An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture
Abstract
:1. Introduction
2. Methodology
2.1. Bibliometric Analysis
2.2. Data Processing
3. Results
3.1. The Evolution over Time of the Principal Variables Analysed
3.2. Evolution of Research in GT by Subject Area
3.3. Most Relevant Journals in Research on GT
3.4. Most Relevant Countries in terms of Research in GT
3.5. Most Relevant Institutions in the Research in GT
3.6. Most Relevant Authors in GT Research
3.7. Principal Topics in GT Research
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Balzer, C. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.K.; Desiere, S.; D’Haese, M.; Kumar, L. Impact of climate-smart agriculture adoption on the food security of coastal farmers in Bangladesh. Food Sec. 2018, 10, 1073. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.V.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable water use in agriculture: A review of worldwide research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef] [Green Version]
- Hedley, C.B.; Knox, J.W.; Raine, S.R.; Smith, R. Water: Advanced irrigation technologies. In Encyclopedia of Agriculture and Food Systems, 2nd ed.; Elsevier (Academic Press): San Diego, CA. USA, 2014; pp. 378–406. ISBN 978-0-444-52512-3. [Google Scholar]
- Fiaz, S.; Noor, M.A.; Aldosri, F.A. Achieving food security in the Kingdom of Saudi Arabia through innovation: Potential role of agricultural extensión. J. Saudi Soc. Agric. Sci. 2018, 17, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Ma, B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 2015, 512, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. High Level Expert Forum—How to Feed the World in 2050; Office of the Director, Agricultural Development Economics Division: Rome, Italy, 2009. [Google Scholar]
- Alexander, P.; Rounsevell, M.D.A.; Dislich, C.; Dodson, J.R.; Engström, K.; Moran, D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. Hum. Policy Dimens. 2015, 35, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in water use efficiency in agriculture: A bibliometric analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Piquer-Rodríguez, M.; Velasco-Muñoz, J.F.; Manzano-Agugliaro, F. Worldwide research trends on sustainable land use in agriculture. Land Use Pol. 2019, 87, 104069. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Brundtland, G.; Khalid, M.; Agnelli, S.; Al-Athel, S.; Chidzero, B.; Fadika, L.; Hauff, V.; Lang, I.; Shijun, M.; Okita, S.; et al. Our Common Future (’Brundtland Report’); Oxford University Press: Oxford, UK, 1987; p. 383. ISBN 019282080X. [Google Scholar]
- Meadowcroft, J. Who is in charge here? Governance for sustainable development in a complex world. J. Environ. Policy Plan. 2007, 9, 299–314. [Google Scholar] [CrossRef]
- The Rio Declaration on Environment and Development. Available online: http://www.unesco.org/education/pdf/RIO_E.PDF (accessed on 15 July 2019).
- Kyoto Protocol—Targets for the First Commitment Period. Available online: https://unfccc.int/process/the-kyoto-protocol (accessed on 15 July 2019).
- The Millennium Development Goals Report 2015. Available online: http://www.undp.org/content/dam/undp/library/MDG/english/UNDP_MDG_Report_2015.pdf (accessed on 15 July 2019).
