol. 2014, 35, 559–568. [Google Scholar] [CrossRef]
- CDC. Most Recent Asthma Data. 25 March 2019. Available online: https://www.cdc.gov/asthma/most_recent_data.htm (accessed on 16 June 2020).
- Dick, S.; Doust, E.; Cowie, H.; Ayres, J.G.; Turner, S. Associations between environmental exposures and asthma control and exacerbations in young children: A systematic review. BMJ Open 2014, 4, e003827. [Google Scholar] [CrossRef]
- Selgrade, M.K.; Blain, R.B.; Fedak, K.M.; Cawley, M.A. Potential risk of asthma associated with in utero exposure to xenobiotics. Birth Defects Res. Part C Embryo Today Rev. 2013, 99, 1–13. [Google Scholar] [CrossRef]
- Rigoli, L.; Briuglia, S.; Caimmi, S.; Ferraú, V.; Gallizzi, R.; Leonardi, S.; La Rosa, M.; Salpietro, C. Gene-environment interaction in childhood asthma. Int. J. Immunopathol. Pharmacol. 2011, 24, 41–47. [Google Scholar] [CrossRef]
- MacIntyre, E.A.; Gehring, U.; Moelter, A.; Fuertes, E.; Kluemper, C.; Kraemer, U.; Quass, U.; Hoffmann, B.; Gascon, M.; Brunekreef, B.; et al. Air Pollution and Respiratory Infections during Early Childhood: An Analysis of 10 European Birth Cohorts within the ESCAPE Project. Environ. Health Perspect. 2014, 122, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Kabesch, M. Epigenetics in asthma and allergy. Curr. Opin. Allergy Clin. Immunol. 2014, 14, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.T.; Zhang, Y.; Begum, K. Epigenetics and childhood asthma: Current evidence and future research directions. Epigenomics 2012, 4, 415–429. [Google Scholar] [CrossRef] [PubMed]
- CDC. Key Findings: Trends in the Prevalence of Developmental Disabilities in U.S. Children, 1997–2008. Developmental Disabilities 9 April 2018. Available online: https://www.cdc.gov/ncbddd/developmentaldisabilities/features/birthdefects-dd-keyfindings.html (accessed on 16 June 2020).
- Bellinger, D.C. Prenatal Exposures to Environmental Chemicals and Children’s Neurodevelopment: An Update. Saf. Health Work 2013, 4, 1–11. [Google Scholar] [CrossRef]
- Choi, A.L.; Sun, G.; Zhang, Y.; Grandjean, P. Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2012, 120, 1362–1368. [Google Scholar] [CrossRef]
- Kim, Y.R.; Harden, F.; Toms, L.-M.L.; Norman, R.E. Health consequences of exposure to brominated flame retardants: A systematic review. Chemosphere 2014, 106, 1–19. [Google Scholar] [CrossRef]
- Rodríguez-Barranco, M.; Lacasaña, M.; Aguilar-Garduño, C.; Alguacil, J.; Gil, F.; González-Alzaga, B.; Rojas-García, A. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis. Sci. Total Environ. 2013, 454–455, 562–577. [Google Scholar] [CrossRef]
- Perera, F.; Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef]
- Perera, F.P.; Tang, D.; Wang, S.; Vishnevetsky, J.; Zhang, B.; Diaz, D.; Camann, D.; Rauh, V. Prenatal Polycyclic Aromatic Hydrocarbon (PAH) Exposure and Child Behavior at Age 6–7 Years. Environ. Health Perspect. 2012, 120, 921–926. [Google Scholar] [CrossRef]
- Nilsen, F.M.; Tulve, N.S. A systematic review and meta-analysis examining the interrelationships between chemical and non-chemical stressors and inherent characteristics in children with ADHD. Environ. Res. 2020, 180, 108884. [Google Scholar] [CrossRef]
- CDC. Prevalence of Childhood Obesity in the United States. Overweight and Obestiy: Childhood Obesity Facts 24 June 2019. Available online: https://www.cdc.gov/obesity/data/childhood.html (accessed on 16 June 2020).
