A Review on Environmental and Social Impacts of Thermal Gradient and Tidal Currents Energy Conversion and Application to the Case of Chiapas, Mexico
Abstract
:1. Introduction
2. Methods
3. Impact Assessment
3.1. Environmental Aspects
3.2. Socioeconomic Aspects
4. Impacts of Specific Oceanic Energy Technologies
4.1. Thermal Gradient (OTEC)
4.2. Tidal Currents
4.3. Strengths and Weaknesses of Published Literature
5. Case Study: OTEC Plant off the Coast of Chiapas, Mexico
Potential Impacts of an OTEC Plant on the Chiapas Coast
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borthwick, G. Marine renewable energy seascape. Engineering 2016, 2, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Uihlein, A.; Magagna, D. Wave and tidal current energy—A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Ahmed, S.M.; Munir, M.A.; Hussain, S.M.; Randhawa, J. Ocean Energy: The Future of Renewable Energy Generation. 2015. Available online: https://www.researchgate.net/publication/280937085_Ocean_Energy_The_Future_of_Renewable_Energy (accessed on 15 November 2017).
- INEEL (Instituto Nacional de Electricidad y Energias Limpias). Available online: https://www.ineel.mx/cemie-oceano.html (accessed on 15 November 2017).
- SENER (Secretaria de Energia). Available online: https://base.energia.gob.mx/Prospectivas18-32/PER_18_32_F.pdf (accessed on 10 July 2020).
- DOF (Diario Oficial de la Federacion). 2020. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5585823&fecha=07/02/2020 (accessed on 19 october 2020).
- DOF (Diario Oficial de la Federacion). Available online: http://www.diputados.gob.mx/LeyesBiblio/pdf/LGCC_130718.pdf (accessed on 10 July 2020).
- SENER (Secretaria de Energia). Available online: https://www.gob.mx/cms/uploads/attachment/file/62949/Prospectiva_del_Sector_El_ctrico_2013-2027.pdf (accessed on 10 July 2020).
- DOF (Diario Oficial de la Federacion). Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5565599&fecha=12/07/2019 (accessed on 10 July 2020).
- Greaves, D.; Pérez, C.; Magagna, D.; Conley, D.; Bailey, I.; Simas, T.; Holmes, B.; O’Hagan, A.M.; O’Callaghan, J.; Torre-Encino, Y.; et al. SOWFIA Enabling Wave Power: Streamlining Processes for Progress; Plymouth Universit: Plymouth, UK, 2013. [Google Scholar]
- CONEVAL (Consejo Nacional de Evaluacion de la Politica de Desarrollo Social). Available online: https://www.coneval.org.mx/Medicion/IRS/Paginas/Índice-de-Rezago-social-2010.aspx (accessed on 12 October 2020).
- SENER (Secretaria de Energia). Available online: https://datos.gob.mx/busca/dataset/regiones-sin-electricidad (accessed on 12 October 2020).
- García, A.; Rodríguez, Y.; Garduño, P.; Hernández, E. General Criteria for Optimal Site Selection for the Installation of Ocean Thermal Energy Conversion (OTEC) Plants in the Mexican Pacific. In Ocean Therm Energy Conversion—Past, Present Progress; Kim, A.S., Kim, H.J., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Hernández-Fontes, J.V.; Felix, A.; Mendoza, E.; Rodríguez, Y.; Silva, R. On the marine energy resources of Mexico. J. Mar. Sci. Eng. 2019, 7, 191. [Google Scholar] [CrossRef] [Green Version]
- Scottish Natural Heritage. Assessing Collision Risk between Underwater Turbines and Marine Wildlife. 2016. Available online: https://www.nature.scot/sites/default/files/2017-09/Guidance%20Note%20-%20Assessing%20collision%20risk%20between%20underwater%20turbines%20and%20marine%20wildlife.pdf (accessed on 15 November 2017).