- Komiyama, H.; Takeuchi, K. Sustainability science: Building a new discipline. Sustain. Sci. 2006, 1, 1–6. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles de la Fuente, A.; Fidelibus, M.D. Sustainable Irrigation in Agriculture: An Analysis of Global Research. Water 2019, 11, 1758. [Google Scholar] [CrossRef] [Green Version]
- Yarime, M.; Takeda, Y.; Kajikawa, Y. Towards institutional analysis of sustainability science: A quantitative examination of the patterns of research collaboration. Sustain. Sci. 2010, 5, 115–125. [Google Scholar] [CrossRef]
- Juwana, I.; Muttil, N.; Perera, B.J.C. Indicator-based water sustainability assessment—A review. Sci. Total Environ. 2012, 438, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Becker, B. Sustainability Assessment: A Review of Values, Concepts and Methodological Approaches; Issues in Agriculture 10; World Bank-Consultative Group on International Agriculture Research (CGIAR): Washington, DC, USA, 1997. [Google Scholar]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water scarcity and future challenges for food production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Ward, F.A.; Michelsen, A. The economic value of water in agriculture: Concepts and policy applications. Water Policy 2002, 4, 423–446. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sharp, R.P.; Mandle, L.; Sim, S.; Johnson, J.; Butnar, I.; Milà i Canals, L.; Eichelberger, B.A.; Ramler, I.; Mueller, C.; et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl. Acad. Sci. USA 2015, 112, 7402–7407. [Google Scholar] [CrossRef] [Green Version]
- Grau, R.; Kuemmerle, T.; Macchi, L. Beyond ‘land sparing versus land sharing’: Environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr. Opin. Environ. Sustain. 2013, 5, 477–483. [Google Scholar] [CrossRef]
- Pretty, J.N.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agr. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
- Pretty, J. The sustainable intensification of agriculture. Res: Eng. Tech. Sust. World. 2019, 26, 17–18. [Google Scholar]
- Firbank, L.G.; Elliott, J.; Field, R.H.; Lynch, J.M.; Peach, W.J.; Ramsden, S.; Turner, C. Assessing the performance of commercial farms in England and Wales: Lessons for supporting the sustainable intensification of agriculture. Food Energy Secur. 2018, 7, e00150. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. FAO; ESA Working Paper 12-03; United Nations Food and Agriculture Organization: Rome, Italy, 2012. [Google Scholar]
- Du Pisani, J.A. Sustainable development—historical roots of the concept. J. Environ. Sci. 2006, 3, 83–96. [Google Scholar] [CrossRef]
- Fernández, J.A.; Orsini, F.; Baeza, E.; Oztekin, G.B.; Muñoz, P.; Contreras, J.; Montero, J.I. Current trends in protected cultivation in Mediterranean climates. Eur. J. Hortic. Sci. 2018, 83, 294–305. [Google Scholar] [CrossRef]
- Magwaza, S.T.; Magwaza, L.S.; Odindo, A.O.; Mditshwa, A. Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Sci. Total Environ. 2020, 698, 134154. [Google Scholar] [CrossRef]
- Kirkhorn, S.; Schenker, M.B. Human Health Effects of Agriculture: Physical Diseases and Illnesses; National Agriculture Safety Database (NASD): Washington, DC, USA, 2001; p. 18. [Google Scholar]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.J.; López-Rodríguez, M.D.; Giagnocavo, C.; Gimenez, M.; Céspedes, L.; La Calle, A.; Gallardo, M.; Pumares, P.; Cabello, J.; Rodríguez, E.; et al. Six Collective Challenges for Sustainability of Almería Greenhouse Horticulture. Int. J. Environ. Res. Public Health 2019, 16, 4097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, S.A.; Attwood, S.J.; Bawa, K.S.; Benton, T.G.; Broadhurst, L.M.; Didham, R.K.; McIntyre, S.; Perfecto, I.; Samways, M.J.; Tscharntke, T.; et al. To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agric. Ecosyst. Environ. 