- Gaston, S.A.; Tulve, N.S.; Ferguson, T.F. Abdominal obesity, metabolic dysfunction, and metabolic syndrome in U.S. adolescents: National Health and Nutrition Examination Survey 2011–2016. Ann. Epidemiol. 2019, 30, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lichtveld, K.; Thomas, K.; Tulve, N.S. Chemical and non-chemical stressors affecting childhood obesity: A systematic scoping review. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hines, R.N.; Sargent, D.; Autrup, H.; Birnbaum, L.S.; Brent, R.L.; Doerrer, N.G.; Hubal, E.A.C.; Juberg, D.R.; Laurent, C.; Luebke, R.; et al. Approaches for Assessing Risks to Sensitive Populations: Lessons Learned from Evaluating Risks in the Pediatric Population. Toxicol. Sci. 2009, 113, 4–26. [Google Scholar] [CrossRef] [PubMed]
- Selevan, S.G.; Kimmel, C.A.; Mendola, P. Identifying critical windows of exposure for children’s health. Environ. Health Perspect. 2000, 108, 451–455. [Google Scholar] [CrossRef]
- Wright, R.O. Environment, susceptibility windows, development, and child health. Curr. Opin. Pediatr. 2017, 29, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Hubal, E.A.C.; De Wet, T.; Du Toit, L.; Firestone, M.P.; Ruchirawat, M.; Van Engelen, J.; Vickers, C. Identifying important life stages for monitoring and assessing risks from exposures to environmental contaminants: Results of a World Health Organization review. Regul. Toxicol. Pharmacol. 2014, 69, 113–124. [Google Scholar] [CrossRef]
- Defur, P.L.; Evans, G.W.; Hubal, E.A.C.; Kyle, A.D.; Morello-Frosch, R.; Williams, D.R. Vulnerability as a Function of Individual and Group Resources in Cumulative Risk Assessment. Environ. Health Perspect. 2007, 115, 817–824. [Google Scholar] [CrossRef]
- Heindel, J.J.; Skalla, L.A.; Joubert, B.R.; Dilworth, C.H.; Gray, K.A. Review of developmental origins of health and disease publications in environmental epidemiology. Reprod. Toxicol. 2017, 68, 34–48. [Google Scholar] [CrossRef]
- Bossel, H. Systems and Models: Complexity, Dynamics, Evolution, Sustainability; BoD–Books on Demand: Norderstedt, Germany, 2007. [Google Scholar]
- Little, J.C.; Hester, E.T.; Carey, C.C. Assessing and Enhancing Environmental Sustainability: A Conceptual Review. Environ. Sci. Technol. 2016, 50, 6830–6845. [Google Scholar] [CrossRef]
- Bossel, H. Indicators for Sustainable Development: Theory, Method, Applications; International Institute for Sustainable Development: Winnipeg, MB, Canada, 1999. [Google Scholar]
- Fraser, E.D.; Dougill, A.J.; Mabee, W.E.; Reed, M.; McAlpine, P. Bottom up and top down: Analysis of participatory processes for sustainability indicator identification as a pathway to community empowerment and sustainable environmental management. J. Environ. Manag. 2006, 78, 114–127. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Pacini, C.; Jones, M.L.M.; Pérez-Soba, M.; Pacini, G.C. An aggregation framework to link indicators associated with multifunctional land use to the stakeholder evaluation of policy options. Ecol. Indic. 2011, 11, 71–80. [Google Scholar] [CrossRef]
- Bossel, H. Deriving indicators of sustainable development. Environ. Model. Assess. 1996, 1, 193–218. [Google Scholar] [CrossRef]
- EPA’s Report on the Environment (ROE). 2019. Available online: https://www.epa.gov/report-environment (accessed on 20 September 2019).
- U.S. EPA. America’s Children and the Environment. United States Environmental Protection Agency. 2013. Available online: https://www.epa.gov/americaschildrenenvironment (accessed on 9 November 2020).
- U.S. EPA. Comptox Chemicals Dashboard. 2020. Available online: https://comptox.epa.gov/dashboard (accessed on 21 May 2019).
- Comparative Toxicogenomics Database (CTD). Available online: https://ctdbase.org/ (accessed on 9 November 2020).
- EnviroAtlas. EPA: Environmental Protection. 2019. Available online: https://www.epa.gov/enviroatlas (accessed on 9 November 2020).
- ToxPi: Toxicological Prioritization Index. 2020. Available online: https://toxpi.org/ (accessed on 9 November 2020).
- Marvel, S.W.; To, K.; Grimm, F.A.; Wright, F.A.; Rusyn, I.; Reif, D.M. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models. BMC Bioinform. 2018, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gangwal, S.; Reif, D.; Mosher, S.; Egeghy, P.P.; Wambaugh, J.F.; Judson, R.S.; Hubal, E.A.C. Incorporating exposure information into the toxicological prioritization index decision support framework. Sci. Total Environ. 2012, 435–436, 316–325. [Google Scholar] [CrossRef]
- Sipes, N.S.; Martin, M.T.; Reif, D.M.; Kleinstreuer, N.C.; Judson, R.S.; Singh, A.V.; Chandler, K.J.; Dix, D.J.; Kavlock, R.J.; Knudsen, T.B. Predictive Models of Prenatal Developmental Toxicity from ToxCast High-Throughput Screening Data. Toxicol. Sci. 2011, 124, 109–127. [Google Scholar] [CrossRef]
- Smith, M.N.; Hubal, E.A.C.; Faustman, E.M. A Case study on the utility of predictive toxicology tools in alternatives assessments for hazardous chemicals in children’s consumer products. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 160–170. [Google Scholar] [CrossRef]
- Kids Count Data Center: North Carolina Indicators. Available online: https://datacenter.kidscount.org/data#NC/2/0/char/0 (accessed on 28 October 2020).