- Collins, N. Assessment of Potential Ecosystem Effects from Electromagnetic Fields (EMF) Associated with Subsea Power Cables and TISEC Devices in Minas Channel; Fundy Ocean Resources Center for Energy: Halifax, NS, Canada, 2012. [Google Scholar]
- Garduño, E.P.; García, A.; Rodríguez, Y.; Bárcenas, J.F.; Alatorre, M.A.; Cerezo, E.; Guadalupe, J.; Romero, V.M.; Silva, R. Conversión de Energía Térmica Oceánica (OTEC), Estado del Arte; CEMIE-O, Universidad Autonoma de Campeche: Mexico City, Mexico, 2017; p. 136. [Google Scholar]
- Davis, A. Potential Impacts of Ocean Energy Development on Marine Mammals in Oregon; Oregon State University: Corvallis, OR, USA, 2012. [Google Scholar]
- Kreting, L.; Elsaesser, B.; Kennedy, R.; Smyth, D.; O’Carroll, J.; Savidge, G. Do changes in current flow as a result of arrays of tidal turbines have an effect on benthic communities? PLoS ONE 2016, 11, e0161279. [Google Scholar]
- Comfort, C.M.; Vega, L. Environmental Assessment for Ocean Thermal Energy Conversion in Hawaii: Available Data and a Protocol for Baseline Monitoring; IEEE: Waikoloa, HI, USA, 2011; pp. 1–8. [Google Scholar]
- Knight, C.; McGarry, S.; Hayward, J.; Osman, P.; Behrens, S. A review of ocean energy converters, with an Australian focus. AIMS Energy 2014, 2, 295–320. [Google Scholar] [CrossRef] [Green Version]
- Haverson, D.; Bacon, J.; Smith, H.C.M.; Venugopal, V.X.Q. Modelling the hydrodynamic and morphological impacts of tidal stream development in Ramsey sound. Renew. Energy 2018, 126, 876–887. [Google Scholar] [CrossRef]
- Witt, M.J.; Sheehan, E.V.; Bearhop, S.; Broderick, A.C.; Conley, D.C.; Cotterell, S.P.; Crow, E.; Grecian, W.J.; Halsband, C.; Hodgson, D.J.; et al. Assessing wave energy effects on biodiversity the Wave Hub experience. Philos. Trans. R. Soc. 2012, 370, 502–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilde, P.; Sandusky, J.; Jassby, A. Assessment and Control of OTEC Ecological Impacts; U.S. Department of Energy: Washington, DC, USA, 1978.
- Dolman, S.J.; Green, M.; Simmonds, M.P. Marine Renewable Energy and Cetaceans; Whale and Dolphin Conservation Society: Chippenham, UK, 2006. [Google Scholar]
- Bender, A.; Francisco, F.G.A.; Sundberg, J. A review of methods and models for environmental monitoring of marine renewable energy. In Proceedings of the European Wave and Tidal Energy Conference, Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Jia, Y.; Nihous, G.C.; Rajagopalan, K. An evaluation of the large-scale implementation of Ocean Thermal Energy Conversion (OTEC) Using an Ocean General Circulation model with low-complexity atmospheric feedback effects. J. Mar. Sci. Eng. 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Nihous, G. A preliminary investigation of the effect of Ocean Thermal Energy Conversion (OTEC) effluent discharge options on global OTEC resources. J. Mar. Sci. Eng. 2018, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.; Joy, R.; Sparling, C. Harbor Seal—Tidal Turbine Collision Risk Models: An Assessment of Sensitivities; SMRU Consulting: Washington, DC, USA, 2016. [Google Scholar]
- Wilson, B.; Batty, R.S.; Daunt, F.; Carter, C. Collision Risks between Marine Renewable Energy Devices and Mammals, Fish and Diving Birds; Centre for Ecology & Hydrology: Oban, UK, 2007.
- Copping, A.; Sather, N.; Hanna, L.; Whitting, J.; Zydleswki, G.; Stainesm, G.; Gill, A.; Hutchinson, I.; O’Hagan, A.; Simas, T.; et al. Annex IV 2016 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World; OES: Richland, WA, USA, 2018.