2013, 173, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Foucher, A.; Salvador-Blanes, S.; Evrard, O.; Simonneau, A.; Chapron, E.; Courp, T.; Cerdan, O.; Lefèvre, I.; Adriaensen, H.; Lecompte, F.; et al. Increase in soil erosion after agricultural intensification: Evidence from a lowland basin in France. Anthropocene 2014, 7, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting future food demand with current agricultural resources. Glob. Environ. Chang. 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Baguma, D.; Loiskandl, W. Rainwater harvesting technologies and practises in rural Uganda: A case study. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 355–369. [Google Scholar] [CrossRef]
- Hunter, M.R.; Gillespie, B.W.; Chen, S.Y. Urban nature experiences reduce stress in the context of daily life based on salivary biomarkers. Front. Psychol. 2019, 10, 722. [Google Scholar] [CrossRef]
- Urama, K.C.; Ozor, N. Impacts of climate change on water resources in Africa: The role of adaptation. Afr. Technol. Policy Stud. Netw. 2010, 29, 1–29. [Google Scholar] [CrossRef]
- Bafdal, N.; Dwiratna, S. Water Harvesting System as an Alternative Appropriate Technology to Supply Irrigation on Red Oval Cherry Tomato Production. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophys. 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Ghoulem, M.; El Moueddeb, K.; Nehdi, E.; Boukhanouf, R.; Kaiser Calautit, J. Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status. Biosyst. Eng. 2019, 183, 121–150. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The vertical farm: A review of developments and implications for the vertical city. Buildings 2018, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Chel, A.; Kaushik, G. Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 2011, 31, 91–118. [Google Scholar] [CrossRef]
- Dolgikh, P.P.; Parshukov, D.V.; Shaporova, Z.E. Technology for managing thermal energy flows in industrial greenhouses. IOP Conf. Ser. Mater. Sci. Eng. 2019, 537, 062041. [Google Scholar] [CrossRef]
- Sahdev, R.K.; Kumar, M.; Dhingra, A.K. A comprehensive review of greenhouse shapes and its applications. Front. Energy 2019, 13, 427–438. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Katsoulas, N.; Barros, L.; Ferreira, I.C.F.R. The effect of covering material on the yield, quality and chemical composition of greenhouse-grown tomato fruit. J. Sci. Food Agric. 2019, 99, 3057–3068. [Google Scholar] [CrossRef]
- Shekarchi, N.; Shahnia, F. A comprehensive review of solar-driven desalination technologies for off-grid greenhouses. Int. J. Energy Res. 2019, 43, 1357–1386. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles de la Fuente, A.; Fidelibus, M.D. Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.V.; Valera, D.L. Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 898. [Google Scholar] [CrossRef] [Green Version]
- Garfield, E.; Sher, I.H. New factors in the evaluation of scientific literature through citation indexing. Am. Doc. 1963, 14, 195–201. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Guo, Y.; Zhu, D.; Porter, A.L. Four dimensional science and technology planning: A new approach based on bibliometrics and technology roadmapping. Technol. Forecast. Soc. Chang. 2014, 81, 39–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Lu, J.; Zhang, G. Detecting and predicting the topic change of Knowledge-based Systems: A topic-based bibliometric analysis from 1991 to 2016. Knowl.-Based Syst. 2017, 133, 255–268. [Google Scholar] [CrossRef]