- EPA, U.S. TRI Data and Tools. 2020. Available online: https://www.epa.gov/toxics-release-inventory-tri-program/tri-data-and-tools (accessed on 12 November 2019).
- EPA, U.S. Superfund: National Priorities List (NPL). 2020. Available online: https://www.epa.gov/superfund/superfund-national-priorities-list-npl (accessed on 12 November 2019).
- Explorer, S. Social Explorer Maps: All United States Data. 2020. Available online: https://www.socialexplorer.com/explore-maps (accessed on 10 September 2020).
- ElSawah, S.; Filatova, T.; Jakeman, A.J.; Kettner, A.J.; Zellner, M.L.; Athanasiadis, I.N.; Hamilton, S.H.; Axtell, R.L.; Brown, D.G.; Gilligan, J.M.; et al. Eight grand challenges in socio-environmental systems modeling. Socio Environ. Syst. Model. 2020, 2, 16226. [Google Scholar] [CrossRef]
- Sterman, J.D. System Dynamics Modeling: Tools for Learning in a Complex World. Calif. Manag. Rev. 2001, 43, 8–25. [Google Scholar] [CrossRef]
- Sterman, J.D. Sustaining Sustainability: Creating a Systems Science in a Fragmented Academy and Polarized World: Sustainability Science: The Emerging Paradigm and the Urban Environment; Springer Science and Business Media LLC: New York, NY, USA, 2012; pp. 21–58. [Google Scholar]
- Krueger, T.; Page, T.; Hubacek, K.; Smith, L.; Hiscock, K. The role of expert opinion in environmental modelling. Environ. Model. Softw. 2012, 36, 4–18. [Google Scholar] [CrossRef]
Resource | Description |
---|---|
Report on the Environment (ROE), US EPA [58] | The ROE shows how the condition of the US environment and human health is changing over time. The purpose of the 80+ ROE indicators is to help answer 23 questions critical to US EPA’s mission of protecting the environment and human health. |
America’s Children and the Environment (ACE), US EPA, 3rd edition [59] | The ACE reports data on children’s environmental health. ACE brings together information from a variety of sources to provide national indicators in the following areas: Environments and Contaminants, Biomonitoring, and Health. |
EPA CompTox Chemicals Dashboard [60] | A web-based resource for identifying available information on chemicals. It provides access to thousands of chemicals and associated experimental and predicted properties, high-throughput bioactivity data, links to existing Adverse Outcome Pathways (AOPs), and product and functional use data for thousands of chemicals. |
CTD (Comparative Toxicogenomics Database) [61] | The CTD is a robust, publicly available database that provides manually curated information about chemical–gene/protein interactions and chemical–disease and gene–disease relationships. These data are integrated with functional and pathway data. The goal is to advance understanding of how environmental exposures impact human health. |
EnviroAtlas [62] | EnviroAtlas is a web-based tool that provides geospatial data, integrated indicators, and other resources related to ecosystem services, chemical and nonchemical stressors impacting the environment, and human health. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen Hubal, E.A.; Reif, D.M.; Slover, R.; Mullikin, A.; Little, J.C. Children’s Environmental Health: A Systems Approach for Anticipating Impacts from Chemicals. Int. J. Environ. Res. Public Health 2020, 17, 8337. https://doi.org/10.3390/ijerph17228337
Cohen Hubal EA, Reif DM, Slover R, Mullikin A, Little JC. Children’s Environmental Health: A Systems Approach for Anticipating Impacts from Chemicals. International Journal of Environmental Research and Public Health. 2020; 17(22):8337. https://doi.org/10.3390/ijerph17228337
Chicago/Turabian StyleCohen Hubal, Elaine A., David M. Reif, Rachel Slover, Ashley Mullikin, and John C. Little. 2020. "Children’s Environmental Health: A Systems Approach for Anticipating Impacts from Chemicals" International Journal of Environmental Research and Public Health 17, no. 22: 8337. https://doi.org/10.3390/ijerph17228337
APA StyleCohen Hubal, E. A., Reif, D. M., Slover, R., Mullikin, A., & Little, J. C. (2020). Children’s Environmental Health: A Systems Approach for Anticipating Impacts from Chemicals. International Journal of Environmental Research and Public Health, 17(22), 8337. https://doi.org/10.3390/ijerph17228337