- Bonar, P.A.J.; Bryden, I.G.; Borthwick, A.G.L. Social and ecological impacts of marine energy development. Renew. Sustain. Energy Rev. 2015, 47, 486–495. [Google Scholar] [CrossRef]
- Kadiri, M.; Ahmadian, R.; Bockelmann-Evans, B.; Rauen, W.; Falconer, R. A review of the potential water quality of tidal renewable energy systems. Renew. Sustain. Energy Rev. 2012, 16, 329–341. [Google Scholar] [CrossRef]
- El-Gezinry, T.M.; Bryden, I.G.; Couch, J.S. Environmental impact assessment for tidal energy schemes: An exemplar case study of the Strait of Messina. J. Mar. Eng. Technol. 2009, 8, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Polagye, B.; Copping, A.; Suryan, R.; Kramer, S.; Brown-Saracino, J.; Smith, C. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report; U.S. Deparment of Energy: Seattle, WA, USA, 2014.
- Cilenti, L.; Dario, R.; Dentamaro, G.; Di Lecce, V.; Guaragnella, C.; Cardellichio, A.; Mancinelli, G.; Petruzzelli, D.; Quarto, A.; Soldo, D.; et al. Seawater distributed monitoring system: A proposal for architecture and data format. In Proceedings of the IEEE International Conference on Environmental Engineering, Milan, Italy, 12–14 March 2018. [Google Scholar]
- Laidig, T.E.; Krigsman, L.M.; Yoklavich, M.M. Reactions of fishes to two underwater survey tools, a manned submersibles and remotely operated vehicle. Fish Bull 2013, 111, 4–67. [Google Scholar] [CrossRef] [Green Version]
- Küsel, E.T.; Mellinger, D.K.; Thomas, L.; Marques, T.A.; Moretti, D.; Ward, J. Cetacean population density estimation from fixed sensors using passive acoustics. J. Acoust. Soc. Am. 2011, 129, 3610–3622. [Google Scholar] [CrossRef]
- Consoli, P.; Esposito, V.; Battaglia, P.; Altobelli, C.; Perzia, P.; Romeo, T.; Canese, S.; Andoloro, F. Fish distribution and habitat complexity on Banks of the strait of Sicily (central Mediterranean Sea) from remotely operated vehicle (ROV) explorations. PLoS ONE 2016, 11, e0167809. [Google Scholar] [CrossRef] [Green Version]
- Culloch, R.; Bennet, F.; Bald, J.; Menchaca, I.; Jessop, M.; Simas, T. Report on Potential Emerging Innovative Monitoring Approaches, Identifying Potential Reductions in Monitoring Costs and Evaluations of Existing Long-Term Datasets; RiCORE Project: Aberdeen, Scotland, 2015.
- Bald, J.; Curtin, R.; Díaz, E.; Fontán, A.; Franco, J.; Garmendia, J.M.; González, M.; Liriondo, A.; Liria, P.; Menchaca, I.; et al. Guía Para la Elaboración de Estudios de Impacto Ambiental de Proyectos de Energías Renovables Marinas, Informe Técnico Realizado en el Marco del Proyecto Nacional; Azti Tecnalia: Acciona España, España, 2013. [Google Scholar]
- Sheehan, E.V.; Gall, S.C.; Cousens, S.L.; Atrill, M. Epibenthic assessment of renewable tidal energy site. Sci. World J. 2013, 8. [Google Scholar] [CrossRef]
- Isasi-Catalán, E. Los conceptos de especies indicadoras, paraguas, bandera y claves: Su uso y abuso en la ecología de la conservación. Interciencia 2011, 36, 31–38. [Google Scholar]
- Thompson, P.M.; Brookes, K.L.; Cordes, L. Integrating passive acoustic and visual data to model spatial patterns of occurrence in coastal dolphins. J. Mar. Sci. 2015, 72, 651–660. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, S. Techniques for Marine Biological Baseline Data Collection at Offshore Renewable Energy Developments and How Best Applty These to Guernsey Waters. Master’s Thesis, Plymouth University, Plymouth, UK, 2013. [Google Scholar]