- Suominen, A.; Toivanen, H. Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification. J. Assoc. Inf. Sci. Tech. 2016, 67, 2464–2476. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.F. Forest ecosystem services: An analysis of worldwide research. Forests 2018, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Durieux, V.; Gevenois, P.A. Bibliometric indicators: Quality measurements of scientific publication. Radiology 2010, 255, 342. [Google Scholar] [CrossRef]
- Robinson, D.K.; Huang, L.; Guo, Y.; Porter, A.L. Forecasting Innovation Pathways (FIP) for new and emerging science and technologies. Technol. Forecast. Soc. Chang. 2013, 80, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- Malesios, C.; Arabatzis, G. An evaluation of forestry journals using bibliometric indices. Ann. For. Res. 2012, 55, 147–164. [Google Scholar]
- Cui, X. How can cities support sustainability: A bibliometric analysis of urban metabolism. Ecol. Ind. 2018, 93, 704–717. [Google Scholar] [CrossRef]
- Montoya, F.G.; Alcayde, A.; Baños, R.; Manzano-Agugliaro, F. A fast method for identifying worldwide scientific collaborations using the Scopus database. Telemat. Inform. 2018, 35, 168–185. [Google Scholar] [CrossRef]
- Dias, C.S.L.; Rodrigues, R.G.; Ferreira, J.J. What’s new in the research on agricultural entrepreneurship? J. Rural Stud. 2019, 65, 99–115. [Google Scholar] [CrossRef]
- Wenhua, J.; Jianming, C.; van Veenhuizen, M. Efficiency and economy of a new agricultural rainwater harvesting system. Chin. J. Popul. Resour. Environ. 2010, 8, 41–48. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; Migliorati, M.D.A.; Marinello, F. Extreme weather events in agriculture: A systematic review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef] [Green Version]
- Tomich, T.P.; Lidder, P.; Coley, M.; Gollin, D.; Meinzen-Dick, R.; Webb, P.; Carberry, P. Food and agricultural innovation pathways for prosperity. Agric. Syst. 2019, 172, 1–15. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; García-Gómez, J.J.; Velasco-Muñoz, J.F.; Carretero-Gómez, A. Mining Waste and Its Sustainable Management: Advances in Worldwide Research. Minerals 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Cossarini, D.M.; MacDonald, B.H.; Wells, P.G. Communicating marine environmental information to decision makers: Enablers and barriers to use of publications (grey literature) of the Gulf of Maine Council on the Marine Environment. Ocean. Coast. Manag. 2014, 96, 163–172. [Google Scholar] [CrossRef]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. Innovation and technology for sustainable mining activity: A worldwide research assessment. J. Clean Prod. 2019, 221, 38–54. [Google Scholar] [CrossRef]
- Aleixandre-Tudó, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L.; Aleixandre-Benavent, R. Bibliometric and social network analysis in scientific research on precision agriculture. Curr. Sci. 2018, 115, 1653–1667. [Google Scholar] [CrossRef]
- Zhou, P.; Zhong, Y.; Yu, M. A bibliometric investigation on China-UK collaboration in food and agriculture. Scientometrics 2013, 97, 267–285. [Google Scholar] [CrossRef]
- Malanski, P.D.; Schiavi, S.; Dedieu, B. Characteristics of “work in agriculture” scientific communities. A bibliometric review. Agron. Sustain. Dev. 2019, 39, 36. [Google Scholar] [CrossRef]
- Galdeano-Gómez, E.; Aznar-Sánchez, J.A.; Pérez-Mesa, J.C.; Piedra-Muñoz, L. Exploring synergies among agricultural sustainability dimensions: An empirical study on farming system in Almería (Southeast Spain). Ecol. Econ. 2017, 140, 99–109. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F.; Manzano-Agugliaro, F. Economic analysis of sustainable water use: A review of worldwide research. J. Clean Prod. 2018, 198, 1120–1132. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Galdeano-Gómez, E.; Pérez-Mesa, J.C. Intensive horticulture in Almería (Spain): A counterpoint to current european rural policy strategies. J. Agrar. Chang. 2011, 11, 241–261. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Valera, D.L. Perceptions and Acceptance of Desalinated Seawater for Irrigation: A Case Study in the Níjar District (Southeast Spain). Water 2017, 9, 408. [Google Scholar] [CrossRef] [Green Version]