- Shumchenia, E.J.; Smith, S.L.; McCann, J.; Carnevale, M.; Fugate, G.; Kenney, R.D.; King, J.W.; Paton, P.; Schwartz, M.; Spaulding, M.; et al. An adaptive framework for selecting environmental monitoring protocols to support ocean renewable energy development. Sci. World J. 2012, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kerr, S.; Watts, L.; Colton, J.; Conway, F.; Hull, A.; Johnson, K.; Jude, S.; Kannen, A.; MacDougall, S.; McLachlan, C.; et al. Establishing an agenda for social studies research in marine renewable energy. Energy Policy 2014, 67, 694–702. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, A.; Polis, H.J.; Jenkins, L.D. Changing tides: Acceptability, support, and perceptions of tidal energy in the United States. Energy Res. Soc. Sci. 2017, 29, 72–83. [Google Scholar] [CrossRef]
- Hammar, L. Will ocean energy harm marine ecosystem? In System Perspectives on Renewable Power; Sandén, B., Ed.; Chalmers University of Technology: Gothenburg, Sweden, 2014; p. 84. [Google Scholar]
- Kaldellis, J.J.; Apostolou, D.; Kapsali, M.; Kondoli, E. Environmental and social footprint of offshore wind energy. Renew. Energy 2016, 92, 543–556. [Google Scholar] [CrossRef]
- Gibbson, S. Gone with the wind: Valuing the visual impacts of wind turbines through houses prices. J. Environ. Econ. Manag. 2015, 72, 177–196. [Google Scholar]
- Mendoza, E.; Lithgow, D.; Flores, P.; Felix, A.; Simas, T.; Silva, R. A framework to evaluate the environmental impact of ocean energy devices. Renew. Sustain. Energy Rev. 2019, 112, 440–449. [Google Scholar] [CrossRef]
- Paredes, M.G.; Padilla-Rivera, A.; Güereca, L.P. Life cycle assessment of ocean energy technologies: A systematic review. J. Mar. Sci. Eng. 2019, 7, 322. [Google Scholar] [CrossRef] [Green Version]
- Soukissian, T.H.; Denaxa, D.; Karathanasi, F.; Prospathopoulos, A.; Sarantakos, K.; Iona, A.; Georgantas, K.; Mavrakos, P. Marine Renewable Energy in the Mediterranean Sea: Status and perspectives. Energies 2017, 10, 1512. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, J.; Magdol, Z.; Kinner, N. Ocean Thermal Energy Conversion: Assessing Potential Physical, Chemical and Biological Impacts and Risk; University of New Hampshire-NOAA: Durham, UK, 2010. [Google Scholar]
- Giraud, M.; Garcon, V.; de la Broise, D.; L’Helguen, S.; Sudre, J.; Boye, M. Potential effects of deep seawater discharge by an ocean thermal energy conversion plant on the marine microorganisms in oligotrophic waters. Sci. Total Environ. 2018, 639, 1–33. [Google Scholar]
- Khosravi, A.; Syri, A.; Assad, M.E.H.; Malekan, M. Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system. Energy 2019, 172, 304–319. [Google Scholar] [CrossRef]
- Devault, D.A.; Péné-Annette, D. Analysis of the environmental issues concerning the deployment of an OTEC power plant in Martinique. Environ. Sci. Pollut. Restor. 2017, 24, 25582–25601. [Google Scholar] [CrossRef]
- Ganic, E.N.; Wu, J. On the selection of working fluids for OTEC power plants. Energy Convers. Manag. 1980, 20, 9–22. [Google Scholar] [CrossRef]
- Golmen, L.G.; Yu, J.C.S. OTEC in the TROPOS multipurpose platform concept. In OTEC Matters; Dessne, P., Golmen, L., Eds.; University of Boras: Borås, Sweden, 2015; pp. 50–58. [Google Scholar]
- Frid, C.; Andonegi, E.; Depestele, J.; Judd, A.; Rihan, D.; Rogers, S.I.; Kenchington, E. The environmental interactions of tidal and wave energy generation devices. Environ. Impact Assess Rev. 2012, 32, 133–139. [Google Scholar] [CrossRef]
- European Comission. Available online: http://publications.europa.eu/resource/cellar/3a4f6411-6777-11e7-b2f2-01aa75ed71a1.0001.01/DOC_1 (accessed on 12 March 2017).
- Hooper, T.; Austen, M. Tidal barrages in the UK: Ecological and social impacts, potential mitigation and tools to support barrage planning. Renew. Sustain. Energy Rev. 2013, 23, 289–298. [Google Scholar] [CrossRef]
- Halvorsen, M.B.; Carlson, T.J.; Copping, A.E. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise—Fiscal Year 2011—Progress Report—Nvironmental Effects of Marine and Hydrokinetic Energy; U.S. Deparment of Energy: Richland, WA, USA, 2011.
- Firth, L.B.; Thompson, R.C.; White, F.J.; Schofield, M.; Skov, M.W.; Hoggart, S.P.G.; Jackson, J.; Knights, A.M.; Hawkins, S. The importance of water-retaining features for biodiversity on artificial intertidal coastal defence structures. Divers. Distrib. 2013, 19, 1275–1283. [Google Scholar] [CrossRef] [Green Version]
- Fisher, C.; Slater, M. Effects of Electromagnetic Fields on Marine Species: A Literature Review; Oregon Wave Energy Trust: Oregon, OR, USA, 2010.
- Gill, A.B.; Gloyne-Philips, I.; Kimber, J.; Sigray, P. Marine renewable energy, electromagnetic (EM) fields and EM-sensitive animals. In Marine Renewable Energy Technology and Environmental Interactions; Shields, A.M., Payne, A.I.L., Eds.; Springer: Dordrecht, UK, 2014; pp. 61–79. [Google Scholar]
- LaFrance, M.; English, P.; King, J.; Khan, A. Benthic Monitoring during Wind Turbine Installation and Operation at the Block Island Wind Farm, Rhode Island; BOEM: Englewood, CO, USA, 2018.
- Finney, K. Ocean thermal energy conversion. Guelph. Eng. J. 2008, 1, 17–23. [Google Scholar]
- Onoufriou, J.; Brownlow, A.; Moss, S.; Hastie, G.; Thompson, D. Empirical determination of severe trauma in seals from collisions with tidal turbine blades. J. Appl. Ecol. 2019, 56, 1712–1724. [Google Scholar] [CrossRef]
- Williamson, B.J.; Blondel, P.; Armstrong, E.; Bell, P.S.; Hall, C.; Waggitt, J.J.; Scott, B.E. A Self-Contained Subsea Platform for Acoustic Monitoring of the Environment around Marine Renewable Energy Devices-Field Deployments at Wave and Tidal Energy Sites in Orkney, Scotland. J. Ocean Eng. 2016, 41, 67–81. [Google Scholar]
- Baker, A.L.; Craighead, R.M.; Jarvis, E.J.; Stenton, H.C.; Angeloudis, A.; Mackie, L.; Avdis, A.; Piggot, M.; Hill, J. Modelling the impact of tidal range energy on species communities. Ocean Coast Manag. 2020, 193, 105221. [Google Scholar] [CrossRef]
- Scherelis, C.; Penesis, I.; Hemer, M.A.; Cossu, R.; Wright, J.T.; Guihen, D. Investigating biophysical linkages at tidal energy candidate sites; A case study for combining environmental assessment and resource characterisation. Renew. Energy 2020, 159, 399–413. [Google Scholar] [CrossRef]
- Taormina, B.; Bald, J.; Want, A.; Thouzeau, G.; Lejart, M.; Desroy, N.; Carlier, A. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renew. Sustain. Energy Rev. 2018, 96, 380–391. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Yuan, Y.; Zhai, Q. Life cycle assessment on wave and tidal energy systems: A review of current methodological practice. Int. J. Environ. Res. Public Health 2020, 17, 1604. [Google Scholar] [CrossRef] [Green Version]
- Alcérreca-Huerta, J.C.; Encarnacion, J.I.; Ordoñez-Sánchez, S.; Callejas-Jiménez, M.; Barroso, G.G.D.; Allmark, M. Energy yield assessment from ocean currents in the insular shelf of Cozumel Island. J. Mar. Sci. Eng. 2019, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Cueto, Y.; Silva, R.; Mendoza, E.; Vega, L.A. Determination of the potential thermal gradient for the Mexican Pacific Ocean. J. Mar. Sci. Eng. 2018, 6, 20. [Google Scholar]
- Ocampo-Torres, F.J. Wave Power Resources assessment in Northeast Mexico. In Proceedings of the Pan American Marine Energy Conference, San Jose, Costa Rica, 24–29 January 2020. [Google Scholar]
- SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales). Política Nacional de Mares y Costas de México. Gestión Integral de las Regiones más Dinámicas del Territorio Nacional; Comisión Intersecretarial para el Manejo Sustentable de Mares y Costas (CIMARES): Mexico City, Mexico, 2011; p. 65.