- Montero, J.I.; Stanghellini, C.; Castilla, N. Greenhouse technology for sustainable production in mild winter climate areas: Trends and needs. Acta Hortic. 2009, 807, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
Year | Articles | Authors | Journals | Countries | Citation | Average Citation 1 |
---|---|---|---|---|---|---|
1999 | 11 | 32 | 10 | 11 | 1 | 0.1 |
2000 | 8 | 21 | 8 | 7 | 6 | 0.4 |
2001 | 7 | 19 | 7 | 6 | 19 | 1.0 |
2002 | 17 | 50 | 16 | 12 | 22 | 1.1 |
2003 | 19 | 54 | 18 | 13 | 24 | 1.2 |
2004 | 19 | 64 | 17 | 11 | 59 | 1.6 |
2005 | 24 | 77 | 20 | 13 | 104 | 2.2 |
2006 | 30 | 95 | 21 | 16 | 148 | 2.8 |
2007 | 27 | 99 | 22 | 16 | 211 | 3.7 |
2008 | 19 | 84 | 18 | 13 | 266 | 4.8 |
2009 | 36 | 140 | 26 | 19 | 312 | 5.4 |
2010 | 36 | 157 | 29 | 20 | 379 | 6.1 |
2011 | 48 | 194 | 41 | 22 | 448 | 6.6 |
2012 | 44 | 189 | 32 | 27 | 563 | 7.4 |
2013 | 53 | 239 | 41 | 25 | 643 | 8.1 |
2014 | 55 | 238 | 43 | 23 | 721 | 8.7 |
2015 | 54 | 229 | 40 | 19 | 838 | 9.4 |
2016 | 63 | 312 | 48 | 25 | 988 | 10.1 |
2017 | 71 | 287 | 61 | 29 | 1236 | 10.9 |
2018 | 67 | 319 | 51 | 27 | 1541 | 12.1 |
Journal | Articles | SJR 1 | H Index 2 | Country | Citation | Average Citation 3 | 1st Article | Last Article |
---|---|---|---|---|---|---|---|---|
Nongye Gongcheng Xuebao Transactions of the Chinese Society of Agricultural Engineering | 49 | 0.422 (Q2) | 10 | China | 309 | 6.3 | 2005 | 2018 |
Acta Horticulturae | 30 | 0.185 (Q4) | 5 | Belgium | 49 | 1.6 | 1999 | 2018 |
International Journal of Systematic and Evolutionary Microbiology | 17 | 0.912 (Q1) | 11 | UK | 327 | 19.2 | 2006 | 2016 |
Biosystems Engineering | 15 | 0.834 (Q1) | 11 | USA | 323 | 21.5 | 2002 | 2018 |
Chinese Journal of Applied Ecology | 14 | 0.267 (Q4) | 4 | China | 70 | 5.1 | 2004 | 2018 |
Hortscience | 14 | 0.424 (Q2) | 6 | USA | 185 | 13.2 | 2001 | 2017 |
Biological Control | 13 | 0.972 (Q1) | 10 | USA | 444 | 34.2 | 2000 | 2018 |
Environmental Science and Pollution Research | 11 | 0.828 (Q1) | 6 | Germany | 92 | 8.4 | 2015 | 2018 |
Journal of Food Agriculture and Environment | 10 | 0.132 (Q4) | 4 | Finland | 25 | 2.5 | 2008 | 2017 |
Pedosphere | 10 | 0.952 (Q1) | 8 | China | 130 | 13.1 | 2001 | 2017 |
Country | Average per Capita Articles 1 | Percentage of Total Articles | H Index 2 | Percentage of Collaboration 3 | Citation | Average Citation 4 | Average Citation | |
---|---|---|---|---|---|---|---|---|
Collaboration 5 | Non Collaboration 6 | |||||||
Greece | 1.958 | 2.97 | 10 | 38.10 | 270 | 12.9 | 16.1 | 10.9 |
Netherlands | 1.625 | 3.97 | 14 | 39.29 | 505 | 18.0 | 14.4 | 20.4 |
Denmark | 1.207 | 0.99 | 6 | 42.86 | 139 | 19.9 | 27.7 | 14.0 |
Spain | 1.156 | 7.65 | 21 | 18.52 | 1048 | 19.4 | 18.0 | 19.7 |
Israel | 1.126 | 1.42 | 7 | 50.00 | 161 | 16.1 | 15.0 | 17.2 |
South Korea | 0.910 | 6.66 | 18 | 38.30 | 648 | 13.8 | 26.4 | 5.9 |
Belgium | 0.700 | 1.13 | 5 | 12.50 | 88 | 11.0 | 3.0 | 12.1 |
Sweden | 0.589 | 0.85 | 4 | 33.33 | 64 | 10.7 | 10.5 | 10.8 |
Switzerland | 0.587 | 0.71 | 5 | 40.00 | 163 | 32.6 | 21.5 | 40.0 |
Canada | 0.567 | 2.97 | 10 | 33.33 | 250 | 11.9 | 9.3 | 13.2 |
Australia | 0.560 | 1.98 | 9 | 50.00 | 232 | 16.6 | 13.1 | 20.0 |
Portugal | 0.486 | 0.71 | 4 | 20.00 | 204 | 40.8 | 5.0 | 49.8 |
Germany | 0.362 | 4.25 | 17 | 70.00 | 665 | 22.2 | 27.4 | 10.0 |
Turkey | 0.352 | 4.11 | 9 | 13.79 | 399 | 13.8 | 9.8 | 14.4 |
Malaysia | 0.317 | 1.42 | 4 | 50.00 | 55 | 5.5 | 6.8 | 4.2 |
Italy | 0.314 | 2.69 | 9 | 10.53 | 273 | 14.4 | 40.5 | 11.3 |
USA | 0.300 | 13.88 | 24 | 40.82 | 1839 | 18.8 | 22.6 | 16.1 |
Romania | 0.257 | 0.71 | 2 | 20.00 | 29 | 5.8 | 1.0 | 7.0 |
UK | 0.226 | 2.12 | 9 | 86.67 | 504 | 33.6 | 37.2 | 10.0 |
Japan | 0.213 | 3.82 | 8 | 40.74 | 178 | 6.6 | 9.5 | 4.6 |
Iran | 0.196 | 2.27 | 7 | 18.75 | 73 | 4.6 | 2.3 | 5.1 |
China | 0.174 | 34.28 | 26 | 13.64 | 2182 | 9.0 | 19.6 | 7.3 |
France | 0.149 | 1.42 | 4 | 70.00 | 186 | 18.6 | 11.9 | 34.3 |
Thailand | 0.101 | 0.99 | 3 | 57.14 | 75 | 10.7 | 17.8 | 1.3 |
Colombia | 0.101 | 0.71 | 3 | 20.00 | 5 | 1.0 | 0.0 | 1.3 |
Brazil | 0.072 | 2.12 | 7 | 13.33 | 72 | 4.8 | 2.5 | 5.2 |
Mexico | 0.063 | 1.13 | 5 | 62.50 | 97 | 12.1 | 8.2 | 18.7 |
Russia | 0.035 | 0.71 | 2 | 40.00 | 25 | 5.0 | 10.0 | 1.7 |
India | 0.011 | 2.12 | 7 | 20.00 | 137 | 9.1 | 14.3 | 7.8 |
Institution | Country | Articles | Citation | Average Citation 1 | H Index 2 | Percentage of Collaboration 3 | Average citation | |
---|---|---|---|---|---|---|---|---|
Collaboration 4 | Non Collaboration 5 | |||||||
Chinese Academy of Sciences | China | 47 | 578 | 12.3 | 15 | 21.28 | 25.2 | 8.8 |
Ministry of Agriculture of the People’s Republic of China | China | 32 | 235 | 7.3 | 9 | 6.25 | 14.5 | 6.9 |
University of Almeria | Spain | 26 | 522 | 20.1 | 11 | 15.38 | 11.8 | 21.6 |
China Agricultural University | China | 25 | 135 | 5.4 | 7 | 16.00 | 8.5 | 4.8 |
Wageningen University and Research Centre | Netherlands | 24 | 491 | 20.5 | 13 | 41.67 | 15.6 | 23.9 |
Rural Development Administration | South Korea | 24 | 356 | 14.8 | 12 | 50.01 | 25.1 | 4.6 |
Chinese Academy of Agricultural Sciences | China | 20 | 170 | 8.5 | 8 | 0.00 | 0.0 | 8.5 |
Ministry of Education China | China | 17 | 296 | 17.4 | 7 | 17.65 | 69.0 | 6.4 |
Zhejiang University | China | 17 | 243 | 14.3 | 7 | 11.76 | 16.0 | 14.1 |
Shenyang Agricultural University | China | 16 | 70 | 4.4 | 6 | 0.00 | 0.0 | 4.4 |
Author | Articles | Citation | Average Citation 1 | H Index 2 | Country | Affiliation 3 | 1st Article | Last Article |
---|---|---|---|---|---|---|---|---|
Weon, Hang-yeon | 20 | 346 | 17.3 | 12 | South Korea | Rural Development Administration | 2006 | 2016 |
Kwon, Soon-wo | 19 | 335 | 17.6 | 11 | South Korea | Rural Development Administration | 2006 | 2016 |
Kim, Byung-yong | 13 | 314 | 24.2 | 11 | South Korea | Chun Lab, Inc. | 2006 | 2014 |
Stackebrandt, Erko | 10 | 288 | 28.8 | 10 | Germany | Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH | 2006 | 2007 |
Go, Seung-joo | 9 | 254 | 28.2 | 9 | South Korea | Korean Agricultural Culture Collection | 2006 | 2007 |
Montero, Juan Ignacio | 9 | 310 | 34.4 | 8 | Spain | Institut de Recerca I Technologia Agroalimentaries | 1999 | 2018 |
Ahn, Jae-hyung | 8 | 35 | 4.4 | 4 | South Korea | Rural Development Administration | 2013 | 2016 |
Bai, Lingyu | 7 | 78 | 11.1 | 4 | China | Ministry of Agriculture of the People’s Republic of China | 2009 | 2018 |
Kim, Soo-jin | 7 | 25 | 3.6 | 4 | South Korea | Rural Development Administration | 2013 | 2016 |
Li, Lianfang | 7 | 73 | 10.4 | 4 | China | Ministry of Agriculture of the People’s Republic of China | 2009 | 2018 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; López-Felices, B.; Román-Sánchez, I.M. An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture. Int. J. Environ. Res. Public Health 2020, 17, 664. https://doi.org/10.3390/ijerph17020664
Aznar-Sánchez JA, Velasco-Muñoz JF, López-Felices B, Román-Sánchez IM. An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture. International Journal of Environmental Research and Public Health. 2020; 17(2):664. https://doi.org/10.3390/ijerph17020664
Chicago/Turabian StyleAznar-Sánchez, José A., Juan F. Velasco-Muñoz, Belén López-Felices, and Isabel M. Román-Sánchez. 2020. "An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture" International Journal of Environmental Research and Public Health 17, no. 2: 664. https://doi.org/10.3390/ijerph17020664