- CONAFOR (Comision Nacional Forestal). Programa de Inversión de la Región Istmo-Costa en el Estado de Chiapas; CONAFOR: Chiapas, Mexico, 2016.
- HINMREC (Hawaii National Renewable Energy Center). Available online: http://hinmrec.hnei.hawaii.edu/hinmrecftp/AnnualTempDiff.html (accessed on 11 November 2017).
- SAGARPA (Secretaria de Agricultura y Desarrollo Rural). Available online: https://www.gob.mx/cms/uploads/attachment/file/325216/Temperatura_superficial_marina_del_Pac_fico_Mexicano10nov17_02_feb_18.pdf (accessed on 8 June 2017).
- García-Mendoza, E.; Quijano-Scheggia, S.; Olivos-Ortiz, A.; Núñez-Vázquez, E.J. Florecimientos Algales Nocivos en México; CICESE: Ensenada, México, 2016; p. 438. [Google Scholar]
- Camargo, J.A.; Alonso, A. Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos: Problemas medioambientales, criterios de calidad del agua, e implicaciones del cambio climático. Ecosistemas 2007, 16, 98–110. [Google Scholar]
- Gárate-Lizárraga, I.; Pérez-Cruz, B.; Díaz-Ortíz, J.A.; López-Silva, S.; González-Armas, R. Distribución del dinoflagelado Pyrodinium bahamense en la costa pacífica de México. Rev. Lat. Ambient Cienc. 2015, 6, 2666–2669. [Google Scholar]
- Ronsón, J. Análisis retrospectivos y posibles causas de las mareas rojas tóxicas en el litoral del sureste mexicano (Guerrero, Oaxaca, Chiapas). Cienc Mar. 1999, 3, 49–55. [Google Scholar]
- Band-Schmidt, C.J.; Bustillos-Guzmán, J.J.; López-Cortés, D.J.; Núñez-Vázquez, E.; Hernández-Sandoval, F. El estado actual del estudio de florecimientos algales nocivos en México. Hidrobiológica 2011, 21, 381–413. [Google Scholar]
- Cota, R.; Velázquez, N.; González, E.; Aguilar, A. Microrred aislada para una comunidad pesquera de Baja California, México: Caso de estudio. In Proceedings of the IV Congreso Iberoamericano Sobre Microrredes con Generación Distribuida de Renovables, Concepción, Chile, 25–28 October 2016; p. 8. [Google Scholar]
- Marrero, S. Estudio de Eficiencia Energética y Estabilidad de una Micro-red en La Restiga, isla de El Hierro. Master’s Thesis, Universidad de las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain, 2015. [Google Scholar]
- Hossain, E.; Kabalci, E.; Bayindir, R.; Perez, R. Microgrid testbeds around the word: State of art. Energy Conserv. Manag. 2014, 86, 132–153. [Google Scholar] [CrossRef]
- Flores, H.; Vergara, A. Efecto de reducir la frecuencia de la alimentación en la supervivencia, crecimiento, conversión y conducta alimenticia en juveniles de salmón del Atlántico Salmo salar (Linnaeus, 1758): Experiencia a nivel productivo. Lat. Am. J. Aquat. Res. 2012, 40, 536–544. [Google Scholar] [CrossRef]
- Masutani, S.M.; Takahashi, P.K. Ocean Thermal Energy Conversion (OTEC). In Encyclopedia of Electrical and Electronics Engineering, 2nd ed.; Steele, J., Turekian, K.K., Thorpe, S.A., Eds.; Elsevier ltd: Oxford, UK, 2001; pp. 167–173. [Google Scholar]
- ONU. Índices Básicos de las Ciudades Prosperas, Medición, Nivel Básico; Pijijiapan, ONU HABITAT: Chiapas, Mexico, 2018; p. 130. [Google Scholar]
- SAGARPA (Secretaria de Agricultura y Desarrollo Rural). Manifestación de Impacto Ambiental, Modalidad Particular para el Proyecto; Obras de Dragado y Escolleras de Barra de Santiago Iolomita Municipio de Pijijiapan: Chiapas, Mexico, 2010; p. 8.
Factors | Technology | |||
---|---|---|---|---|
Abiotic | Method | TC | OTEC | Period |
Hydrodynamic | 1D and 2D models, buoys, acoustic doppler velocimeter | x | 1 year | |
EMF | Magnetometers, transects, gradiometer, calculation of the load Biot-Savart law | x | x | 1–3 years |
Noise | Hydrophones and sound velocity profiles | x | x | 1 year |
Discharge plume | Discharge plume model, ROMS (regional ocean models) | x | 1 year | |
Pollutant concentration | Continuous stirred tank reactor | x | x | 1 year |
Biotic | ||||
Abundance of marine species | Record of sightings, filming, remotely operated underwater vehicle, LIDAR, dives | x | x | 3 years * |
Species interaction with infrastructure | Geometric area model of risk rates and species interaction, predator–prey encounter model, multibeam sonar, exposure time, population model | x | x | 1 year |
Cetaceans | Echolocation C and T-POD, sightings records, radar | x | x | 3 years |
Collision risk | Acoustic and optical equipment complemented by sighting records | x | 3 years ** | |
Collision risk seabirds | Sightings records, visual recognition, radar, tracking devices | x | 3 years ** | |
Collision risk fish | Ecological risk model at population level, encounter risk model, radar | x | 3 years ** |
Abiotic | Biotic | ||
---|---|---|---|
Parameter | Method | Parameter | Method |
Temperature | Multiparameter, NOAA data or use of MLD (mixed layer depth), CTD | Abundance of species | Diversity and species richness |
Salinity | Multiparameter, MLD, refractometer, CTD | NOM-059-SEMARNAT-2010 | Geographic Information System (GIS) |
Dissolved oxygen | Multiparameter, Winkler’s method, CTD | Mangrove monitoring | Centered quadrant method |
Nutrient | NO2− Bendschneider method, NO3− Stickland and Parsons method, NH4+ Koroleff method, orthophosphates method described by Murphy and Riley and total phosphorus Menzel and Corwin 13C/15N isotope technique | Chelonium distribution | Distribution data, quantification of nests and nesting females, and collection of morphological data |
Chlorophyll | Spectrophotometry, satellite images | Vegetation analysis | 1. NDVI (Normalized Vegetation Index) 2. SAVI (Soil Adjusted Vegetation Index) |
Turbidity | Secchi disk or turbidimeter | Benthic fauna | Ekman dredge, nucleator, dives sampling |
Suspended organic matter | Titration procedure | Primary production | Light/dark bottles, 14 C and satellite images |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, G.; Felix, A.; Mendoza, E. A Review on Environmental and Social Impacts of Thermal Gradient and Tidal Currents Energy Conversion and Application to the Case of Chiapas, Mexico. Int. J. Environ. Res. Public Health 2020, 17, 7791. https://doi.org/10.3390/ijerph17217791
Rivera G, Felix A, Mendoza E. A Review on Environmental and Social Impacts of Thermal Gradient and Tidal Currents Energy Conversion and Application to the Case of Chiapas, Mexico. International Journal of Environmental Research and Public Health. 2020; 17(21):7791. https://doi.org/10.3390/ijerph17217791
Chicago/Turabian StyleRivera, Graciela, Angélica Felix, and Edgar Mendoza. 2020. "A Review on Environmental and Social Impacts of Thermal Gradient and Tidal Currents Energy Conversion and Application to the Case of Chiapas, Mexico" International Journal of Environmental Research and Public Health 17, no. 21: 7791. https://doi.org/10.3390/ijerph17217791